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Notice

Me vs. OSC Chapter 6Me vs. OSC Chapter 6
 I will cover 6.3 much more than the text does...

 ...even more than the previous edition did...
 This is a good vehicle for understanding race conditions

Me vs. OS:P+P Chapter 5Me vs. OS:P+P Chapter 5
 Philosophically very similar
 Examples and focus are different

Not in the bookNot in the book
 “Atomic sequences vs. voluntary de-scheduling”

 “Sim City” example

Textbook recommended!Textbook recommended!
 We will spend ~4 lectures on one chapter (~7 on two)
 This is important stuff

 Getting a “second read” could be very useful
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Outline

An intrusion from the “real world”An intrusion from the “real world”

Two fundamental operationsTwo fundamental operations

Three necessary critical-section propertiesThree necessary critical-section properties

Two-process solutionTwo-process solution

N-process “Bakery Algorithm”N-process “Bakery Algorithm”
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Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
   max(number[0], number[1], ...) + 1;
 choosing[i] = false;
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Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
   max(number[0], number[1], ...) + 1;
 choosing[i] = false;

Imagine what is sent out over the memory bus is:Imagine what is sent out over the memory bus is:

 number[i] = 11;
 choosing[i] = false;

Is that ok?Is that ok?
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Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:

 choosing[i] = true;
 number[i] =
   max(number[0], number[1], ...) + 1;
 choosing[i] = false;

How about this??How about this??

 choosing[i] = false;
 number[i] = 11;

Is my computer broken???Is my computer broken???
 “Computer Architecture for $200, Dave”...
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Is my computer broken?!

No, your computer isNo, your computer is
“modern”“modern”

 Processor “write pipe”
queues memory stores

 ...and coalesces
“redundant” writes!

Crazy?Crazy?
 Not if you're pounding

out pixels!

CPU

Memory

choosing[i] false

number[i] 11

choosing[i] true
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My Computer is Broken?!

Magic “memory barrier” instructions available...Magic “memory barrier” instructions available...
 ...stall processor until write pipe is empty

Ok, now I understandOk, now I understand
 Probably not!

 http://www.cs.umd.edu/~pugh/java/memoryModel/

» see “Double-Checked Locking is Broken” Declaration
 See also “release consistency”

Textbook mutual exclusion algorithm memory modelTextbook mutual exclusion algorithm memory model
 ...is “what you expect” (pre-“modern”)
 Ok to use simple model for homework, exams, P2

 But it's not right for multi-processor Pentium-4 systems...
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Synchronization Fundamentals

Two fundamental operationsTwo fundamental operations
 Atomic instruction sequence
 Voluntary de-scheduling

Multiple implementations of eachMultiple implementations of each
 Uniprocessor vs. multiprocessor
 Special hardware vs. special algorithm
 Different OS techniques
 Performance tuning for special cases

Be Be very clearvery clear on features, differences on features, differences
 The two operations are more “opposite” than “the same”
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Synchronization Fundamentals

Multiple client abstractions use the two operationsMultiple client abstractions use the two operations

Textbook prefersTextbook prefers
 “Critical section”, semaphore, monitor

VeryVery relevant relevant
 Mutex/condition variable (POSIX pthreads)
 Java “synchronized” keyword (3 flavors)
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Synchronization Fundamentals

Two Fundamental operationsTwo Fundamental operations

⇨ Atomic instruction sequence

     Voluntary de-scheduling



15-410, F'1512

Atomic Instruction Sequence

Problem domainProblem domain
 Short sequence of instructions
 Nobody else may interleave same sequence

 or a “related” sequence
 “Typically” nobody is competing
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Non-interference

Multiprocessor simulation (think: “Sim City”)Multiprocessor simulation (think: “Sim City”)
 Coarse-grained “turn” (think: hour)
 Lots of activity within each turn
 Think: M:N threads, M=objects, N=#processors

MostMost cars don't interact in a game turn... cars don't interact in a game turn...
 Must model those that do
 So street intersections can't generally be “processed” by

multiple cars at the same time
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Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?
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Commerce – Observations

Instruction sequences are “short”Instruction sequences are “short”
 Ok to “mutually exclude” competitors (make them wait)

Probability of collision is “low”Probability of collision is “low”
 Many non-colliding invocations per second

 (lots of stores in the city)
 Must not use an expensive anti-collision approach!

 “Just make a system call” is not an acceptable answer
 Common (non-colliding) case must be fast
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Synchronization Fundamentals

Two Fundamental operations Two Fundamental operations 

     Atomic instruction sequence

⇨ Voluntary de-scheduling
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Voluntary De-scheduling

Problem domainProblem domain
 “Are we there yet?”
 “Waiting for Godot”

Example - “Sim City” disaster daemonExample - “Sim City” disaster daemon

while (date < 1906-04-18) cwait(date);
while (hour < 5) cwait(hour);
for (i = 0; i < max_x; i++)
  for (j = 0; j < max_y; j++)
    wreak_havoc(i,j);
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Voluntary De-scheduling

Anti-atomicAnti-atomic
 We want to be “maximally interleaved against”

Running and making others wait is Running and making others wait is wrongwrong
 Wrong for them – we won't be ready for a while
 Wrong for us – we can't be ready until they progress

We don't We don't wantwant exclusion exclusion

We We wantwant others to run - they  others to run - they enableenable us us

CPU CPU dede-scheduling is an OS service!-scheduling is an OS service!
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Voluntary De-scheduling

Wait patternWait pattern

  LOCK WORLD
  while (!(ready = scan_world())){
    UNLOCK WORLD
    WAIT_FOR(progress_event)
    LOCK WORLD
  }

Your partner-competitor willYour partner-competitor will

 SIGNAL(progress_event)
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Standard Nomenclature

““Traditional CS” code skeleton / namingTraditional CS” code skeleton / naming

do {
  entry section
  critical section:
    ...computation on shared state...
  exit section
  remainder section:
    ...private computation...
} while (1);
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Standard Nomenclature

What's muted by this picture?What's muted by this picture?
 What's in that critical section?

● Quick atomic sequence?
● Need for a long sleep?

For now...For now...
 Pretend critical section is a brief atomic sequence
 Study the entry/exit sections
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Three Critical Section
Requirements

Mutual ExclusionMutual Exclusion
 At most one thread is executing each critical section

ProgressProgress
 Choosing protocol must have bounded time

 Common way to fail: choosing next entrant cannot wait for
non-participants

Bounded waitingBounded waiting
 Cannot wait forever once you begin entry protocol
 ...bounded number of entries by others

 not necessarily a bounded number of instructions 
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Notation For 2-Process Protocols

AssumptionsAssumptions
 Multiple threads (1 CPU with timer, or multiple CPU's)
 Shared memory, but no locking/atomic instructions

ThreadThread i i = “us” = “us”

ThreadThread j j = “the other thread” = “the other thread”

i,ji,j are  are thread-localthread-local variables variables
 {i,j} = {0,1}
 j == 1 – i

This notation is “odd”This notation is “odd”
 But it may well appear in an exam question 
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
  continue;
...critical section...
turn = j;
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
  continue;
...critical section...
turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)
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Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
  continue;
...critical section...
turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)

Progress - Progress - nono
 Strict turn-taking is fatal
 If T0 never tries to enter, T1 will wait forever

 Violates the “depends on non-participants” rule
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Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;
while (want[j])
  continue;
...critical section...
want[i] = false;
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Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...
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Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...

How about progress?
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Failing “Progress”

Thread 0 Thread 1
want[0] = true;

want[1] = true;
while (want[1]) ;

while (want[0]) ;

It works for every other interleaving!
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“Peterson's Solution” (1981)

(“Taking turns when necessary”)(“Taking turns when necessary”)

boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = j;
while (want[j] && turn == j)
    continue;
...critical section...
want[i] = false;
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Proof Sketch of Exclusion

Assume contrary: two threads in critical sectionAssume contrary: two threads in critical section

Both in c.s. implies want[i] == want[j] == trueBoth in c.s. implies want[i] == want[j] == true

Thus both while loops exited because “turn != j”Thus both while loops exited because “turn != j”

Cannot have (turn == 0 && turn == 1)Cannot have (turn == 0 && turn == 1)
 So one exited first

w.l.o.g., T0 exited first because “turn ==1” failedw.l.o.g., T0 exited first because “turn ==1” failed
 So turn==0 before turn==1
 So T1 had to set turn==0 before T0 set turn==1
 So T0 could not see turn==0, could not exit loop first!



15-410, F'1533

Proof Sketch Hints

want[i] == want[j] == truewant[i] == want[j] == true
“want[]” fall away, focus on “turn”

turn[] vs. loop exit...turn[] vs. loop exit...

        What really happens here?

Thread 0 Thread 1
turn = 1; turn = 0;
while (turn == 1); while (turn == 0);
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Bakery Algorithm

More than two processes?More than two processes?
 Generalization based on bakery/deli counter

 Get monotonically-increasing ticket number from dispenser
 Wait until monotonically-increasing “now serving” == you

» You have lowest number ⇒ all people with smaller
numbers have already been served

Multi-process versionMulti-process version
 Unlike “reality”, two people can get the same ticket

number
 Sort by “ticket number with tie breaker”:

 (ticket number, process number) tuple
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Bakery Algorithm

Phase 1 – Pick a numberPhase 1 – Pick a number
 Look at all presently-available numbers
 Add 1 to highest you can find

Phase 2 – Wait until you hold Phase 2 – Wait until you hold lowestlowest  number  number
 Not strictly true: processes may have same number
 Use process-id as a tie-breaker

 (ticket 7, process 99) > (ticket 7, process 45)
 Your turn when you hold lowest (t,pid)
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Bakery Algorithm

boolean choosing[n] = { false, ... };
int number[n] = { 0, ... } ;
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Bakery Algorithm

Phase 1: Pick a numberPhase 1: Pick a number

choosing[i] = true;

number[i] = 
  max(number[0], number[1], ...) + 1;

choosing[i] = false;

Worst case: everybody picks same number!Worst case: everybody picks same number!

But at least But at least next wavenext wave of arrivals will pick a larger of arrivals will pick a larger
number...number...
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Bakery Algorithm

Phase 2: Sweep “proving” we have lowest numberPhase 2: Sweep “proving” we have lowest number

for (j = 0; j < n; ++j) {
  while (choosing[j])
    continue;
  while ((number[j] != 0) &&
   ((number[i], i) > (number[j], j)))
      continue;
}
...critical section...
number[i] = 0;
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Summary

Memory is Memory is weirdweird

Two fundamental operations - understand!Two fundamental operations - understand!
 Brief exclusion for atomic sequences
 Long-term yielding to get what you want

Three necessary critical-section propertiesThree necessary critical-section properties

Understand these “exclusion algorithms” (which areUnderstand these “exclusion algorithms” (which are
also race-condition parties)also race-condition parties)

 Two-process solution
 N-process “Bakery Algorithm”
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