
Solutions
15-410, Fall 2015, Homework Assignment 1.

1 Tape drives (4 pts.)

Imagine the system is in the state depicted below. List one request which the system should grant right away,
and one request which the system should react to by blocking the process making the request. Briefly justify
each of your answers. Also, briefly describe something that is odd about using deadlock avoidance for this
set of applications.

Who Max Has Room
A 3 1 2
B 3 0 3
System 3 2 -

If Process A requests one tape drive, the request should be granted, because in that state it would be
possible for Process A to request its third tape drive, run to completion, and then Process B could definitely
run to completion. That is, if Process A requests its second tape drive, the request should be granted because
of the safe sequence (A,B).

In the other direction, if Process B requests one tape drive, the system should block Process B before
granting the request, because granting the request would move the system to an unsafe state as depicted
below.

Who Max Has Room
A 3 1 2
B 3 1 2
System 3 1 -

This state is unsafe because the system has only one free tape drive, but each process is entitled to request
more than one. If the system were in this state, it might well happen that some process would exit without
requesting anything further. However, it could also happen that both Process A and Process B would request
another tape drive. In that case, the system would have no choice but to block both of them; because each
of the processes would be blocked waiting for tape drives held by the other, that would form a deadlock.
Formally speaking, in the state depicted above no process can request resources up to its maximum without
blocking, so no process can request resources up to its maximum and complete in a timely fashion, thus
there is no first item in a safe sequence, thus no safe sequence can exist.

The odd thing about using deadlock avoidance for this set of processes is that the only safe way for the
system to operate is without hold&wait: whichever process has any request granted first must get all the
other resources, i.e., the first allocation effectively forces the other allocations, so allocation is effectively
all-at-once, which is the opposite of hold&wait, so for these two processes deadlock avoidance works the
same way as deadlock prevention, except that the resource manager does pointless computations.

(Continued on next page)

1



2 “Go Ahead” (6 pts.)

int want[2] = { 0, 0 };

int goahead[2] = { 0, 0 };

1. do {

2. ...remainder section...

3. want[i] = 1;

4. if (want[j]) {

5. if (i == 0) // tie breaker

6. goahead[j] = 1;

7. }

8. while (want[j] && !goahead[i])

9. continue;

10. ...begin critical section...

11. ...end critical section...

12. want[i] = 0;

13. goahead[i] = 0;

14. } while (1);

There is a problem with this critical-section protocol. Identify a required property which this protocol does
not have and then present a trace which supports your claim.

This protocol does not ensure progress (despite the fact that it was designed to!).

Execution Trace

time Thread 0 Thread 1

0 want[0] = 1

1 want[1]? (no)

2 want[1] = 1

3 want[0]? (yes)

4 while (1 && !0) i==0? (no)

5 while (1 && !0) while (1 && !0)

6 while (1 && !0) while (1 && !0)

7 ... ...

If you believe this protocol also doesn’t ensure one of the other properties, you are probably right. For
example, it also doesn’t provide bounded waiting. Just make sure that all of the things you write in your
trace can actually happen. In particular, if you assert a loop will run indefinitely, it must be the case that
the loop condition obviously can be true indefinitely.

In terms of difficulty, this problem is probably a little easier than an exam question on a similar topic.
However, this question represents the sort of reasoning we expect you to carry out.

2


