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Synchronization

Project 1 due tonightProject 1 due tonight
– Again, try not to use a late day

● But if you do, please carefully read and follow the
instructions

Project 2 out WednesdayProject 2 out Wednesday
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Outline

Synch 1Synch 1
– Two building blocks

– Three requirements for critical-section algorithms

– Algorithms people don't use for critical sections

Synch 2Synch 2
– How critical sections are really implemented

Synch 3Synch 3
– Condition variables

● Under the hood
● The atomic-sleep problem

– Semaphores, monitors – overview
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Road Map

Two Fundamental operationsTwo Fundamental operations

✔ Atomic instruction sequence

⇨Voluntary de-scheduling
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Voluntary de-scheduling

The SituationThe Situation
– You hold lock on shared resource

– But it's not in “the right mode”

Action sequenceAction sequence
– Unlock shared resource

– Write down “wake me up when...”

– Block until resource changes state
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What Not to do

while (!reckoning) {
  mutex_lock(&scenario_lk);
  if ((date >= 1906-04-18) &&
   (hour >= 5))
    reckoning = true;
  else
    mutex_unlock(&scenario_lk);
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);
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What Not To Do

Why is this wrong?Why is this wrong?
– Make sure you understand!

– See previous two lectures

– Do not do this in P2 or P3
● Not even if it is really tempting in P3
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“Arguably Less Wrong”
while (!reckoning) {
  mutex_lock(&scenario_lk);
  if ((date >= 1906-04-18) &&
    (hour >= 5))
    reckoning = true;
  else {
    mutex_unlock(&scenario_lk);
    sleep(1);
  }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);
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“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?
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“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
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“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time
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“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time

– What's the problem?
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“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time

– What's the problem?
● We don't really want to wait for some duration!
● We want to wait for a condition change 
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“Honorable Mention”?
while (!reckoning) {
  mutex_lock(&scenario_lk);
  if ((date >= 1906-04-18) &&
    (hour >= 5))
    reckoning = true;
  else {
    mutex_unlock(&scenario_lk);
    yield(); // Better than sleep()????
  }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);
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Something Is Missing...

✔✔ “ “Protect shared state” is solvedProtect shared state” is solved
– We use a “mutex object”

– Also encapsulates “Which code interferes with this?”

– Good

⇨⇨  How to solve “block for the right duration”?How to solve “block for the right duration”?
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Something Is Missing

✔✔ “ “Protect shared state” is solvedProtect shared state” is solved
– We use a “mutex object”

– Also encapsulates “Which code interferes with this?”

– Good

⇨⇨  How to solve “block for the right duration”?How to solve “block for the right duration”?
– Get an expert to tell us!

– Encapsulate “the right duration”...
● ...into a condition variable object
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Once More, With Feeling!

mutex_lock(&scenario_lk);
while (cvarp = wait_on()) {
  cond_wait(cvarp, &scenario_lk);
}
wreak_general_havoc(); /* locked! */
mutex_unlock(&scenario_lk);
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wait_on()?

if (y < 1906)
  return (&new_year);
else if (m < 4)
  return (&new_month);
else if (d < 18)
  return (&new_day);
else if (h < 5)
  return (&new_hour);
else
  return (0); // done!

// Code is “conceptual example”, not 100% correct
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What Awakens Us?

for (y = 1900; y < 2000; y++)
  for (m = 1; m <= 12; m++)
    for (d = 1; d <= days(m); d++)
      for (h = 0; h < 24; h++)
        ...
        cond_broadcast(&new_hour);
      cond_broadcast(&new_day);
    cond_broadcast(&new_month);
  cond_broadcast(&new_year);

// Code is “conceptual example”, not 100% correct
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Condition Variable Requirements

Keep track of threads blocked “for a while”Keep track of threads blocked “for a while”

Allow notifier thread(s) to unblock blocked thread(s)Allow notifier thread(s) to unblock blocked thread(s)

Must be “thread-safe”Must be “thread-safe”
– Many threads may call condition_wait() at same time

– Many threads may call condition_signal() at same time

– Say, those look like “interfering sequences”...
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Why Two Parameters?

condition_wait(&cvar, &mutex);

Mutex required to examine/modify the “world” stateMutex required to examine/modify the “world” state
– If you examine unlocked state, it's changing.

Whoever awakens you will need to hold that mutexWhoever awakens you will need to hold that mutex
– So you'd better give it up.

When you wake up, you will need to hold it againWhen you wake up, you will need to hold it again
– “Convenient” for condition_wait() to un-lock/re-lock

But there's something more subtleBut there's something more subtle
– Try to recall this issue when working on P2...
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Inside a Condition Variable

cvar->queuecvar->queue
– of blocked threads

– FIFO, or more exotic

cvar->mutexcvar->mutex
– Protects queue against interfering wait()/signal() calls

– This isn't the caller's mutex (locking caller's world state)

– This is our secret invisible mutex
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Inside a Condition Variable

cond_wait(cvar, world_mutex)

{

  lock(cvar->mutex);

  enq(cvar->queue, my_thread_id());

  unlock(world_mutex);

  ATOMICALLY {

    unlock(cvar->mutex);

    kernel_please_pause_this_thread();

  }

  lock(world_mutex);

}

What is this “ATOMICALLY” stuff?What is this “ATOMICALLY” stuff?
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What We Hope For

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);
kern_thr_pause();

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);
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Pathological Execution Sequence

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);

kern_thr_pause();

kern_thr_wake(id) ⇒ ERR_NOT_ASLEEP
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Achieving wait() Atomicity

Rules of the gameRules of the game
– There isn't an underlying unlock_and_block() primitive

– We have unlock(), and block(), and maybe “other stuff”

– From outside cond_wait()/cond_signal(), we must
achieve apparent (as-if) “atomicity of unlock and block”.

ApproachesApproaches
– Disable interrupts (if you are a kernel)

– Rely on OS to implement condition variables
● (Why is this not the best idea?)

– Have a better kernel thread-block interface

– Hmmm....
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Achieving wait() Atomicity

P2 challengesP2 challenges
– Understand the issues!

● mutex, cvar

– Understand the host kernel we give you

– Put the parts together
● Don't use “wrong” or “arguably less wrong” approaches!
● Seek solid, clear solutions

– There's more than one way to do it
– Make sure to pick a correct way...
– Try to pick a good way.
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Outline

Last timeLast time
– How mutual exclusion is really implemented

Condition variablesCondition variables
– Under the hood

– The atomic-sleep problem

⇒⇒  SemaphoresSemaphores

MonitorsMonitors
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Semaphore Concept

Semaphore is a different encapsulation objectSemaphore is a different encapsulation object
– Can produce mutual exclusion

– Can produce block-until-it's-time

Intuition: counted resourceIntuition: counted resource
– Integer represents “number available”

● Number of buffers, number of pairs of scissors, ...
● Semaphore object initialized to a particular count

– Thread blocks until it is allocated an instance
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Semaphore Concept

wait(), aka P(), Dutch probeer te verlagen (“try towait(), aka P(), Dutch probeer te verlagen (“try to
decrease”)decrease”)
– wait until value > 0

– then decrement value (“taking” one instance)

signal(), aka V(), Dutch verhogen (“increase”)signal(), aka V(), Dutch verhogen (“increase”)
– increment value (“releasing” one instance)

Just one small issue...Just one small issue...
– wait() and signal() must be atomic
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“Mutex-style” Semaphore

semaphore m = 1;

do {
  wait(m); /* mutex_lock() */
  ..critical section...
  signal(m); /* mutex_unlock() */

  ...remainder section...
} while (1);
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“Condition-style” Semaphore

Thread 0 Thread 1
wait(c);

result = 42;
signal(c);

use(result);
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“Condition with Memory”

Semaphores retain memory of signal() events
“full/empty bit” - unlike condition variables

Thread 0 Thread 1
result = 42;
signal(c);

wait(c);
use(result);
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Semaphore vs. Mutex/Condition

Good newsGood news
– Semaphore is a higher-level construct

– Integrates mutual exclusion, waiting

– Avoids mistakes common in mutex/condition API
● signal() too early is “lost”
● ...
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Semaphore vs. Mutex/Condition

Bad newsBad news
– Semaphore is a higher-level construct

– Integrates mutual exclusion, waiting
● Some semaphores are “mutex-like”
● Some semaphores are “condition-like”
● How's a poor library to know?

– Spin-wait or not???
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Semaphores - 31 Flavors

Binary semaphoreBinary semaphore
– It counts, but only from 0 to 1!

● “Available” / “Not available”

– Consider this a hint to the implementor...
● “Think mutex!”

Non-blocking semaphoreNon-blocking semaphore
– wait(semaphore, timeout);

Deadlock-avoidance semaphoreDeadlock-avoidance semaphore
– #include <deadlock.lecture>
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My Personal Opinion

OneOne “simple, intuitive” “simple, intuitive” synchronization object synchronization object
– In 31 performance-enhancing flavors!!!

““The nice thing about standards is that you have soThe nice thing about standards is that you have so
many to choose from.”many to choose from.”
– Andrew S. Tanenbaum

Conceptually simpler to have two objectsConceptually simpler to have two objects
– One for mutual exclusion

– One for waiting

– ...after you've understood what's actually happening
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Semaphore Wait: Inside Story

wait(semaphore s)
  ACQUIRE EXCLUSIVE ACCESS
  --s->count;
  if (s->count < 0) {
    enqueue(s->queue, my_id());
    ATOMICALLY {
      RELEASE EXCLUSIVE ACCESS
      thread_block()
    }
  } else
      RELEASE EXCLUSIVE ACCESS
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Semaphore Signal: Inside Story
signal(semaphore s)
  ACQUIRE EXCLUSIVE ACCESS
  ++s->count;
  if (s->count <= 0) {
    tid = dequeue(s->queue);
    thread_unblock(tid);
  }
  RELEASE EXCLUSIVE ACCESS

What's all the shouting?What's all the shouting?
– An exclusion algorithm much like a mutex, or

– OS-assisted atomic de-scheduling / awakening
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Monitor

Basic conceptBasic concept
– Semaphores eliminate some mutex/condition mistakes

– Still some common errors
● Swapping “signal()” & “wait()”
● Accidentally omitting one

Monitor: higher-level abstractionMonitor: higher-level abstraction
– Module of high-level language procedures

● All access some shared state

– Compiler adds synchronization code
● Thread running in any procedure blocks all thread entries
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Monitor “commerce”

int cash_in_till[N_STORES] = { 0 };
int wallet[N_CUSTOMERS] = { 0 } ;

boolean buy(int cust, store, price) {
  if (wallet[cust] >= price) {
    cash_in_till[store] += price;
    wallet[cust] -= price;
    return (true);  
  } else
    return (false);
}
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Monitors – What about waiting?

Automatic mutal exclusion is nice...Automatic mutal exclusion is nice...
– ...but it is too strong

Sometimes one thread needs to wait for anotherSometimes one thread needs to wait for another
– Automatic mutual exclusion forbids this

– Must leave monitor, re-enter - when?

Have we heard this “when” question before?Have we heard this “when” question before?
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Monitor Waiting – The Problem

void 
stubbornly_cash_check(acct a, check c)
{
  while (account[a].bal < check.val) {
    ...Sigh, must wait for a while...
    ...What goes here?  I forget...
  }
  account[a].bal -= check.val;
}
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Monitor Waiting – Wrong Solution

boolean 
try_cash_check(acct a, check c)
{
  if (account[a].bal < check.val)
    return (false); /* pass the buck */
  account[a].bal -= check.val;
  return (true);
}
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Monitor condition variables

Similar to condition variables we've seenSimilar to condition variables we've seen

condition_wait(cvar)condition_wait(cvar)
– Only one parameter

– Mutex-to-drop is implicit
● (the “monitor mutex”)

– Operation
● “Temporarily exit monitor” -- drop the mutex
● Wait until signalled
● “Re-enter monitor” - re-acquire the mutex
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Monitor Waiting

void 
stubbornly_cash_check(acct a, check c)
{
  while (account[a].bal < check.val) {
    cond_wait(account[a].activity);
  }
  account[a].bal -= check.val;
}

Q: Who would signal() this cvar?Q: Who would signal() this cvar?
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Monitor condition variables

signal() policy question - which thread to run?signal() policy question - which thread to run?
– Signalling thread? Signalled thread?

● Can argue either way

– Or: signal() exits monitor as side effect!

– Different signal() policies mean different monitor flavors
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Summary

Two fundamental operationsTwo fundamental operations
– Mutual exclusion for must-be-atomic sequences

– Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) styleMutex/condition-variable (“pthreads”) style
– Two objects for two core operations

Semaphores, MonitorsSemaphores, Monitors
– Semaphore: one object

– Monitor: invisible compiler-generated object

– Same core ideas inside
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Summary

What you should knowWhat you should know
– Issues/goals

– Underlying techniques

– How environment/application design matters

All done with synchronization?All done with synchronization?
– Only one minor issue left

● Deadlock
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