Landslide: A New Race-Finding Tool for 15-410

more clever than “mandelbrot” since 2011.

Ben Blum (bblum@andrew.cmu.edu)

Carnegie Mellon University - 15-410

2015, September 30

Ben Blum (CMU 15-410) Landslide 1/ 40

Introduction Introduction

Outline

Theory: Seeing race conditions in a new way
» Case study (example)
» Tabular execution traces
> The execution tree

Research Technique: “Systematic testing”
» Preemption points
» Challenges and feasibility

Tool: Landslide
» How it works
» Automatically choosing preemption points
> User study (that's you!)

Ben Blum (CMU 15-410) Landslide 2 /40

Introduction Race Conditions

Case Study
Consumer thread Producer thread
mutex_lock(mx) ; mutex_lock(mx) ;
if (lwork_exists()) enqueue (work) ;
cond_wait(cvar, mx); signal(cvar);

work = dequeue();
mutex_unlock(mx) ;
mutex_unlock(mx) ;

access (work->data) ;

» See Paradise Lost lecture!

» if vs while: Two consumers can race to make one fail.

Ben Blum (CMU 15-410) Landslide 3 /40

Introduction Race Conditions

Thread Interleavings (“good” case)

Thread 1 Thread 2 Thread 3
lock(mx) ;
if (!work_exists())

wait(cvar, mx);

lock(mx) ;
if ('work_exists())
wait(cvar, mx);
lock(mx);
enqueue (work) ;
signal(cvar);
unlock (mx) ;
work = dequeue();
unlock(mx) ;

access (work->data) ;

Ben Blum (CMU 15-410) Landslide 4 /40

Introduction Race Conditions

Thread Interleavings (different “good” case)

Thread 1 Thread 2 Thread 3
lock(mx) ;
if (!work_exists())
wait(cvar, mx);
lock(mx) ;
enqueue (work) ;
signal(cvar);
unlock (mx) ;
work = dequeue();
unlock (mx) ;
access(work->data);
lock(mx) ;

if (lwork_exists())

wait(cvar, mx);

Ben Blum (CMU 15-410)

Landslide

5 / 40

Introduction Race Conditions

Thread Interleavings (race condition)

Thread 1 Thread 2 Thread 3
lock(mx) ;
if (!work_exists())

wait(cvar, mx);

lock(mx);
enqueue (work) ;
signal(cvar);
unlock (mx) ;
lock(mx) ;

work = dequeue();
unlock (mx) ;

work = dequeue();
unlock (mx) ;

// SIGSEGV ®

Ben Blum (CMU 15-410) Landslide 6 / 40

Introduction Race Conditions

Testing

How can programmers be confident in the correctness of their code?

> Unit tests
» good for basic functionality, bad for concurrency

» Stress tests
» state of the art in 15-410

» Theorem proving
» heavy burden on the programmers

» Releasing to paying customers and worrying about correctness later

Motivation: Can we do better than stress testing?

Ben Blum (CMU 15-410) Landslide 7 /40

Introduction Race Conditions

Testing Mechanisms

Stress testing: largetest, mandelbrot and friends
» Attempting to exercise as many interleavings as practical

» Exposes race conditions at random
» “If a preemption occurs at just the right time. ..’

1

» Cryptic panic messages when failure occurs

What if. ..
» Make educated guesses about when to preempt
» Preempt enough times to run every single interleaving

» Tell the story of what actually happened.

v

Overlook fewer bugs!

Ben Blum (CMU 15-410) Landslide

8 / 40

Systematic Testing

A different way of looking at race conditions. . .

Ben Blum (CMU 15-410) Landslide 9 / 40

Systematic Testing

Execution Tree

cond_signal()

enqueue()

work != NULL
(no bug)
Ben Blum (CMU 15-410) Landslide

lock(mx) ;
if (1work_exists())
vait(cvar, mx);

work = dequeue();
unlock (mx) ;
access (work->data) ;

Lock(mx) ;
if (twork_exists())
wait(cvar, mx);
Tock(mx);
enqueue (work) ;
signal(cvar);
unlock(mx) ;

10 / 40

Systematic Testing

Execution Tree

lock(mx) ;
if (1work_exists())
vait(cvar, mx);

Lock(mx) ;
if (twork_exists())
wait(cvar, mx);
Tock(mx);
enqueue (work) ;
signal(cvar);
unlock(mx) ;
work = dequeue();
unlock(mx) ;
access (vork->data) ;

cond_signal()

enqueue()

work != NULL
(no bug)
Ben Blum (CMU 15-410) Landslide 11 / 40

Systematic Testing

Execution Tree

lock(mx) ;
if (1work_exists())
vait(cvar, mx);

Lock(mx);
enqueue (work) ;
signal(cvar);
unlock(mx) ;

work = dequeue();

unlock(mx) ;

access (work->data) ;

cond_signal()

lock(mx) ;
if (twork_exists())
wait(cvar, mx);

enqueue()

cond_signal()

enqueue()

work != NULL work != NULL
(no bug) (no bug)
Ben Blum (CMU 15-410) Landslide 12 / 40

Systematic Testing

Execution Tree

lock(mx) ;
if (1work_exists())
vait(cvar, mx);

Lock(mx);

enqueue (work) ;

signal(cvar);

unlock(mx) ;
lock(mx) ;
work = dequeue();
unlock (mx) ;

cond_signal()

work = dequeue();
unlock (mx) ;
// SIGSEGV ®

enqueue()

cond_signal()

enqueue()

work != NULL work != NULL work == NULL
(no bug) (no bug) Segfault!

Ben Blum (CMU 15-410) Landslide 13 / 40

Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
» On 1st execution, schedule threads arbitrarily until program ends.
> This represents one branch of the tree.

» At end of each branch, rewind system and restart test.
» Artificially add preemptions to produce different thread interleavings.

> Intuitively: Generate many “tabular execution traces”.

Ben Blum (CMU 15-410) Landslide 14 / 40

Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
» On 1st execution, schedule threads arbitrarily until program ends.
> This represents one branch of the tree.

» At end of each branch, rewind system and restart test.
» Artificially add preemptions to produce different thread interleavings.

> Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...
» How can you possibly execute every possible interleaving?

» How did you know to draw that tree's branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 40

Systematic Testing

Preemption Points

Preemption points (PPs) are code locations where being preempted may
cause different behaviour.

» |OW, somewhere that interesting interleavings can happen around.

Systematic tests are parameterized by the set of PPs.
> If there are n PPs and k threads, state space size is n.

» Need to choose the set of PPs very carefully for test to be effective.
» "“Effective” = both comprehensive and feasible.

Ben Blum (CMU 15-410) Landslide 15 / 40

Systematic Testing

Preemption Points

What does “all possible interleavings” actually mean?

One extreme: Preempt at every instruction
» Good news: Will find every possible race condition.

» Bad news: Runtime of test will be impossibly large.

Other extreme: Nothing is a preemption point
» Good news: Test will finish quickly.

» Bad news: Only one execution was checked for bugginess.
> No alternative interleavings explored.
» Makes “no race found” a weak claim.

Is there a “sweet spot”?

Ben Blum (CMU 15-410) Landslide 16 / 40

Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };

1 want[i] = true;

(preemption point A)
2 while (want[jl)

(preemption point B)
3 continue;

(preemption point C)
4 // ...critical section...

(preemption point D)
5 want[i] = false;

Some preemption points will expose bugs.
Some preemption points don’t matter.

Ben Blum (CMU 15-410) Landslide 17 / 40

Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };
1 want[i] = true;
(preemption point A)
2 while (want[j])
3 continue;

4 // ...critical section...

5 want[i] = false;

Here, only preemption point A will trigger a deadlock.
All other interleavings are benign.

Ben Blum (CMU 15-410) Landslide

18 / 40

Systematic Testing

Preemption Points

Sweet spot: Insert a thread switch everywhere it “might matter”.

When do we fear being preempted?
» Threads becoming runnable (thr_create(), cond_signal(), etc.)
» Preemptions may cause it to run before we're ready
» Synchronization primitives (mutex_lock() /unlock(), etc.)
> If buggy or used improperly. ..
» Unprotected shared memory accesses (“data races”)
» May result in data structure corruption

Ben Blum (CMU 15-410) Landslide 19 / 40

Landslide

Landslide

Ben Blum (CMU 15-410) Landslide 20 / 40

Landslide

About The Project

About me: 5th year graduate student, advised by Garth Gibson

> TAed 15-410 for 3 semesters during undergrad
» 1st graduate year was 5th year M.S., rest in Ph.D. program
» http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

Ben Blum (CMU 15-410) Landslide

21 / 40

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

Landslide

About The Project

About me: 5th year graduate student, advised by Garth Gibson

> TAed 15-410 for 3 semesters during undergrad
» 1st graduate year was 5th year M.S., rest in Ph.D. program
» http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

About Landslide
» Simics module, which traces:

> Every instruction executed
» Every memory access read/written

» Originally supported only P3s; can now test P2s fully-automated

» Landslide shows how your Pebbles programs may not be stable.

Ben Blum (CMU 15-410) Landslide 21 / 40

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
» At end of each branch, identify a PP to replay differently

v

Reset machine state and start over

v

Implemented using Simics bookmarks
» set-bookmark and skip-to

v

Replay test from the beginning, with a different interleaving

Ben Blum (CMU 15-410) Landslide 22 / 40

Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
» At end of each branch, identify a PP to replay differently

v

Reset machine state and start over

v

Implemented using Simics bookmarks
» set-bookmark and skip-to

v

Replay test from the beginning, with a different interleaving

Controlling scheduling decisions
» Tool must control all sources of nondeterminism
> In 15-410, just timer and keyboard interrupts

» Landslide repeatedly fires timer ticks until desired thread is run.

Ben Blum (CMU 15-410) Landslide 22 / 40

Landslide Technical Overview

Landslide & You

P2 (thread library)

T l system calls

Pebbles (reference kernel)
T l hardware drivers

Simics (hardware emulation)

Ben Blum (CMU 15-410) Landslide 23 / 40

Landslide Technical Overview

Landslide & You

P2 (thread library)

examines memory,
reads/writes

Pebbles (reference kernel)

injects timer
interrupts

Simics (hardware emulation)

A Landslide

manages multiple
executions

Ben Blum (CMU 15-410) Landslide 24 / 40

Landslide Technical Overview

|dentifying Bugs

Landslide can definitely discover:

» Assertion failures

v

Segfaults
Deadlock

Use-after-free / double-free

v

v

Landslide can reasonably suspect:
> Infinite loop (halting problem)

» Data race bugs

Ben Blum (CMU 15-410) Landslide 25 / 40

Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
> At least one of the accesses is a write
» The threads are not holding the same mutex

» The threads can be reordered (e.g., no cond_signal() in between)

Ben Blum (CMU 15-410) Landslide 26 / 40

Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
> At least one of the accesses is a write
» The threads are not holding the same mutex

» The threads can be reordered (e.g., no cond_signal() in between)

Data races are not necessarily bugs, just highly suspicious!
» Bakery algorithm: Is number [i]=max (number [0] ,number[1]) bad?
» What about unprotected next_thread_id++7?

» “If threads interleaved the wrong way here, it might crash later.”
> Hmmm...

Ben Blum (CMU 15-410) Landslide 26 / 40

Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

Ben Blum (CMU 15-410) Landslide 27 / 40

Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools hard-code a fixed set of preemption points.
» E.g., “all thread library API calls” or “all kernel mutex locks/unlocks”
» Depending on length of test, completion time is unpredictable.

» More often, a subset is better in terms of time/coverage.

Ben Blum (CMU 15-410) Landslide 27 / 40

Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools hard-code a fixed set of preemption points.
» E.g., “all thread library API calls” or “all kernel mutex locks/unlocks”
» Depending on length of test, completion time is unpredictable.

» More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
» Tool: “l want to use these PPs, but can't predict completion time.”

» User: "l have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time — can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 40

Landslide Iterative Deepening

Iterative Deepening of Preemption Points

Goal: Run the best tests for a given CPU budget.

» Technique: “lterative Deepening”

Based on experience from past 15-410 student volunteers
» “Start small, then add more preemption points as time allows”

» Landslide now automates this process

Named after analogous technique in chess Al.
» Chess search is DFS limited by max number of moves (ply).

» Chess Als repeat DFS, increasing ply, until timeout.

Ben Blum (CMU 15-410) Landslide 28 / 40

Landslide Iterative Deepening

Iterative Deepening in Landslide

Landslide automatically iterates through different configurations of PPs.
» Manages work queue of jobs with different PPs
» Each job represents a new state space for Landslide to explore

» Prioritizes jobs based on estimated completion time

Repeat state space explorations, adding preemption points, until time is
exhausted.

Only required argument is CPU budget

Ben Blum (CMU 15-410) Landslide 29 / 40

Landslide Iterative Deepening

Iterative Deepening

Minimal state space includes only “mandatory” context switches

> e.g., yield(), cond_wait().

yield()

A/CD\A yield()

Ben Blum (CMU 15-410) Landslide 30 / 40

Landslide Iterative Deepening

Iterative Deepening

Adding different PPs can produce state spaces of different sizes; Landslide
tries them in parallel.

yield() yield()

mutex_lock() yield()

yield() mutex_unlock()

OO OO

Ben Blum (CMU 15-410) Landslide 31/ 40

Landslide Iterative Deepening

Iterative Deepening

If time allows, Landslide will combine PPs into larger, more comprehensive
state spaces.

yield()

mutex_lock()

Ben Blum (CMU 15-410) Landslide 32 /40

Evaluation

Demo

Ben Blum (CMU 15-410) Landslide 33 /40

Evaluation

Test Suite

Landslide ships with 6 approved test cases:

Standard P2 tests

» thr_exit_join

> paraguay

» rwlock_downgrade_read_test
New tests

» broadcast_test

» paradise_lost (new this semester)

> mutex_test (new this semester)

Ben Blum (CMU 15-410) Landslide 34 / 40

Evaluation

Last Semester

Spring 2015: 7 groups signed up to use Landslide; 5 found bugs

Among all groups, 38 total tests were run
» 21 tests ran to completion without finding bugs
> 4 deterministic bugs
» 13 distinct non-deterministic bugs

» 6 in thr_exit_join (use-after-free, deadlock, NULL, infinite loop...)
» 4 in paraguay (deadlock, infinite loop)

» 2 in broadcast_test (deadlock, infinite loop)

» 1in rwlock_downgrade_read_test (use-after-free)

Ben Blum (CMU 15-410) Landslide 35/ 40

Evaluation

A new treat since last semester

mutex_test tries to make your mutexes fail or deadlock.

Landslide will look for data races inside your mutex implementation.
» xchg/cmpxchg/xadd

» mutex->whose_turn_is_it = ...;

Ben Blum (CMU 15-410) Landslide 36 / 40

Evaluation

A new treat since last semester

mutex_test tries to make your mutexes fail or deadlock.

Landslide will look for data races inside your mutex implementation.
» xchg/cmpxchg/xadd
» mutex->whose_turn_is_it = ..

*

Tested 77 P2s from S'14, F'14, S’15

> 5 unrelated deterministic bugs (use-after-free, crash, etc)
» 1 “two threads got the lock at once” race

> ...that the TA who graded it didn't find!
» 7 deadlock races

> 4 other races (NULL crash, infinite loop, use-after-free)

Ben Blum (CMU 15-410) Landslide 36 / 40

Evaluation Landslide for the People

User Study

Try Landslide on your P2!
» Bare minimum effort: No more than 1 hour

» Clone a github URL, run setup script, run tests
» Landslide will automatically report test results

» Full study plan: 4-8 hours of active attention

» (Estimated, including time to diagnose and fix bugs)
» However, many tests should run passively overnight — start soon!

Ben Blum (CMU 15-410) Landslide 37 / 40

Evaluation Landslide for the People

User Study

Try Landslide on your P2!
» Bare minimum effort: No more than 1 hour

» Clone a github URL, run setup script, run tests
» Landslide will automatically report test results

» Full study plan: 4-8 hours of active attention

» (Estimated, including time to diagnose and fix bugs)
» However, many tests should run passively overnight — start soon!

Prerequisites
» You must pass the P2 hurdle before using Landslide.
» startle, agility_drill, cyclone, join_specific_test,
thr_exit_join
» Must have attempted several stress tests
» juggle 4 3 2 0, multitest, racer (15 min), paraguay

Ben Blum (CMU 15-410) Landslide

37 / 40

Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research

» CMU IRB has approved this study
» Landslide will collect results while you use it

» Record commands issued, take snapshots of your P2 code
> All data will be anonymized before publication

» No coercion: There is no penalty for not participating.

» | am not on course staff, cannot influence your grade
» Course staff will not have access to study data during semester

Ben Blum (CMU 15-410) Landslide 38 / 40

Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research

» CMU IRB has approved this study
» Landslide will collect results while you use it

» Record commands issued, take snapshots of your P2 code
> All data will be anonymized before publication

» No coercion: There is no penalty for not participating.

» | am not on course staff, cannot influence your grade
» Course staff will not have access to study data during semester

Risks & Benefits
» Benefit: Landslide may help you find/fix bugs, improving your grade!
» Risk: Landslide may find no bugs and be a waste of your time.

» Benefit: You might learn something...

Ben Blum (CMU 15-410) Landslide 38 / 40

Evaluation Landslide for the People

User Study - How to Participate

Interested?

To participate. . .

v

Review this lecture and study information sheet

v

Meet prerequisites of passing P2 tests

v

Complete sign-up form online to get further instructions
» http://tinyurl.com/landslide-p2-£f15

v

Use Landslide in addition to stress tests until P2 is due!

Really interested?

» | know of an M.S. thesis topic if you want to do post-OS research.

Ben Blum (CMU 15-410) Landslide 39 / 40

http://tinyurl.com/landslide-p2-f15

End

Questions?

722227 ?

THREEWORD PHRASE.Com

Ben Blum (CMU 15-410) Landslide 40 / 40

Bonus Slides Experimental Results

More Evaluation

Is dynamically adding “data race” PPs effective?
» 3 among preliminary bugs (9-15%) required data races to expose.
» 6 among S'15 student bugs (46%)
» 10 among mutex_test bugs (71%)

Is “iterative deepening” better than state-of-the-art?
» Control experiment: Just 1 state space, same CPU time

» PPs used: mutex_lock(), mutex_unlock()
» 110 minutes on 1 CPU

» Of 33 total bug reports, control failed to find 10 (30%).

» 3 required data race PPs to expose
> 1 ran out of time
> 6 obscured by different bug in same state space

Ben Blum (CMU 15-410) Landslide 41 / 40

Bonus Slides State Space Reduction

Coping with State Space Explosion

Serious problem: State spaces grow exponentially
» With p preemption points and k runnable threads, size p*.
» Threatens our ability to explore everything.

» Fortunately, some sequences result in identical states.

Partial Order Reduction identifies and skips “equivalent” interleavings.
> After each execution, compare memory reads/writes of each thread.
» Find when reordering threads couldn't possibly change behaviour.

» Example follows. ..

Ben Blum (CMU 15-410) Landslide 42 / 40

State Space Reduction

Thread 1 | Thread 2
x=25 y=5
X++;

y=—:
x=06 y=4

Ben Blum (CMU 15-410)

Bonus Slides State Space Reduction

Landslide

Thread 1 | Thread 2

x=5 y=5
y=—s

X++;

x=26 y=4

43 / 40

State Space Reduction

Thread 1 | Thread 2
x=25 y=5
X++;

Ben Blum (CMU 15-410)

Bonus Slides State Space Reduction

Landslide

Thread 1 | Thread 2

x=5 y=5
vy

X++;

x=26 y=4

44 / 40

Bonus Slides State Space Reduction

State Space Reduction

Thread 1 | Thread 2

x=5 y=5

X++;

=6 y—; ’4 Avoided exploring
— Y= a subtree!

Ben Blum (CMU 15-410) Landslide 45 / 40

	Introduction
	Introduction
	Race Conditions

	Systematic Testing
	Landslide
	Technical Overview
	Iterative Deepening

	Evaluation
	Landslide for the People

	End
	Bonus Slides
	Experimental Results
	State Space Reduction

