
Landslide: A New Race-Finding Tool for 15-410
more clever than “mandelbrot” since 2011.

Ben Blum (bblum@andrew.cmu.edu)

Carnegie Mellon University - 15-410

2015, September 30

Ben Blum (CMU 15-410) Landslide 1 / 40



Introduction Introduction

Outline

Theory: Seeing race conditions in a new way
I Case study (example)
I Tabular execution traces
I The execution tree

Research Technique: “Systematic testing”
I Preemption points
I Challenges and feasibility

Tool: Landslide
I How it works
I Automatically choosing preemption points
I User study (that’s you!)

Ben Blum (CMU 15-410) Landslide 2 / 40



Introduction Race Conditions

Case Study

Consumer thread

mutex_lock(mx);

if (!work_exists())
cond_wait(cvar, mx);

work = dequeue();

mutex_unlock(mx);
access(work->data);

Producer thread

mutex_lock(mx);

enqueue(work);
signal(cvar);

mutex_unlock(mx);

I See Paradise Lost lecture!
I if vs while: Two consumers can race to make one fail.

Ben Blum (CMU 15-410) Landslide 3 / 40



Introduction Race Conditions

Thread Interleavings (“good” case)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

work = dequeue();
unlock(mx);
access(work->data);

Ben Blum (CMU 15-410) Landslide 4 / 40



Introduction Race Conditions

Thread Interleavings (different “good” case)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

work = dequeue();
unlock(mx);
access(work->data);

lock(mx);
if (!work_exists())

wait(cvar, mx);

Ben Blum (CMU 15-410) Landslide 5 / 40



Introduction Race Conditions

Thread Interleavings (race condition)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

lock(mx);
work = dequeue();
unlock(mx);

work = dequeue();
unlock(mx);
// SIGSEGV /

Ben Blum (CMU 15-410) Landslide 6 / 40



Introduction Race Conditions

Testing

How can programmers be confident in the correctness of their code?
I Unit tests

I good for basic functionality, bad for concurrency
I Stress tests

I state of the art in 15-410
I Theorem proving

I heavy burden on the programmers
I Releasing to paying customers and worrying about correctness later

Motivation: Can we do better than stress testing?

Ben Blum (CMU 15-410) Landslide 7 / 40



Introduction Race Conditions

Testing Mechanisms

Stress testing: largetest, mandelbrot and friends
I Attempting to exercise as many interleavings as practical
I Exposes race conditions at random

I “If a preemption occurs at just the right time. . . ”
I Cryptic panic messages when failure occurs

What if. . .
I Make educated guesses about when to preempt
I Preempt enough times to run every single interleaving
I Tell the story of what actually happened.
I Overlook fewer bugs!

Ben Blum (CMU 15-410) Landslide 8 / 40



Systematic Testing

A different way of looking at race conditions. . .

Ben Blum (CMU 15-410) Landslide 9 / 40



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()

work_exists?

work != NULL
(no bug)

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 10 / 40



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

???

cond_wait()

work_exists?

work != NULL
(no bug)

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 11 / 40



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()dequeue()

???

work_exists?

cond_wait()

work_exists?

work != NULL
(no bug)

work != NULL
(no bug)

cond_signal()

enqueue()

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 12 / 40



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()dequeue() dequeue()

work_exists?

dequeue()

work_exists?

cond_wait()

work_exists?

work != NULL
(no bug)

work != NULL
(no bug)

work == NULL
Segfault!

cond_signal()

enqueue()

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 13 / 40



Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
I On 1st execution, schedule threads arbitrarily until program ends.

I This represents one branch of the tree.
I At end of each branch, rewind system and restart test.
I Artificially add preemptions to produce different thread interleavings.
I Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...
I How can you possibly execute every possible interleaving?
I How did you know to draw that tree’s branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 40



Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
I On 1st execution, schedule threads arbitrarily until program ends.

I This represents one branch of the tree.
I At end of each branch, rewind system and restart test.
I Artificially add preemptions to produce different thread interleavings.
I Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...
I How can you possibly execute every possible interleaving?
I How did you know to draw that tree’s branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 40



Systematic Testing

Preemption Points

Preemption points (PPs) are code locations where being preempted may
cause different behaviour.

I IOW, somewhere that interesting interleavings can happen around.

Systematic tests are parameterized by the set of PPs.
I If there are n PPs and k threads, state space size is nk .
I Need to choose the set of PPs very carefully for test to be effective.

I “Effective” = both comprehensive and feasible.

Ben Blum (CMU 15-410) Landslide 15 / 40



Systematic Testing

Preemption Points

What does “all possible interleavings” actually mean?

One extreme: Preempt at every instruction
I Good news: Will find every possible race condition.
I Bad news: Runtime of test will be impossibly large.

Other extreme: Nothing is a preemption point
I Good news: Test will finish quickly.
I Bad news: Only one execution was checked for bugginess.

I No alternative interleavings explored.
I Makes “no race found” a weak claim.

Is there a “sweet spot”?

Ben Blum (CMU 15-410) Landslide 16 / 40



Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };

1 want[i] = true;
(preemption point A)

2 while (want[j])
(preemption point B)

3 continue;
(preemption point C)

4 // ...critical section...
(preemption point D)

5 want[i] = false;

Some preemption points will expose bugs.
Some preemption points don’t matter.

Ben Blum (CMU 15-410) Landslide 17 / 40



Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };

1 want[i] = true;
(preemption point A)

2 while (want[j])

3 continue;

4 // ...critical section...

5 want[i] = false;

Here, only preemption point A will trigger a deadlock.
All other interleavings are benign.

Ben Blum (CMU 15-410) Landslide 18 / 40



Systematic Testing

Preemption Points

Sweet spot: Insert a thread switch everywhere it “might matter”.

When do we fear being preempted?
I Threads becoming runnable (thr_create(), cond_signal(), etc.)

I Preemptions may cause it to run before we’re ready
I Synchronization primitives (mutex_lock()/unlock(), etc.)

I If buggy or used improperly. . .
I Unprotected shared memory accesses (“data races”)

I May result in data structure corruption

Ben Blum (CMU 15-410) Landslide 19 / 40



Landslide

Landslide

Ben Blum (CMU 15-410) Landslide 20 / 40



Landslide

About The Project

About me: 5th year graduate student, advised by Garth Gibson
I TAed 15-410 for 3 semesters during undergrad
I 1st graduate year was 5th year M.S., rest in Ph.D. program

I http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

About Landslide
I Simics module, which traces:

I Every instruction executed
I Every memory access read/written

I Originally supported only P3s; can now test P2s fully-automated
I Landslide shows how your Pebbles programs may not be stable.

Ben Blum (CMU 15-410) Landslide 21 / 40

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf


Landslide

About The Project

About me: 5th year graduate student, advised by Garth Gibson
I TAed 15-410 for 3 semesters during undergrad
I 1st graduate year was 5th year M.S., rest in Ph.D. program

I http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

About Landslide
I Simics module, which traces:

I Every instruction executed
I Every memory access read/written

I Originally supported only P3s; can now test P2s fully-automated
I Landslide shows how your Pebbles programs may not be stable.

Ben Blum (CMU 15-410) Landslide 21 / 40

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf


Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
I At end of each branch, identify a PP to replay differently
I Reset machine state and start over
I Implemented using Simics bookmarks

I set-bookmark and skip-to

I Replay test from the beginning, with a different interleaving

Controlling scheduling decisions
I Tool must control all sources of nondeterminism
I In 15-410, just timer and keyboard interrupts
I Landslide repeatedly fires timer ticks until desired thread is run.

Ben Blum (CMU 15-410) Landslide 22 / 40



Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
I At end of each branch, identify a PP to replay differently
I Reset machine state and start over
I Implemented using Simics bookmarks

I set-bookmark and skip-to

I Replay test from the beginning, with a different interleaving

Controlling scheduling decisions
I Tool must control all sources of nondeterminism
I In 15-410, just timer and keyboard interrupts
I Landslide repeatedly fires timer ticks until desired thread is run.

Ben Blum (CMU 15-410) Landslide 22 / 40



Landslide Technical Overview

Landslide & You

Simics (hardware emulation)

Pebbles (reference kernel)

P2 (thread library)

system calls

hardware drivers

Ben Blum (CMU 15-410) Landslide 23 / 40



Landslide Technical Overview

Landslide & You

Simics (hardware emulation)

Pebbles (reference kernel)

Landslide

P2 (thread library)

system calls

hardware drivers

manages multiple
executions

injects timer
interrupts

examines memory
reads/writes

Ben Blum (CMU 15-410) Landslide 24 / 40



Landslide Technical Overview

Identifying Bugs

Landslide can definitely discover:
I Assertion failures
I Segfaults
I Deadlock
I Use-after-free / double-free

Landslide can reasonably suspect:
I Infinite loop (halting problem)
I Data race bugs

Ben Blum (CMU 15-410) Landslide 25 / 40



Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
I At least one of the accesses is a write
I The threads are not holding the same mutex
I The threads can be reordered (e.g., no cond_signal() in between)

Data races are not necessarily bugs, just highly suspicious!
I Bakery algorithm: Is number[i]=max(number[0],number[1]) bad?
I What about unprotected next_thread_id++?
I “If threads interleaved the wrong way here, it might crash later.”

I Hmmm...

Ben Blum (CMU 15-410) Landslide 26 / 40



Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
I At least one of the accesses is a write
I The threads are not holding the same mutex
I The threads can be reordered (e.g., no cond_signal() in between)

Data races are not necessarily bugs, just highly suspicious!
I Bakery algorithm: Is number[i]=max(number[0],number[1]) bad?
I What about unprotected next_thread_id++?
I “If threads interleaved the wrong way here, it might crash later.”

I Hmmm...

Ben Blum (CMU 15-410) Landslide 26 / 40



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools hard-code a fixed set of preemption points.
I E.g., “all thread library API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 40



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools hard-code a fixed set of preemption points.
I E.g., “all thread library API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 40



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools hard-code a fixed set of preemption points.
I E.g., “all thread library API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 40



Landslide Iterative Deepening

Iterative Deepening of Preemption Points

Goal: Run the best tests for a given CPU budget.
I Technique: “Iterative Deepening”

Based on experience from past 15-410 student volunteers
I “Start small, then add more preemption points as time allows”
I Landslide now automates this process

Named after analogous technique in chess AI.
I Chess search is DFS limited by max number of moves (ply).
I Chess AIs repeat DFS, increasing ply, until timeout.

Ben Blum (CMU 15-410) Landslide 28 / 40



Landslide Iterative Deepening

Iterative Deepening in Landslide

Landslide automatically iterates through different configurations of PPs.
I Manages work queue of jobs with different PPs
I Each job represents a new state space for Landslide to explore
I Prioritizes jobs based on estimated completion time

Repeat state space explorations, adding preemption points, until time is
exhausted.

Only required argument is CPU budget

Ben Blum (CMU 15-410) Landslide 29 / 40



Landslide Iterative Deepening

Iterative Deepening

Minimal state space includes only “mandatory” context switches
I e.g., yield(), cond_wait().

yield()

yield()

Ben Blum (CMU 15-410) Landslide 30 / 40



Landslide Iterative Deepening

Iterative Deepening

Adding different PPs can produce state spaces of different sizes; Landslide
tries them in parallel.

yield()

yield()

mutex_lock()

yield()

yield()

mutex_unlock()

Ben Blum (CMU 15-410) Landslide 31 / 40



Landslide Iterative Deepening

Iterative Deepening

If time allows, Landslide will combine PPs into larger, more comprehensive
state spaces.

yield()

mutex_lock()

yield()

mutex_unlock()

Ben Blum (CMU 15-410) Landslide 32 / 40



Evaluation

Demo

Ben Blum (CMU 15-410) Landslide 33 / 40



Evaluation

Test Suite

Landslide ships with 6 approved test cases:

Standard P2 tests
I thr_exit_join
I paraguay
I rwlock_downgrade_read_test

New tests
I broadcast_test
I paradise_lost (new this semester)
I mutex_test (new this semester)

Ben Blum (CMU 15-410) Landslide 34 / 40



Evaluation

Last Semester

Spring 2015: 7 groups signed up to use Landslide; 5 found bugs

Among all groups, 38 total tests were run
I 21 tests ran to completion without finding bugs
I 4 deterministic bugs
I 13 distinct non-deterministic bugs

I 6 in thr_exit_join (use-after-free, deadlock, NULL, infinite loop...)
I 4 in paraguay (deadlock, infinite loop)
I 2 in broadcast_test (deadlock, infinite loop)
I 1 in rwlock_downgrade_read_test (use-after-free)

Ben Blum (CMU 15-410) Landslide 35 / 40



Evaluation

A new treat since last semester

mutex_test tries to make your mutexes fail or deadlock.

Landslide will look for data races inside your mutex implementation.
I xchg/cmpxchg/xadd
I mutex->whose_turn_is_it = ...;

Tested 77 P2s from S’14, F’14, S’15
I 5 unrelated deterministic bugs (use-after-free, crash, etc)
I 1 “two threads got the lock at once” race

I ...that the TA who graded it didn’t find!
I 7 deadlock races
I 4 other races (NULL crash, infinite loop, use-after-free)

Ben Blum (CMU 15-410) Landslide 36 / 40



Evaluation

A new treat since last semester

mutex_test tries to make your mutexes fail or deadlock.

Landslide will look for data races inside your mutex implementation.
I xchg/cmpxchg/xadd
I mutex->whose_turn_is_it = ...;

Tested 77 P2s from S’14, F’14, S’15
I 5 unrelated deterministic bugs (use-after-free, crash, etc)
I 1 “two threads got the lock at once” race

I ...that the TA who graded it didn’t find!
I 7 deadlock races
I 4 other races (NULL crash, infinite loop, use-after-free)

Ben Blum (CMU 15-410) Landslide 36 / 40



Evaluation Landslide for the People

User Study

Try Landslide on your P2!
I Bare minimum effort: No more than 1 hour

I Clone a github URL, run setup script, run tests
I Landslide will automatically report test results

I Full study plan: 4-8 hours of active attention
I (Estimated, including time to diagnose and fix bugs)
I However, many tests should run passively overnight – start soon!

Prerequisites
I You must pass the P2 hurdle before using Landslide.

I startle, agility_drill, cyclone, join_specific_test,
thr_exit_join

I Must have attempted several stress tests
I juggle 4 3 2 0, multitest, racer (15 min), paraguay

Ben Blum (CMU 15-410) Landslide 37 / 40



Evaluation Landslide for the People

User Study

Try Landslide on your P2!
I Bare minimum effort: No more than 1 hour

I Clone a github URL, run setup script, run tests
I Landslide will automatically report test results

I Full study plan: 4-8 hours of active attention
I (Estimated, including time to diagnose and fix bugs)
I However, many tests should run passively overnight – start soon!

Prerequisites
I You must pass the P2 hurdle before using Landslide.

I startle, agility_drill, cyclone, join_specific_test,
thr_exit_join

I Must have attempted several stress tests
I juggle 4 3 2 0, multitest, racer (15 min), paraguay

Ben Blum (CMU 15-410) Landslide 37 / 40



Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research
I CMU IRB has approved this study
I Landslide will collect results while you use it

I Record commands issued, take snapshots of your P2 code
I All data will be anonymized before publication

I No coercion: There is no penalty for not participating.
I I am not on course staff, cannot influence your grade
I Course staff will not have access to study data during semester

Risks & Benefits
I Benefit: Landslide may help you find/fix bugs, improving your grade!
I Risk: Landslide may find no bugs and be a waste of your time.
I Benefit: You might learn something...

Ben Blum (CMU 15-410) Landslide 38 / 40



Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research
I CMU IRB has approved this study
I Landslide will collect results while you use it

I Record commands issued, take snapshots of your P2 code
I All data will be anonymized before publication

I No coercion: There is no penalty for not participating.
I I am not on course staff, cannot influence your grade
I Course staff will not have access to study data during semester

Risks & Benefits
I Benefit: Landslide may help you find/fix bugs, improving your grade!
I Risk: Landslide may find no bugs and be a waste of your time.
I Benefit: You might learn something...

Ben Blum (CMU 15-410) Landslide 38 / 40



Evaluation Landslide for the People

User Study - How to Participate

Interested?

To participate. . .
I Review this lecture and study information sheet
I Meet prerequisites of passing P2 tests
I Complete sign-up form online to get further instructions

I http://tinyurl.com/landslide-p2-f15

I Use Landslide in addition to stress tests until P2 is due!

Really interested?
I I know of an M.S. thesis topic if you want to do post-OS research.

Ben Blum (CMU 15-410) Landslide 39 / 40

http://tinyurl.com/landslide-p2-f15


End

Questions?

Ben Blum (CMU 15-410) Landslide 40 / 40



Bonus Slides Experimental Results

More Evaluation

Is dynamically adding “data race” PPs effective?
I 3 among preliminary bugs (9-15%) required data races to expose.
I 6 among S’15 student bugs (46%)
I 10 among mutex_test bugs (71%)

Is “iterative deepening” better than state-of-the-art?
I Control experiment: Just 1 state space, same CPU time

I PPs used: mutex_lock(), mutex_unlock()
I 110 minutes on 1 CPU

I Of 33 total bug reports, control failed to find 10 (30%).
I 3 required data race PPs to expose
I 1 ran out of time
I 6 obscured by different bug in same state space

Ben Blum (CMU 15-410) Landslide 41 / 40



Bonus Slides State Space Reduction

Coping with State Space Explosion

Serious problem: State spaces grow exponentially
I With p preemption points and k runnable threads, size pk .
I Threatens our ability to explore everything.
I Fortunately, some sequences result in identical states.

Partial Order Reduction identifies and skips “equivalent” interleavings.
I After each execution, compare memory reads/writes of each thread.
I Find when reordering threads couldn’t possibly change behaviour.
I Example follows. . .

Ben Blum (CMU 15-410) Landslide 42 / 40



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 43 / 40



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 44 / 40



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 45 / 40


	Introduction
	Introduction
	Race Conditions

	Systematic Testing
	Landslide
	Technical Overview
	Iterative Deepening

	Evaluation
	Landslide for the People

	End
	Bonus Slides
	Experimental Results
	State Space Reduction


