
10-315 Introduction to Machine Learning: Homework 4
Due 11:59 p.m. Friday, March 29, 2019

Instructions
• Submit your homework on time electronically by submitting to Autolab by 11:59 p.m. Friday,

March 29, 2019. We recommend that you use LATEX, but we will other typesetting as well. You do not
need to download any extra files from Autolab. To submit this homework, you should submit a pdf of
your solutions on Autolab by navigating to Homework 4 and clicking the “Submit File” button.

• Late homework policy: Homework 4 is worth full credit if submitted before the due date. Up to 50%
credit can be received if the submission is less than 48 hours late. The lowest homework grade at the
end of the semester will be dropped. Please talk to the instructor in the case of extreme extenuating
circumstances.

• Collaboration policy: You are welcome to collaborate on any of the questions with anybody you like.
However, you must write up your own final solution, and you must list the names of anybody you
collaborated with on this assignment.
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Problem 1: VC Dimension
Recall that we call a set of points shattered by a class of functions H if all possible {−1,+1} labelings of
the points can be produced by some function in H . The Vapnik-Chervonenkis (VC) dimension is the size of
the largest set of points that can be shattered by the hypothesis space.

In this problem, we will explore the hypothesis space where each hypothesis is a combination of two
simpler hypotheses. More precisely, given two hypotheses h1 and h2, we define h = h1 ∩ h2 as a new
hypothesis that labels an example +1 only if both h1 and h2 give the label +1, otherwise, it is labeled −1.
We can extend this to sets of hypotheses: given two sets of hypotheses H1 and H2, define H∗ = {h1 ∩ h2 :
h1 ∈ H1, h2 ∈ H2} as the set of all intersections of hypothesis pairs from the two classes H1 and H2.

As an example, let H1 be the set of classifiers in R that assigns the label +1 if the example is larger than
some threshold a. Let H2 be the set of classifiers in R that assigns the label +1 if the example is smaller
than some threshold b. Then H∗ would be the set of all intervals (a, b) in R that assigns +1 if the example is
inside the interval. Another example is when H1 and H2 is the set of all (axis-aligned) squares in R2, H∗ is
the set of all axis-aligned rectangles. This example is illustrated below. On the left, we have a single square
classifier h1; in the middle we again have a square classifier h2; and on the right, we have h1 ∩ h2, which is
a rectangle classifier.

Keep in mind that these are only examples. We are looking for results that can apply generally to any pair of
hypotheses classes.

1. [20 pts] Suppose that the shattering coefficient of H1 is H1[n] (i.e. the maximum number of ways that
the hypothesis space H1 can label a set of n points is H1[n]). Similarly, suppose that the shattering
coefficient of H2 is H2[n]. Show that H∗[n] ≤ H1[n]H2[n].

2. For each one of the following function classes, find the VC dimension. State your reasoning.

i. [10 pts] Half spaces in R, where examples on one side of the boundary are labeled +1, and
examples on the other side are labeled −1.

ii. [10 pts] Half spaces in R2, where examples on one side of the line are labeled +1, and examples
on the other side are labeled −1.

iii. [10 pts] Axis-aligned squares in R2, where points are labeled +1 inside the square, and −1
outside (as in the illustrations above).

Problem 2: Linear Regression and Regularization
Suppose that y = w0 +w1x1 +w2x2 + ε where ε ∼ N (0, σ2). We recommend reading Ch 7.1-7.3 from the
Murphy book.

2

https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=248


1. [10 pts] Write down an expression for P (y|x1, x2).

2. [10 pts] Assume you are given a set of training observations (x
(i)
1 , x

(i)
2 , y(i)) for i = 1, . . . , n. Write

down the conditional log likelihood of this training data. Drop any constants that do not depend on the
parameters w0, w1, or w2.

3. [20 pts] Based on your answer above, show that finding the MLE of that conditional log likelihood is

equivalent to minimizing least squares, 1
2

n∑
i=1

(y(i) − (w0 + w1x
(i)
1 + w2x

(i)
2 ))2.

4. [10 pts] Find the partial derivative of the regularized least squares problem 1
2

n∑
i=1

(yi − (w0 +w1x
(i)
1 +

w2x
(i)
2 ))2 + λ

2 ||[w1, w2]||22 with respect to w0, w1, and w2. Although there is a closed form solution to
this problem, there are situations in practice where we solve this via gradient descent.

5. [10 pts extra credit] Suppose thatw1, w2 ∼ N (0, τ2). Prove that the MAP estimate ofw0, w1, andw2

with this prior is equivalent to minimizing the above regularized least squares problem with λ = σ2

τ2 .

Implementing Cross Validation (Extra Credit)
In the previous problem, you worked out the gradient of linear least squares with an l2 norm regularization
term on the coefficients w; this is often called Ridge Regression. In this problem, you will be using cross
validation to select the regularization strength, λ, for a related problem called the LASSO (which uses
an l1 norm instead of the l2 norm). Due to the geometry of the l1 norm, the LASSO encourages the
coefficients of w to be sparse (i.e., mostly zero) which can be very helpful for high dimensional datasets.

The general K-Fold Cross Validation algorithm is in Fig. 1. For our implementation: Θ is the set of reg-
ularization strengths we are considering, A is the LASSO, and LSi(Hi,θ) is the mean squared error of hi,θ
evaluated on Si.

You will not have to implement the LASSO yourself and will be using an implementation based on this one.
You will implement the following functions from cv.py:

1. [2 pts extra credit] get fold(X, y, assignments, k) returns train/testing split of the data for the re-
quested fold.

2. [3 pts extra credit] evaluate(X train,X test, y train, y test, alpha) trains and evaluates a LASSO
model on the data.

3. [5 pts extra credit] evaluate alpha by cv(X, y, assignments, alpha) uses cross validation to eval-
uate the quality of a LASSO model trained with regularization alpha

4. [2 pts extra credit] evaluate alphas by cv(X, y, k, alphas) uses cross validation to select the best
value of alpha from alphas

5. [8 pts extra credit] evaluate final model(X, y, k, alphas) uses cross validation to select the best
value of alpha and then evaluates the LASSO model

Documentation and notes about what parameters each function expects, what values it returns, and how to
implement it are in the provided code template which can be found on autolab.
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https://github.com/satopirka/Lasso


Figure 1: The K-Fold Cross Validation algorithm (source)

Note that there is not much code to write, but rather that you must think carefully about how to
combine the pieces you have been given. You will submit your code online through the CMU autolab
system by uploading cv.py, which will execute it remotely against a suite of tests.
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https://medium.com/@lotass/machine-learning-what-you-need-to-know-about-model-selection-and-evaluation-8b641fd37fd5

