
15-410, F'151

Synchronization #3
Sep. 21, 2015

Dave EckhardtDave Eckhardt

L09b_Synch

15-410
“...Arguably less wrong...”

Synchronization

Project 1 due tonightProject 1 due tonight
– Again, try not to use a late day

● But if you do, please carefully read and follow the
instructions

Project 2 out WednesdayProject 2 out Wednesday

15-410, F'153

Outline

Synch 1Synch 1
– Two building blocks

– Three requirements for critical-section algorithms

– Algorithms people don't use for critical sections

Synch 2Synch 2
– How critical sections are really implemented

Synch 3Synch 3
– Condition variables

● Under the hood
● The atomic-sleep problem

– Semaphores, monitors – overview

15-410, F'154

Road Map

Two Fundamental operationsTwo Fundamental operations

✔ Atomic instruction sequence

⇨Voluntary de-scheduling

15-410, F'155

Voluntary de-scheduling

The SituationThe Situation
– You hold lock on shared resource

– But it's not in “the right mode”

Action sequenceAction sequence
– Unlock shared resource

– Write down “wake me up when...”

– Block until resource changes state

15-410, F'156

What Not to do

while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else
 mutex_unlock(&scenario_lk);
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

15-410, F'157

What Not To Do

Why is this wrong?Why is this wrong?
– Make sure you understand!

– See previous two lectures

– Do not do this in P2 or P3
● Not even if it is really tempting in P3

15-410, F'158

“Arguably Less Wrong”
while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else {
 mutex_unlock(&scenario_lk);
 sleep(1);
 }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

15-410, F'159

“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

15-410, F'1510

“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long

15-410, F'1511

“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time

15-410, F'1512

“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time

– What's the problem?

15-410, F'1513

“Arguably Less Wrong”

Don't do this eitherDon't do this either
– How wrong is “sleep(1)”?

● N-1 times it's much too short
● Nth time it's much too long
● It's wrong every time

– What's the problem?
● We don't really want to wait for some duration!
● We want to wait for a condition change

15-410, F'1514

“Honorable Mention”?
while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else {
 mutex_unlock(&scenario_lk);
 yield(); // Better than sleep()????
 }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

15-410, F'1515

Something Is Missing...

✔✔ “ “Protect shared state” is solvedProtect shared state” is solved
– We use a “mutex object”

– Also encapsulates “Which code interferes with this?”

– Good

⇨⇨ How to solve “block for the right duration”?How to solve “block for the right duration”?

15-410, F'1516

Something Is Missing

✔✔ “ “Protect shared state” is solvedProtect shared state” is solved
– We use a “mutex object”

– Also encapsulates “Which code interferes with this?”

– Good

⇨⇨ How to solve “block for the right duration”?How to solve “block for the right duration”?
– Get an expert to tell us!

– Encapsulate “the right duration”...
● ...into a condition variable object

15-410, F'1517

Once More, With Feeling!

mutex_lock(&scenario_lk);
while (cvarp = wait_on()) {
 cond_wait(cvarp, &scenario_lk);
}
wreak_general_havoc(); /* locked! */
mutex_unlock(&scenario_lk);

15-410, F'1518

wait_on()?

if (y < 1906)
 return (&new_year);
else if (m < 4)
 return (&new_month);
else if (d < 18)
 return (&new_day);
else if (h < 5)
 return (&new_hour);
else
 return (0); // done!

// Code is “conceptual example”, not 100% correct

15-410, F'1519

What Awakens Us?

for (y = 1900; y < 2000; y++)
 for (m = 1; m <= 12; m++)
 for (d = 1; d <= days(m); d++)
 for (h = 0; h < 24; h++)
 ...
 cond_broadcast(&new_hour);
 cond_broadcast(&new_day);
 cond_broadcast(&new_month);
 cond_broadcast(&new_year);

// Code is “conceptual example”, not 100% correct

15-410, F'1520

Condition Variable Requirements

Keep track of threads blocked “for a while”Keep track of threads blocked “for a while”

Allow notifier thread(s) to unblock blocked thread(s)Allow notifier thread(s) to unblock blocked thread(s)

Must be “thread-safe”Must be “thread-safe”
– Many threads may call condition_wait() at same time

– Many threads may call condition_signal() at same time

– Say, those look like “interfering sequences”...

15-410, F'1521

Why Two Parameters?

condition_wait(&cvar, &mutex);

Mutex required to examine/modify the “world” stateMutex required to examine/modify the “world” state
– If you examine unlocked state, it's changing.

Whoever awakens you will need to hold that mutexWhoever awakens you will need to hold that mutex
– So you'd better give it up.

When you wake up, you will need to hold it againWhen you wake up, you will need to hold it again
– “Convenient” for condition_wait() to un-lock/re-lock

But there's something more subtleBut there's something more subtle
– Try to recall this issue when working on P2...

15-410, F'1522

Inside a Condition Variable

cvar->queuecvar->queue
– of blocked threads

– FIFO, or more exotic

cvar->mutexcvar->mutex
– Protects queue against interfering wait()/signal() calls

– This isn't the caller's mutex (locking caller's world state)

– This is our secret invisible mutex

15-410, F'1523

Inside a Condition Variable

cond_wait(cvar, world_mutex)

{

 lock(cvar->mutex);

 enq(cvar->queue, my_thread_id());

 unlock(world_mutex);

 ATOMICALLY {

 unlock(cvar->mutex);

 kernel_please_pause_this_thread();

 }

 lock(world_mutex);

}

What is this “ATOMICALLY” stuff?What is this “ATOMICALLY” stuff?

15-410, F'1524

What We Hope For

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);
kern_thr_pause();

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);

15-410, F'1525

Pathological Execution Sequence

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);

kern_thr_pause();

kern_thr_wake(id) ⇒ ERR_NOT_ASLEEP

15-410, F'1526

Achieving wait() Atomicity

Rules of the gameRules of the game
– There isn't an underlying unlock_and_block() primitive

– We have unlock(), and block(), and maybe “other stuff”

– From outside cond_wait()/cond_signal(), we must
achieve apparent (as-if) “atomicity of unlock and block”.

ApproachesApproaches
– Disable interrupts (if you are a kernel)

– Rely on OS to implement condition variables
● (Why is this not the best idea?)

– Have a better kernel thread-block interface

– Hmmm....

15-410, F'1527

Achieving wait() Atomicity

P2 challengesP2 challenges
– Understand the issues!

● mutex, cvar

– Understand the host kernel we give you

– Put the parts together
● Don't use “wrong” or “arguably less wrong” approaches!
● Seek solid, clear solutions

– There's more than one way to do it
– Make sure to pick a correct way...
– Try to pick a good way.

15-410, F'1528

Outline

Last timeLast time
– How mutual exclusion is really implemented

Condition variablesCondition variables
– Under the hood

– The atomic-sleep problem

⇒⇒ SemaphoresSemaphores

MonitorsMonitors

15-410, F'1529

Semaphore Concept

Semaphore is a different encapsulation objectSemaphore is a different encapsulation object
– Can produce mutual exclusion

– Can produce block-until-it's-time

Intuition: counted resourceIntuition: counted resource
– Integer represents “number available”

● Number of buffers, number of pairs of scissors, ...
● Semaphore object initialized to a particular count

– Thread blocks until it is allocated an instance

15-410, F'1530

Semaphore Concept

wait(), aka P(), Dutch probeer te verlagen (“try towait(), aka P(), Dutch probeer te verlagen (“try to
decrease”)decrease”)
– wait until value > 0

– then decrement value (“taking” one instance)

signal(), aka V(), Dutch verhogen (“increase”)signal(), aka V(), Dutch verhogen (“increase”)
– increment value (“releasing” one instance)

Just one small issue...Just one small issue...
– wait() and signal() must be atomic

15-410, F'1531

“Mutex-style” Semaphore

semaphore m = 1;

do {
 wait(m); /* mutex_lock() */
 ..critical section...
 signal(m); /* mutex_unlock() */

 ...remainder section...
} while (1);

15-410, F'1532

“Condition-style” Semaphore

Thread 0 Thread 1
wait(c);

result = 42;
signal(c);

use(result);

15-410, F'1533

“Condition with Memory”

Semaphores retain memory of signal() events
“full/empty bit” - unlike condition variables

Thread 0 Thread 1
result = 42;
signal(c);

wait(c);
use(result);

15-410, F'1534

Semaphore vs. Mutex/Condition

Good newsGood news
– Semaphore is a higher-level construct

– Integrates mutual exclusion, waiting

– Avoids mistakes common in mutex/condition API
● signal() too early is “lost”
● ...

15-410, F'1535

Semaphore vs. Mutex/Condition

Bad newsBad news
– Semaphore is a higher-level construct

– Integrates mutual exclusion, waiting
● Some semaphores are “mutex-like”
● Some semaphores are “condition-like”
● How's a poor library to know?

– Spin-wait or not???

15-410, F'1536

Semaphores - 31 Flavors

Binary semaphoreBinary semaphore
– It counts, but only from 0 to 1!

● “Available” / “Not available”

– Consider this a hint to the implementor...
● “Think mutex!”

Non-blocking semaphoreNon-blocking semaphore
– wait(semaphore, timeout);

Deadlock-avoidance semaphoreDeadlock-avoidance semaphore
– #include <deadlock.lecture>

15-410, F'1537

My Personal Opinion

OneOne “simple, intuitive” “simple, intuitive” synchronization object synchronization object
– In 31 performance-enhancing flavors!!!

““The nice thing about standards is that you have soThe nice thing about standards is that you have so
many to choose from.”many to choose from.”
– Andrew S. Tanenbaum

Conceptually simpler to have two objectsConceptually simpler to have two objects
– One for mutual exclusion

– One for waiting

– ...after you've understood what's actually happening

15-410, F'1538

Semaphore Wait: Inside Story

wait(semaphore s)
 ACQUIRE EXCLUSIVE ACCESS
 --s->count;
 if (s->count < 0) {
 enqueue(s->queue, my_id());
 ATOMICALLY {
 RELEASE EXCLUSIVE ACCESS
 thread_block()
 }
 } else
 RELEASE EXCLUSIVE ACCESS

15-410, F'1539

Semaphore Signal: Inside Story
signal(semaphore s)
 ACQUIRE EXCLUSIVE ACCESS
 ++s->count;
 if (s->count <= 0) {
 tid = dequeue(s->queue);
 thread_unblock(tid);
 }
 RELEASE EXCLUSIVE ACCESS

What's all the shouting?What's all the shouting?
– An exclusion algorithm much like a mutex, or

– OS-assisted atomic de-scheduling / awakening

15-410, F'1540

Monitor

Basic conceptBasic concept
– Semaphores eliminate some mutex/condition mistakes

– Still some common errors
● Swapping “signal()” & “wait()”
● Accidentally omitting one

Monitor: higher-level abstractionMonitor: higher-level abstraction
– Module of high-level language procedures

● All access some shared state

– Compiler adds synchronization code
● Thread running in any procedure blocks all thread entries

15-410, F'1541

Monitor “commerce”

int cash_in_till[N_STORES] = { 0 };
int wallet[N_CUSTOMERS] = { 0 } ;

boolean buy(int cust, store, price) {
 if (wallet[cust] >= price) {
 cash_in_till[store] += price;
 wallet[cust] -= price;
 return (true);
 } else
 return (false);
}

15-410, F'1542

Monitors – What about waiting?

Automatic mutal exclusion is nice...Automatic mutal exclusion is nice...
– ...but it is too strong

Sometimes one thread needs to wait for anotherSometimes one thread needs to wait for another
– Automatic mutual exclusion forbids this

– Must leave monitor, re-enter - when?

Have we heard this “when” question before?Have we heard this “when” question before?

15-410, F'1543

Monitor Waiting – The Problem

void
stubbornly_cash_check(acct a, check c)
{
 while (account[a].bal < check.val) {
 ...Sigh, must wait for a while...
 ...What goes here? I forget...
 }
 account[a].bal -= check.val;
}

15-410, F'1544

Monitor Waiting – Wrong Solution

boolean
try_cash_check(acct a, check c)
{
 if (account[a].bal < check.val)
 return (false); /* pass the buck */
 account[a].bal -= check.val;
 return (true);
}

15-410, F'1545

Monitor condition variables

Similar to condition variables we've seenSimilar to condition variables we've seen

condition_wait(cvar)condition_wait(cvar)
– Only one parameter

– Mutex-to-drop is implicit
● (the “monitor mutex”)

– Operation
● “Temporarily exit monitor” -- drop the mutex
● Wait until signalled
● “Re-enter monitor” - re-acquire the mutex

15-410, F'1546

Monitor Waiting

void
stubbornly_cash_check(acct a, check c)
{
 while (account[a].bal < check.val) {
 cond_wait(account[a].activity);
 }
 account[a].bal -= check.val;
}

Q: Who would signal() this cvar?Q: Who would signal() this cvar?

15-410, F'1547

Monitor condition variables

signal() policy question - which thread to run?signal() policy question - which thread to run?
– Signalling thread? Signalled thread?

● Can argue either way

– Or: signal() exits monitor as side effect!

– Different signal() policies mean different monitor flavors

15-410, F'1548

Summary

Two fundamental operationsTwo fundamental operations
– Mutual exclusion for must-be-atomic sequences

– Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) styleMutex/condition-variable (“pthreads”) style
– Two objects for two core operations

Semaphores, MonitorsSemaphores, Monitors
– Semaphore: one object

– Monitor: invisible compiler-generated object

– Same core ideas inside

15-410, F'1549

Summary

What you should knowWhat you should know
– Issues/goals

– Underlying techniques

– How environment/application design matters

All done with synchronization?All done with synchronization?
– Only one minor issue left

● Deadlock

	Title
	Slide 2
	Context
	Road Map
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Summary
	Slide 49

