LO09 Synch

15-410

“...Arguably less wrong...”

Synchronization #3
Sep. 21, 2015

Dave Eckhardt

15-410, F'15



Synchronization

Project 1 due tonight

- Again, try not to use a late day

« But if you do, please carefully read and follow the
instructions

Project 2 out Wednesday



Outline

Synch 1
- Two building blocks
— Three requirements for critical-section algorithms
- Algorithms people don’t use for critical sections

Synch 2

- How critical sections are really implemented

Synch 3

- Condition variables
e Under the hood
« The atomic-sleep problem

- Semaphores, monitors — overview

15-410, F'15



Road Map

Two Fundamental operations
v Atomic instruction sequence

B Voluntary de-scheduling

15-410, F'15



Voluntary de-scheduling

The Situation

— You hold lock on shared resource
- But it's not in “the right mode”

Action sequence
- Unlock shared resource
- Write down “wake me up when...”
- Block until resource changes state

15-410, F'15



What Nof to do

while (!reckoning) {
mutex lock(&scenario_lk);
if ((date >= 1906-04-18) &&
(hour >= 5))
reckoning = true;
else
mutex_ unlock(&scenario_lk);
}
wreak general havoc();
mutex unlock(&scenario_lk);

15-410, F'15



What Not To Do

Why is this wrong?
- Make sure you understand!
- See previous two lectures

- Do not do this in P2 or P3
« Not even ifitis really tempting in P3

15-410, F'15



“Arguably Less Wrong”

while (!reckoning) {

mutex lock(&scenario_lk);

if ((date >= 1906-04-18) &&
(hour >= 5))
reckoning = true;

else {
mutex_ unlock(&scenario_lk);
sleep(1);

}
}

wreak general havoc();
mutex_unlock (&scenario_lk);

15-410, F'15



“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)”?

15-410, F'15



10

“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)”?
e N-1 times it's much too short
« Nth time it's much too long

15-410, F'15



11

“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)”?
e N-1 times it's much too short

« Nth time it's much too long
« It's wrong every time

15-410, F'15



12

“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)”?
e N-1 times it's much too short

« Nth time it's much too long
« It's wrong every time

- What's the problem?

15-410, F'15



13

“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)”?
e N-1 times it's much too short

« Nth time it's much too long
« It's wrong every time

- What's the problem?

« We don't really want to wait for some duration!
- We want to wait for a condition change

15-410, F'15



14

“Honorable Mention”?

while (!reckoning) {

mutex_ lock(&scenario_1lk);

if ((date >= 1906-04-18) &&
(hour >= 5))
reckoning = true;

else {
mutex unlock (&scenario 1lk);
yield(); // Better than sleep()????

}
}

wreak general havoc();
mutex_unlock (&scenario_lk);

15-410, F'15



15

Something Is Missing...

v “Protect shared state” is solved
- We use a “mutex object”

- Also encapsulates “Which code interferes with this?”
- Good

> How to solve “block for the right duration”?

15-410, F'15



16

Something Is Missing

v “Protect shared state” is solved
- We use a “mutex object”

- Also encapsulates “Which code interferes with this?”
- Good

> How to solve “block for the right duration”?

- Get an expert to tell us!

- Encapsulate “the right duration”...
 ...into a condition variable object

15-410, F'15



17

Once More, With Feeling!

mutex lock(&scenario_lk);
while (cvarp = wait on()) {

cond wait(cvarp, &scenario_lk);
}
wreak general havoc(); /* locked!
mutex_ unlock(&scenario lk);

15-410, F'15



18

wait_on()?

if (y < 1906)

return (&new_year);
else if (m < 4)

return (&new month);
else if (d < 18)

return (&new _day);
else if (h < 5)

return (&new hour);
else

return (0); // done!

// Code is “conceptual example”

, not 100% correct

15-410, F'15



What Awakens Us?

for (y = 1900; y < 2000; y++)
for (m = 1; m <= 12; m++)
for (d = 1; d <= days(m); d++)
for (h = 0; h < 24; h++)
cond_broadcast (&new_hour) ;
cond broadcast (&new _day);
cond broadcast (&new_month);
cond_broadcast (&new_year);

// Code is “conceptual example”, not 100% correct

15-410, F'15



20

Condition Variable Requirements

Keep track of threads blocked “for a while”
Allow notifier thread(s) to unblock blocked thread(s)

Must be “thread-safe”
- Many threads may call condition_wait() at same time
- Many threads may call condition_signal() at same time
- Say, those look like “interfering sequences”...

15-410, F'15



Why Two Parameters?

condition wait (&cvar, &mutex);

Mutex required to examine/modify the “world” state
- If you examine unlocked state, it's changing.

Whoever awakens you will need to hold that mutex
- So you'd better give it up.

When you wake up, you will need to hold it again
- “Convenient” for condition_wait() to un-lock/re-lock

But there's something more subtle
— Try to recall this issue when working on P2...

21 15-410, F'15



22

Inside a Condition Variable

cvar->queue
-~ of blocked threads
- FIFO, or more exotic

cvar->mutex
- Protects queue against interfering wait()/signal() calls
- This isn't the caller's mutex (locking caller's world state)
— This Is our secret invisible mutex

15-410, F'15



23

Inside a Condition Variable

cond wait(cvar, world mutex)
{
lock (cvar->mutex) ;
enq(cvar->queue, my thread id());
unlock (world mutex);
ATOMICALLY {
unlock (cvar->mutex) ;
kernel please_pause_this_ thread();
}

lock (world mutex);

}
What is this “ATOMICALLY” stuff?

15-410, F'15



24

What We Hope For

cond_wait(m, c);

cond_signal(c);

enq(c->que, me);

unlock (m) ;

unlock (c->m);

kern thr pause();

lock (c->m);

id = deq(c->que);

kern_thr_ wake(1d);

unlock (c->m);

15-410, F'15



25

Pathological Execution Sequence

cond_wait(m, c);

cond_signal(c);

enq(c->que, me);

unlock (m);

unlock (c->m) ;

lock (c->m);

id = deq(c->que);

kern_thr_ wake(1id);

unlock (c->m) ;

kern thr pause();

kern thr wake(id) = ERR_NOT_ ASLEEP

15-410, F'15



26

Achieving wait() Atomicity

Rules of the game
- There isn't an underlying unlock_and_block() primitive
- We have unlock(), and block(), and maybe “other stuff”

- From outside cond_wait()/cond_signal(), we must
achieve apparent (as-if) “atomicity of unlock and block”.

Approaches
- Disable interrupts (if you are a kernel)

- Rely on OS to implement condition variables
e (Why is this not the best idea?)

- Have a better kernel thread-block interface
- Hmmm....

15-410, F'15



27

Achieving wait() Atomicity

P2 challenges

— Understand the issues!
 mutex, cvar

- Understand the host kernel we give you

— Put the parts together
- Don't use “wrong” or “arguably less wrong” approaches!
o Seek solid, clear solutions
- There's more than one way to do it
- Make sure to pick a correct way...
— Try to pick a good way.

15-410, F'15



28

Outline

Last time
- How mutual exclusion is really implemented

Condition variables
- Under the hood
- The atomic-sleep problem

= Semaphores
Monitors

15-410, F'15



29

Semaphore Concept

Semaphore is a different encapsulation object
- Can produce mutual exclusion
— Can produce block-until-it's-time

Intuition: counted resource
- Integer represents “number available”

« Number of buffers, number of pairs of scissors, ...

- Semaphore object initialized to a particular count
— Thread blocks until it is allocated an instance

15-410, F'15



30

Semaphore Concept

wait(), aka P(), Dutch probeer te verlagen (“try to
decrease”)
- wait until value >0
- then decrement value (“taking” one instance)

signal(), aka V(), Dutch verhogen (“increase”)
- increment value (“releasing” one instance)

Just one small issue...
- wait() and signal() must be atomic

15-410, F'15



31

“Mutex-style” Semaphore

semaphore m = 1;

do {
wait(m); /* mutex lock() */
..critical section...
signal(m); /* mutex unlock() */

.. .remainder section...
} while (1);

15-410, F'15



32

“Condition-style” Semaphore

Thread 0

Thread 1

wait(c);

result

= 42;

signal

(c);

use(result);

15-410, F'15



33

“Condition with Memory”

Semaphores retain memory of signal() events
“full/empty bit” - unlike condition variables

Thread 0 Thread 1
result = 42;
signal(c);
wait(c);

use(result);

15-410, F'15



34

Semaphore vs. Mutex/Condition

Good news
- Semaphore is a higher-level construct
- Integrates mutual exclusion, waiting

- Avoids mistakes common in mutex/condition API
- signal() too early is “lost”

15-410, F'15



35

Semaphore vs. Mutex/Condition

Bad news
- Semaphore is a higher-level construct

- Integrates mutual exclusion, waiting
« Some semaphores are “mutex-like”
« Some semaphores are “condition-like”
« How's a poor library to know?
- Spin-wait or not???

15-410, F'15



Semaphores - 31 Flavors

Binary semaphore

- It counts, but only from 0 to 1!
- “Available” / “Not available”

- Consider this a hint to the implementor...

e “Think mutex!”

Non-blocking semaphore
- wait(semaphore, timeout);

Deadlock-avoidance semaphore
- #include <deadlock.lecture>

36

15-410, F'15



My Personal Opinion

One “simple, intuitive” synchronization object
- In 31 performance-enhancing flavors!!!

“The nice thing about standards is that you have so
many to choose from.”
- Andrew S. Tanenbaum

Conceptually simpler to have two objects
— One for mutual exclusion
- One for waiting
- ...after you've understood what's actually happening

37 15-410, F'15



Semaphore Wait: Inside Story

wait (semaphore s)
ACQUIRE EXCLUSIVE ACCESS
-—-s-=->count;
if (s->count < 0) {
enqueue (s->queue, my id());
ATOMICALLY {
RELEASE EXCLUSIVE ACCESS
thread block()
}
} else
RELEASE EXCLUSIVE ACCESS

15-410, F'15



Semaphore Signal: Inside Story

signal (semaphore s)
ACQUIRE EXCLUSIVE ACCESS
++s->count;
if (s->count <= 0) {
tid = dequeue(s->queue);
thread unblock(tid);

}
RELEASE EXCLUSIVE ACCESS

What's all the shouting?

— An exclusion algorithm much like a mutex, or
- 0OS-assisted atomic de-scheduling / awakening

30 15-410, F'15



40

Monitor

Basic concept
- Semaphores eliminate some mutex/condition mistakes

- Still some common errors
« Swapping “signal()”’ & “wait()”
« Accidentally omitting one

Monitor: higher-level abstraction

- Module of high-level language procedures
« All access some shared state

- Compiler adds synchronization code
- Thread running in any procedure blocks all thread entries

15-410, F'15



41

Monitor “commerce”

int cash _in till[N STORES] { 0 };
int wallet[N CUSTOMERS] = { O } ;
boolean buy(int cust, store, price)
if (wallet[cust] >= price) {
cash in till[store] += price;
wallet[cust] -= price;
return (true);
} else
return (false);

15-410, F'15



42

Monitors — What about waiting?

Automatic mutal exclusion is nice...
- ...but it is too strong

Sometimes one thread needs to wait for another
- Automatic mutual exclusion forbids this
— Must leave monitor, re-enter - when?

Have we heard this “when” question before?

15-410, F'15



43

Monitor Waiting — The Problem

void
stubbornly cash check(acct a, check c)
{
while (account[a].bal < check.val) {
...Sigh, must wait for a while...
.. .What goes here? I forget...
}

account|[a].bal -= check.val;

}

15-410, F'15



Monitor Waiting — Wrong Solution

boolean
try cash check(acct a, check c)
{
if (account[a].bal < check.val)
return (false); /* pass the buck */
account[a] .bal -= check.val;
return (true);

}

e 15-410, F'15



45

Monitor condition variables

Similar to condition variables we've seen

condition_wait(cvar)
— Only one parameter
- Mutex-to-drop is implicit
e (the “monitor mutex”)
- Operation
« “Temporarily exit monitor” -- drop the mutex

« Wait until signalled
« “Re-enter monitor” - re-acquire the mutex

15-410, F'15



Monitor Waiting

void
stubbornly cash check(acct a, check c)

{

while (account[a].bal < check.val) {
cond wait (account[a].activity);

}

account[a].bal -= check.val;

}
Q: Who would signal() this cvar?

46 15-410, F'15



47

Monitor condition variables

signal() policy question - which thread to run?

- Signalling thread? Signalled thread?
- Can argue either way

— Or: signal() exits monitor as side effect!
- Different signal() policies mean different monitor flavors

15-410, F'15



Summary

Two fundamental operations
- Mutual exclusion for must-be-atomic sequences
- Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) style
- Two objects for two core operations

Semaphores, Monitors
- Semaphore: one object
- Monitor: invisible compiler-generated object
- Same core ideas inside

48

15-410, F'15



49

Summary

What you should know
- Issues/goals
- Underlying techniques
- How environment/application design matters

All done with synchronization?

— Only one minor issue left
- Deadlock

15-410, F'15



	Title
	Slide 2
	Context
	Road Map
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Summary
	Slide 49

