15-410

“My computer is 'modern'!”

Synchronization #1
Sep. 16, 2015

Dave Eckhardt

LO07b_Synch 15-410, F'15

Notice

Me vs. OSC Chapter 6

= | will cover 6.3 much more than the text does...
= ...even more than the previous edition did...
= This is a good vehicle for understanding race conditions

Me vs. OS:P+P Chapter 5

= Philosophically very similar
= Examples and focus are different

Not in the book
= “Atomic sequences vs. voluntary de-scheduling”
= “Sim City” example
Textbook recommended!

= We will spend ~4 lectures on one chapter (~7 on two)

= This is important stuff
= Getting a “second read” could be very useful 15-410, F'15

Outline

An intrusion from the “real world”

Two fundamental operations

Three necessary critical-section properties
Two-process solution

N-process “Bakery Algorithm”

15-410, F'15

Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =

max (number[0], number[1l],
choosing[i] = false;

15-410, F'15

Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =
max (number[0], number[l], ...) + 1;
choosing[i] = false;
Imagine what is sent out over the memory bus is:
number[i] = 11;
choosing[i] = false;
Is that ok?

15-410, F'15

Mind your P's and Q's

Imagine you wrote this code:
choosing[i] = true;
number[1i] =
max (number[0], number[l], ...) + 1;

choosing[i] = false;
How about this??

choosing[i] = false;

number[i] = 11;

Is my computer broken???
= “Computer Architecture for $200, Dave”...

15-410, F'15

Is my computer broken?!

No, your computer is
“modern”
= Processor “write pipe”
queues memory stores

= ...and coalesces
“redundant” writes!

Crazy?

out pixels!

15-410, F'15

My Computer is Broken?!

Magic “memory barrier” instructions available...
= ...stall processor until write pipe is empty

Ok, now | understand

= Probably not!
= http://www.cs.umd.edu/~pugh/java/memoryModel/
» see “Double-Checked Locking is Broken” Declaration

= See also “release consistency”

Textbook mutual exclusion algorithm memory model

= ...Is “what you expect” (pre-“modern”)
= Ok to use simple model for homework, exams, P2
= But it's not right for multi-processor Pentium-4 systems...

15-410, F'15

Synchronization Fundamentals

Two fundamental operations

= Atomic instruction sequence
= Voluntary de-scheduling

Multiple implementations of each

= Uniprocessor vs. multiprocessor

= Special hardware vs. special algorithm
= Different OS techniques

= Performance tuning for special cases

Be very clear on features, differences
= The two operations are more “opposite” than “the same”

15-410, F'15

10

Synchronization Fundamentals

Multiple client abstractions use the two operations

Textbook prefers
= “Critical section”, semaphore, monitor

Very relevant

= Mutex/condition variable (POSIX pthreads)
= Java “synchronized” keyword (3 flavors)

15-410, F'15

11

Synchronization Fundamentals

Two Fundamental operations

> Atomic instruction sequence
Voluntary de-scheduling

15-410, F'15

12

Atomic Instruction Sequence

Problem domain

= Short sequence of instructions

= Nobody else may interleave same sequence
= or a “related” sequence

= “Typically” nobody is competing

15-410, F'15

Non-interference

Multiprocessor simulation (think: “Sim City”)

= Coarse-grained “turn” (think: hour)
= Lots of activity within each turn
= Think: M:N threads, M=objects, N=#processors

Most cars don't interact in a game turn...

= Must model those that do

= So street intersections can't generally be “processed” by
multiple cars at the same time

13 15-410, F'15

14

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;

store->cash = cash; store->cash = cash

o
4

Should the store call the police?
Is deflation good for the economy?

15-410, F'15

15

Commerce — Observations

Instruction sequences are “short”
= Ok to “mutually exclude” competitors (make them wait)

Probability of collision is “low”

= Many non-colliding invocations per second

= (lots of stores in the city)
= Must not use an expensive anti-collision approach!

= “Just make a system call” is not an acceptable answer
= Common (hon-colliding) case must be fast

15-410, F'15

16

Synchronization Fundamentals

Two Fundamental operations
Atomic instruction sequence
D Voluntary de-scheduling

15-410, F'15

17

Voluntary De-scheduling

Problem domain

= “Are we there yet?”
= “Waiting for Godot”

Example - “Sim City” disaster daemon
while (date < 1906-04-18) cwait (date);
while (hour < 5) cwait (hour);
for (i = 0; i < max x; i++)
for (j = 0; j < max_y; j++)
wreak havoc(i,j);

15-410, F'15

Voluntary De-scheduling

Anti-atomic
= We want to be “maximally interleaved against”

Running and making others wait is wrong

= Wrong for them — we won't be ready for a while
= Wrong for us — we can't be ready until they progress

We don't want exclusion
We want others to run - they enable us
CPU de-scheduling is an OS service!

18 15-410, F'15

19

Voluntary De-scheduling

Wait pattern
LOCK WORLD
while (! (ready = scan _world())){
UNLOCK WORLD
WAIT FOR(progress event)
LOCK WORLD

}
Your partner-competitor will
SIGNAL (progress_event)

15-410, F'15

20

Standard Nomenclature

“Traditional CS” code skeleton / naming
do {
entry section
critical section:
.. .computation on shared state...
exit section
remainder section:
.. .private computation...
} while (1);

15-410, F'15

21

Standard Nomenclature

What's muted by this picture?

= What's in that critical section?
« Quick atomic sequence?
« Need for a long sleep?

For now...

= Pretend critical section is a brief atomic sequence
= Study the entry/exit sections

15-410, F'15

22

Three Critical Section
Requirements

Mutual Exclusion
= At most one thread is executing each critical section

Progress

= Choosing protocol must have bounded time

= Common way to fail: choosing next entrant cannot wait for
non-participants

Bounded waiting

= Cannot wait forever once you begin entry protocol
= ...bounded number of entries by others
= not necessarily a bounded number of instructions

15-410, F'15

Notation For 2-Process Protocols

Assumptions

= Multiple threads (1 CPU with timer, or multiple CPU's)
= Shared memory, but no locking/atomic instructions

Thread i = “us”
Thread j = “the other thread”

i, Jj are thread-local variables
= {i,j} ={0,1}

[j==1—i

This notation is “odd”
= But it may well appear in an exam question

23 15-410, F'15

24

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

continue;
...critical section...
turn = j;

15-410, F'15

25

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)
continue;

...critical section...

turn = j;

Mutual exclusion - yes (make sure you see it)

15-410, F'15

26

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

continue;
...critical section...
turn = j;

Mutual exclusion - yes (make sure you see it)

Progress - no

= Strict turn-taking is fatal
= |f TO never tries to enter, T1 will wait forever
= Violates the “depends on non-participants” rule

15-410, F'15

27

Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;

while (want[j])
continue;

...critical section...

want[1] = false;

15-410, F'15

28

Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1l]) ;
...enter... want[1l] = true;

while (want[0])

°
’

while (want[O0])

°
4

want[0] = false;

while (want[0])

o
4

...nter...

15-410, F'15

29

Mutual Exclusion (Intuition)

Thread 0 Thread 1
want[0] = true;
while (want[1l]) ;
...enter... want[1l] = true;

while (want[0])

)
4

while (want[0])

°
4

want[0] = false;

while (want[0])

)
4

...nter...

How about progress?

15-410, F'15

30

Failing “Progress”

Thread 0

Thread 1

want[0] = true;

want[1l] =

true;

while (want[1l])

°
[4

while (want[0]) ;

It works for every other interleaving!

15-410, F'15

“Peterson's Solution” (1981)

(“Taking turns when necessary”)
boolean want[2] = {false, false};
int turn = 0;

want[1i] = true;

turn = j;

while (want[j] && turn == j)
continue;

...Ccritical section...

want[1] = false;

15-410, F'15

Proof Sketch of Exclusion

Assume contrary: two threads in critical section
Both in c.s. implies want[i] == want[j] == true
Thus both while loops exited because “turn !=j”

Cannot have (turn == 0 && turn == 1)
= S0 one exited first

w.l.0.g., TO exited first because “turn ==1" failed

= So turn==0 before turn==
= So T1 had to set turn==0 before TO0 set turn==1
= So TO could not see turn==0, could not exit loop first!

32 15-410, F'15

33

Proof Sketch Hints

want[i] == want[j] == true
“want[]” fall away, focus on “turn”
turn[] vs. loop exit...
What really happens here?

Thread 0

Thread 1

turn = 1;

turn = 0;

while (turn ==

1);

while (turn ==

0);

15-410, F'15

34

Bakery Algorithm

More than two processes?

= Generalization based on bakery/deli counter
= Get monotonically-increasing ticket number from dispenser
= Wait until monotonically-increasing “now serving” == you

» You have lowest number = all people with smaller
numbers have already been served

Multi-process version

= Unlike “reality”, two people can get the same ticket
number

= Sort by “ticket number with tie breaker”:
= (ticket number, process number) tuple

15-410, F'15

35

Bakery Algorithm

Phase 1 — Pick a number

= Look at all presently-available numbers
= Add 1 to highest you can find

Phase 2 — Wait until you hold /owest number

= Not strictly true: processes may have same number
= Use process-id as a tie-breaker

= (ticket 7, process 99) > (ticket 7, process 45)
= Your turn when you hold lowest (t,pid)

15-410, F'15

36

Bakery Algorithm

boolean choosing[n] = { false, ...

int number[n] = { 0, ... } ;

}i

15-410, F'15

37

Bakery Algorithm

Phase 1: Pick a number
choosing[i] = true;

number[i] =
max (number[0], number|[l], ...) + 1;

choosing[i] = false;
Worst case: everybody picks same number!

But at least next wave of arrivals will pick a larger
number...

15-410, F'15

38

Bakery Algorithm

Phase 2: Sweep “proving” we have lowest number
for (j = 0; j < n; ++3) {
while (choosing[j])
continue;
while ((number[j] != 0) &&
((number[i], 1) > (number[j], J)))
continue;
}
...critical section...
number[i] = O0;

15-410, F'15

39

Summary

Memory is weird

Two fundamental operations - understand!

= Brief exclusion for atomic sequences
= Long-term yielding to get what you want

Three necessary critical-section properties

Understand these “exclusion algorithms” (which are
also race-condition parties)

= Two-process solution
= N-process “Bakery Algorithm”

15-410, F'15

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

