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Notice

Me vs. OSC Chapter 6

= | will cover 6.3 much more than the text does...
= ...even more than the previous edition did...
= This is a good vehicle for understanding race conditions

Me vs. OS:P+P Chapter 5

= Philosophically very similar
= Examples and focus are different

Not in the book
= “Atomic sequences vs. voluntary de-scheduling”
= “Sim City” example
Textbook recommended!

= We will spend ~4 lectures on one chapter (~7 on two)

= This is important stuff
= Getting a “second read” could be very useful 15-410, F'15



Outline

An intrusion from the “real world”

Two fundamental operations

Three necessary critical-section properties
Two-process solution

N-process “Bakery Algorithm”
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Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =

max (number[0], number[1l],
choosing[i] = false;
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Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =
max (number[0], number[l], ...) + 1;
choosing[i] = false;
Imagine what is sent out over the memory bus is:
number[i] = 11;
choosing[i] = false;
Is that ok?
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Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =
max (number[0], number[l], ...) + 1;

choosing[i] = false;
How about this??

choosing[i] = false;

number[i] = 11;

Is my computer broken???
= “Computer Architecture for $200, Dave”...
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Is my computer broken?!

No, your computer is
“modern”
= Processor “write pipe”
queues memory stores

= ...and coalesces
“redundant” writes!

Crazy?

out pixels!
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My Computer is Broken?!

Magic “memory barrier” instructions available...
= ...stall processor until write pipe is empty

Ok, now | understand

= Probably not!
= http://www.cs.umd.edu/~pugh/java/memoryModel/
» see “Double-Checked Locking is Broken” Declaration

= See also “release consistency”

Textbook mutual exclusion algorithm memory model

= ...Is “what you expect” (pre-“modern”)
= Ok to use simple model for homework, exams, P2
= But it's not right for multi-processor Pentium-4 systems...
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Synchronization Fundamentals

Two fundamental operations

= Atomic instruction sequence
= Voluntary de-scheduling

Multiple implementations of each

= Uniprocessor vs. multiprocessor

= Special hardware vs. special algorithm
= Different OS techniques

= Performance tuning for special cases

Be very clear on features, differences
= The two operations are more “opposite” than “the same”
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Synchronization Fundamentals

Multiple client abstractions use the two operations

Textbook prefers
= “Critical section”, semaphore, monitor

Very relevant

= Mutex/condition variable (POSIX pthreads)
= Java “synchronized” keyword (3 flavors)
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Synchronization Fundamentals

Two Fundamental operations

> Atomic instruction sequence
Voluntary de-scheduling

15-410, F'15
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Atomic Instruction Sequence

Problem domain

= Short sequence of instructions

= Nobody else may interleave same sequence
= or a “related” sequence

= “Typically” nobody is competing

15-410, F'15



Non-interference

Multiprocessor simulation (think: “Sim City”)

= Coarse-grained “turn” (think: hour)
= Lots of activity within each turn
= Think: M:N threads, M=objects, N=#processors

Most cars don't interact in a game turn...

= Must model those that do

= So street intersections can't generally be “processed” by
multiple cars at the same time

13 15-410, F'15
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Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;

store->cash = cash; store->cash = cash

o
4

Should the store call the police?
Is deflation good for the economy?
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Commerce — Observations

Instruction sequences are “short”
= Ok to “mutually exclude” competitors (make them wait)

Probability of collision is “low”

= Many non-colliding invocations per second

= (lots of stores in the city)
= Must not use an expensive anti-collision approach!

= “Just make a system call” is not an acceptable answer
= Common (hon-colliding) case must be fast
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Synchronization Fundamentals

Two Fundamental operations
Atomic instruction sequence
D Voluntary de-scheduling

15-410, F'15
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Voluntary De-scheduling

Problem domain

= “Are we there yet?”
= “Waiting for Godot”

Example - “Sim City” disaster daemon
while (date < 1906-04-18) cwait (date);
while (hour < 5) cwait (hour);
for (i = 0; i < max x; i++)
for (j = 0; j < max_y; j++)
wreak havoc(i,j);

15-410, F'15



Voluntary De-scheduling

Anti-atomic
= We want to be “maximally interleaved against”

Running and making others wait is wrong

= Wrong for them — we won't be ready for a while
= Wrong for us — we can't be ready until they progress

We don't want exclusion
We want others to run - they enable us
CPU de-scheduling is an OS service!

18 15-410, F'15
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Voluntary De-scheduling

Wait pattern
LOCK WORLD
while (! (ready = scan _world())){
UNLOCK WORLD
WAIT FOR(progress event)
LOCK WORLD

}
Your partner-competitor will
SIGNAL (progress_event)

15-410, F'15
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Standard Nomenclature

“Traditional CS” code skeleton / naming
do {
entry section
critical section:
.. .computation on shared state...
exit section
remainder section:
.. .private computation...
} while (1);

15-410, F'15
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Standard Nomenclature

What's muted by this picture?

= What's in that critical section?
« Quick atomic sequence?
« Need for a long sleep?

For now...

= Pretend critical section is a brief atomic sequence
= Study the entry/exit sections

15-410, F'15
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Three Critical Section
Requirements

Mutual Exclusion
= At most one thread is executing each critical section

Progress

= Choosing protocol must have bounded time

= Common way to fail: choosing next entrant cannot wait for
non-participants

Bounded waiting

= Cannot wait forever once you begin entry protocol
= ...bounded number of entries by others
= not necessarily a bounded number of instructions

15-410, F'15



Notation For 2-Process Protocols

Assumptions

= Multiple threads (1 CPU with timer, or multiple CPU's)
= Shared memory, but no locking/atomic instructions

Thread i = “us”
Thread j = “the other thread”

i, Jj are thread-local variables
= {i,j} ={0,1}

[ j==1—i

This notation is “odd”
= But it may well appear in an exam question

23 15-410, F'15
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

continue;
...critical section...
turn = j;

15-410, F'15
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
continue;

...critical section...

turn = j;

Mutual exclusion - yes (make sure you see it)

15-410, F'15
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

continue;
...critical section...
turn = j;

Mutual exclusion - yes (make sure you see it)

Progress - no

= Strict turn-taking is fatal
= |f TO never tries to enter, T1 will wait forever
= Violates the “depends on non-participants” rule

15-410, F'15
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Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;

while (want[j])
continue;

...critical section...

want[1] = false;

15-410, F'15
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Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1l]) ;
...enter... want[1l] = true;

while (want[0])

°
’

while (want[O0])

°
4

want[0] = false;

while (want[0])

o
4

...nter...

15-410, F'15
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Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1l]) ;
...enter... want[1l] = true;

while (want[0])

)
4

while (want[0])

°
4

want[0] = false;

while (want[0])

)
4

...nter...

How about progress?

15-410, F'15
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Failing “Progress”

Thread 0

Thread 1

want[0] = true;

want[1l] =

true;

while (want[1l])

°
[ 4

while (want[0]) ;

It works for every other interleaving!

15-410, F'15



“Peterson's Solution” (1981)

(“Taking turns when necessary”)
boolean want[2] = {false, false};
int turn = 0;

want[1i] = true;

turn = j;

while (want[j] && turn == j)
continue;

...Ccritical section...

want[1] = false;

15-410, F'15



Proof Sketch of Exclusion

Assume contrary: two threads in critical section
Both in c.s. implies want[i] == want[j] == true
Thus both while loops exited because “turn !=j”

Cannot have (turn == 0 && turn == 1)
= S0 one exited first

w.l.0.g., TO exited first because “turn ==1" failed

= So turn==0 before turn==
= So T1 had to set turn==0 before TO0 set turn==1
= So TO could not see turn==0, could not exit loop first!

32 15-410, F'15
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Proof Sketch Hints

want[i] == want[j] == true
“want[]” fall away, focus on “turn”
turn[] vs. loop exit...
What really happens here?

Thread 0

Thread 1

turn = 1;

turn = 0;

while (turn ==

1);

while (turn ==

0);

15-410, F'15
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Bakery Algorithm

More than two processes?

= Generalization based on bakery/deli counter
= Get monotonically-increasing ticket number from dispenser
= Wait until monotonically-increasing “now serving” == you

» You have lowest number = all people with smaller
numbers have already been served

Multi-process version

= Unlike “reality”, two people can get the same ticket
number

= Sort by “ticket number with tie breaker”:
= (ticket number, process number) tuple

15-410, F'15
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Bakery Algorithm

Phase 1 — Pick a number

= Look at all presently-available numbers
= Add 1 to highest you can find

Phase 2 — Wait until you hold /owest number

= Not strictly true: processes may have same number
= Use process-id as a tie-breaker

= (ticket 7, process 99) > (ticket 7, process 45)
= Your turn when you hold lowest (t,pid)

15-410, F'15
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Bakery Algorithm

boolean choosing[n] = { false, ...

int number[n] = { 0, ... } ;

}i

15-410, F'15
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Bakery Algorithm

Phase 1: Pick a number
choosing[i] = true;

number[i] =
max (number[0], number|[l], ...) + 1;

choosing[i] = false;
Worst case: everybody picks same number!

But at least next wave of arrivals will pick a larger
number...

15-410, F'15
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Bakery Algorithm

Phase 2: Sweep “proving” we have lowest number
for (j = 0; j < n; ++3) {
while (choosing[j])
continue;
while ((number[j] != 0) &&
((number[i], 1) > (number[j], J)))
continue;
}
...critical section...
number[i] = O0;

15-410, F'15
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Summary

Memory is weird

Two fundamental operations - understand!

= Brief exclusion for atomic sequences
= Long-term yielding to get what you want

Three necessary critical-section properties

Understand these “exclusion algorithms” (which are
also race-condition parties)

= Two-process solution
= N-process “Bakery Algorithm”

15-410, F'15
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