
15-410, F'151

Synchronization #1
Sep. 16, 2015

Dave EckhardtDave Eckhardt

L07b_Synch

15-410
“My computer is 'modern'!”

15-410, F'152

Notice

Me vs. OSC Chapter 6Me vs. OSC Chapter 6
 I will cover 6.3 much more than the text does...

 ...even more than the previous edition did...
 This is a good vehicle for understanding race conditions

Me vs. OS:P+P Chapter 5Me vs. OS:P+P Chapter 5
 Philosophically very similar
 Examples and focus are different

Not in the bookNot in the book
 “Atomic sequences vs. voluntary de-scheduling”

 “Sim City” example

Textbook recommended!Textbook recommended!
 We will spend ~4 lectures on one chapter (~7 on two)
 This is important stuff

 Getting a “second read” could be very useful

15-410, F'153

Outline

An intrusion from the “real world”An intrusion from the “real world”

Two fundamental operationsTwo fundamental operations

Three necessary critical-section propertiesThree necessary critical-section properties

Two-process solutionTwo-process solution

N-process “Bakery Algorithm”N-process “Bakery Algorithm”

15-410, F'154

Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

15-410, F'155

Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

Imagine what is sent out over the memory bus is:Imagine what is sent out over the memory bus is:

 number[i] = 11;
 choosing[i] = false;

Is that ok?Is that ok?

15-410, F'156

Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
 max(number[0], number[1], ...) + 1;
 choosing[i] = false;

How about this??How about this??

 choosing[i] = false;
 number[i] = 11;

Is my computer broken???Is my computer broken???
 “Computer Architecture for $200, Dave”...

15-410, F'157

Is my computer broken?!

No, your computer isNo, your computer is
“modern”“modern”

 Processor “write pipe”
queues memory stores

 ...and coalesces
“redundant” writes!

Crazy?Crazy?
 Not if you're pounding

out pixels!

CPU

Memory

choosing[i] false

number[i] 11

choosing[i] true

15-410, F'158

My Computer is Broken?!

Magic “memory barrier” instructions available...Magic “memory barrier” instructions available...
 ...stall processor until write pipe is empty

Ok, now I understandOk, now I understand
 Probably not!

 http://www.cs.umd.edu/~pugh/java/memoryModel/

» see “Double-Checked Locking is Broken” Declaration
 See also “release consistency”

Textbook mutual exclusion algorithm memory modelTextbook mutual exclusion algorithm memory model
 ...is “what you expect” (pre-“modern”)
 Ok to use simple model for homework, exams, P2

 But it's not right for multi-processor Pentium-4 systems...

15-410, F'159

Synchronization Fundamentals

Two fundamental operationsTwo fundamental operations
 Atomic instruction sequence
 Voluntary de-scheduling

Multiple implementations of eachMultiple implementations of each
 Uniprocessor vs. multiprocessor
 Special hardware vs. special algorithm
 Different OS techniques
 Performance tuning for special cases

Be Be very clearvery clear on features, differences on features, differences
 The two operations are more “opposite” than “the same”

15-410, F'1510

Synchronization Fundamentals

Multiple client abstractions use the two operationsMultiple client abstractions use the two operations

Textbook prefersTextbook prefers
 “Critical section”, semaphore, monitor

VeryVery relevant relevant
 Mutex/condition variable (POSIX pthreads)
 Java “synchronized” keyword (3 flavors)

15-410, F'1511

Synchronization Fundamentals

Two Fundamental operationsTwo Fundamental operations

⇨ Atomic instruction sequence

 Voluntary de-scheduling

15-410, F'1512

Atomic Instruction Sequence

Problem domainProblem domain
 Short sequence of instructions
 Nobody else may interleave same sequence

 or a “related” sequence
 “Typically” nobody is competing

15-410, F'1513

Non-interference

Multiprocessor simulation (think: “Sim City”)Multiprocessor simulation (think: “Sim City”)
 Coarse-grained “turn” (think: hour)
 Lots of activity within each turn
 Think: M:N threads, M=objects, N=#processors

MostMost cars don't interact in a game turn... cars don't interact in a game turn...
 Must model those that do
 So street intersections can't generally be “processed” by

multiple cars at the same time

15-410, F'1514

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?

15-410, F'1515

Commerce – Observations

Instruction sequences are “short”Instruction sequences are “short”
 Ok to “mutually exclude” competitors (make them wait)

Probability of collision is “low”Probability of collision is “low”
 Many non-colliding invocations per second

 (lots of stores in the city)
 Must not use an expensive anti-collision approach!

 “Just make a system call” is not an acceptable answer
 Common (non-colliding) case must be fast

15-410, F'1516

Synchronization Fundamentals

Two Fundamental operations Two Fundamental operations

 Atomic instruction sequence

⇨ Voluntary de-scheduling

15-410, F'1517

Voluntary De-scheduling

Problem domainProblem domain
 “Are we there yet?”
 “Waiting for Godot”

Example - “Sim City” disaster daemonExample - “Sim City” disaster daemon

while (date < 1906-04-18) cwait(date);
while (hour < 5) cwait(hour);
for (i = 0; i < max_x; i++)
 for (j = 0; j < max_y; j++)
 wreak_havoc(i,j);

15-410, F'1518

Voluntary De-scheduling

Anti-atomicAnti-atomic
 We want to be “maximally interleaved against”

Running and making others wait is Running and making others wait is wrongwrong
 Wrong for them – we won't be ready for a while
 Wrong for us – we can't be ready until they progress

We don't We don't wantwant exclusion exclusion

We We wantwant others to run - they others to run - they enableenable us us

CPU CPU dede-scheduling is an OS service!-scheduling is an OS service!

15-410, F'1519

Voluntary De-scheduling

Wait patternWait pattern

 LOCK WORLD
 while (!(ready = scan_world())){
 UNLOCK WORLD
 WAIT_FOR(progress_event)
 LOCK WORLD
 }

Your partner-competitor willYour partner-competitor will

 SIGNAL(progress_event)

15-410, F'1520

Standard Nomenclature

““Traditional CS” code skeleton / namingTraditional CS” code skeleton / naming

do {
 entry section
 critical section:
 ...computation on shared state...
 exit section
 remainder section:
 ...private computation...
} while (1);

15-410, F'1521

Standard Nomenclature

What's muted by this picture?What's muted by this picture?
 What's in that critical section?

● Quick atomic sequence?
● Need for a long sleep?

For now...For now...
 Pretend critical section is a brief atomic sequence
 Study the entry/exit sections

15-410, F'1522

Three Critical Section
Requirements

Mutual ExclusionMutual Exclusion
 At most one thread is executing each critical section

ProgressProgress
 Choosing protocol must have bounded time

 Common way to fail: choosing next entrant cannot wait for
non-participants

Bounded waitingBounded waiting
 Cannot wait forever once you begin entry protocol
 ...bounded number of entries by others

 not necessarily a bounded number of instructions

15-410, F'1523

Notation For 2-Process Protocols

AssumptionsAssumptions
 Multiple threads (1 CPU with timer, or multiple CPU's)
 Shared memory, but no locking/atomic instructions

ThreadThread i i = “us” = “us”

ThreadThread j j = “the other thread” = “the other thread”

i,ji,j are are thread-localthread-local variables variables
 {i,j} = {0,1}
 j == 1 – i

This notation is “odd”This notation is “odd”
 But it may well appear in an exam question

15-410, F'1524

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
 continue;
...critical section...
turn = j;

15-410, F'1525

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
 continue;
...critical section...
turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)

15-410, F'1526

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
 continue;
...critical section...
turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)

Progress - Progress - nono
 Strict turn-taking is fatal
 If T0 never tries to enter, T1 will wait forever

 Violates the “depends on non-participants” rule

15-410, F'1527

Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;
while (want[j])
 continue;
...critical section...
want[i] = false;

15-410, F'1528

Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...

15-410, F'1529

Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...

How about progress?

15-410, F'1530

Failing “Progress”

Thread 0 Thread 1
want[0] = true;

want[1] = true;
while (want[1]) ;

while (want[0]) ;

It works for every other interleaving!

15-410, F'1531

“Peterson's Solution” (1981)

(“Taking turns when necessary”)(“Taking turns when necessary”)

boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = j;
while (want[j] && turn == j)
 continue;
...critical section...
want[i] = false;

15-410, F'1532

Proof Sketch of Exclusion

Assume contrary: two threads in critical sectionAssume contrary: two threads in critical section

Both in c.s. implies want[i] == want[j] == trueBoth in c.s. implies want[i] == want[j] == true

Thus both while loops exited because “turn != j”Thus both while loops exited because “turn != j”

Cannot have (turn == 0 && turn == 1)Cannot have (turn == 0 && turn == 1)
 So one exited first

w.l.o.g., T0 exited first because “turn ==1” failedw.l.o.g., T0 exited first because “turn ==1” failed
 So turn==0 before turn==1
 So T1 had to set turn==0 before T0 set turn==1
 So T0 could not see turn==0, could not exit loop first!

15-410, F'1533

Proof Sketch Hints

want[i] == want[j] == truewant[i] == want[j] == true
“want[]” fall away, focus on “turn”

turn[] vs. loop exit...turn[] vs. loop exit...

 What really happens here?

Thread 0 Thread 1
turn = 1; turn = 0;
while (turn == 1); while (turn == 0);

15-410, F'1534

Bakery Algorithm

More than two processes?More than two processes?
 Generalization based on bakery/deli counter

 Get monotonically-increasing ticket number from dispenser
 Wait until monotonically-increasing “now serving” == you

» You have lowest number ⇒ all people with smaller
numbers have already been served

Multi-process versionMulti-process version
 Unlike “reality”, two people can get the same ticket

number
 Sort by “ticket number with tie breaker”:

 (ticket number, process number) tuple

15-410, F'1535

Bakery Algorithm

Phase 1 – Pick a numberPhase 1 – Pick a number
 Look at all presently-available numbers
 Add 1 to highest you can find

Phase 2 – Wait until you hold Phase 2 – Wait until you hold lowestlowest number number
 Not strictly true: processes may have same number
 Use process-id as a tie-breaker

 (ticket 7, process 99) > (ticket 7, process 45)
 Your turn when you hold lowest (t,pid)

15-410, F'1536

Bakery Algorithm

boolean choosing[n] = { false, ... };
int number[n] = { 0, ... } ;

15-410, F'1537

Bakery Algorithm

Phase 1: Pick a numberPhase 1: Pick a number

choosing[i] = true;

number[i] =
 max(number[0], number[1], ...) + 1;

choosing[i] = false;

Worst case: everybody picks same number!Worst case: everybody picks same number!

But at least But at least next wavenext wave of arrivals will pick a larger of arrivals will pick a larger
number...number...

15-410, F'1538

Bakery Algorithm

Phase 2: Sweep “proving” we have lowest numberPhase 2: Sweep “proving” we have lowest number

for (j = 0; j < n; ++j) {
 while (choosing[j])
 continue;
 while ((number[j] != 0) &&
 ((number[i], i) > (number[j], j)))
 continue;
}
...critical section...
number[i] = 0;

15-410, F'1539

Summary

Memory is Memory is weirdweird

Two fundamental operations - understand!Two fundamental operations - understand!
 Brief exclusion for atomic sequences
 Long-term yielding to get what you want

Three necessary critical-section propertiesThree necessary critical-section properties

Understand these “exclusion algorithms” (which areUnderstand these “exclusion algorithms” (which are
also race-condition parties)also race-condition parties)

 Two-process solution
 N-process “Bakery Algorithm”

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

