
10-315 Machine Learning: Homework 2
Due 11:59 p.m. Friday, February 15, 2019

Instructions

• Submit your homework on time electronically by submitting to Autolab..

• Late homework policy: Homework is worth full credit if submitted before the due date.
Up to 50 % credit can be received if the submission is less than 48 hours late. The lowest
homework grade at the end of the semester will be dropped. Please talk to the instructor in
the case of extreme extenuating circumstances. Note that, your scores on the coding
part will also be penalized if you choose to submit the writeup after the due date.

• Collaboration policy: You are welcome to collaborate on any of the questions with anybody
you like. However, you must write up your own final solution, and you must list the names of
anybody you collaborated with on this assignment.

• Writeup Format:

– The written portion should be typeset (e.g. LaTeX).

– The submission format should be PDF.

– Every problem should be on a different page.
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Problem 1: Independent events and Bayes Theorem

1. [5 Points] For events A, B prove:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|¬A)P (¬A)
.

(¬A denote the event that A does not occur.)

2. Let X, Y , and Z be random variables taking values in {0, 1}. The following table lists the
probability of each possible assignment of 0 and 1 to the variables X, Y , and Z:

Z = 0 Z = 1
X = 0 X = 1 X = 0 X = 1

Y = 0 0.1 0.05 0.1 0.1
Y = 1 0.2 0.1 0.175 0.175

(a) [4 Points] Is X independent of Y ? Why or why not?

(b) [4 Points] Is X conditionally independent of Y given Z? Why or why not?

(c) [4 Points] Calculate P (X 6= Y |Z = 0).

Problem 2: Maximum Likelihood Estimation

This problem explores maximum likelihood estimation (MLE), which is a technique for estimating
an unknown parameter of a probability distribution based on observed samples. Suppose we observe
the values of n iid 1 random variables X1, . . . , Xn drawn from a single Bernoulli distribution with
parameter θ. In other words, for each Xi, we know that

P (Xi = 1) = θ and P (Xi = 0) = 1− θ.

Our goal is to estimate the value of θ from these observed values of X1 through Xn.
For any hypothetical value θ̂, we can compute the probability of observing the outcome X1, . . . ,

Xn if the true parameter value θ were equal to θ̂. This probability of the observed data is often called
the data ikelihood, and the function L(θ̂) = P (X1, . . . , Xn|θ̂) that maps each θ̂ to the corresponding
likelihood is called the likelihood function. A natural way to estimate the unknown parameter θ is
to choose the θ̂ that maximizes the likelihood function. Formally,

θ̂MLE = argmax
θ̂

L(θ̂).

Often it is more convenient to work with the log likelihood function `(θ̂) = logL(θ̂). Since the log
function is increasing, we also have

θ̂MLE = argmax
θ̂

`(θ̂).

1. [6 Points] Write a formula for the log likelihood function, `(θ̂). Your function should depend

on the random variables X1, . . . , Xn, the hypothetical parameter θ̂, and should be simplified
as far as possible (i.e., don’t just write the definition of the log likelihood function). Does the
log likelihood function depend on the order of the random variables?

1iid means Independent, Identically Distributed.
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2. [6 Points] Consider the following sequence of 10 samples:

X = (0, 1, 0, 1, 1, 0, 0, 1, 1, 1).

Compute the maximum likelihood estimate for the 10 samples. Show all of your work (hint:
recall that if x∗ maximizes f(x), then f ′(x∗) = 0).

3. [6 Points] Now we will consider a related distribution. Suppose we observe the values of m iid
random variables Y1, . . . , Ym drawn from a single Binomial distribution B(n, θ). A Binomial
distribution models the number of 1’s from a sequence of n independent Bernoulli variables
with parameter θ. In other words,

P (Yi = k) =

(
n

k

)
θk(1− θ)n−k =

n!

k!(n− k)!
· θk(1− θ)n−k.

Write a formula for the log likelihood function, `(θ̂). Your function should depend on the

random variables Y1, . . . , Ym and the hypothetical parameter θ̂.

4. [6 Points] Consider two Binomial random variables Y1 and Y2 with the same parameters,
n = 5 and θ. The Bernoulli variables for Y1 and Y2 resulted in (0, 1, 0, 1, 1) and (0, 0, 1, 1, 1),
respectively. Therefore, Y1 = 3 and Y2 = 3. Compute the maximum likelihood estimate for
the 2 samples. Show your work.

5. [4 Points] How do your answers for parts 1 and 3 compare? What about parts 2 and 4? If
you got the same or different answers, why was that the case?

Problem 3: Implementing Naive Bayes

In this question you will implement a Naive Bayes classifier for a text classification problem. You
will be given a collection of text articles, each coming from either the serious European magazine
The Economist, or from the not-so-serious American magazine The Onion. The goal is to learn a
classifier that can distinguish between articles from each magazine.

We have pre-processed the articles so that they are easier to use in your experiments. We
extracted the set of all words that occur in any of the articles. This set is called the vocabulary and
we let V be the number of words in the vocabulary. For each article, we produced a feature vector
X = 〈X1, . . . , XV 〉, where Xi is equal to 1 if the ith word appears in the article and 0 otherwise.
Each article is also accompanied by a class label of either 1 for The Economist or 2 for The Onion.
Later in the question we give instructions for loading this data into Python.

When we apply the Naive Bayes classification algorithm, we make two assumptions about the
data: first, we assume that our data is drawn iid from a joint probability distribution over the
possible feature vectors X and the corresponding class labels Y ; second, we assume for each pair of
features Xi and Xj with i 6= j that Xi is conditionally independent of Xj given the class label Y
(this is the Naive Bayes assumption). Under these assumptions, a natural classification rule is as
follows: Given a new input X, predict the most probable class label Ŷ given X. Formally,

Ŷ = argmax
y

P (Y = y|X).

1. [5 points] Prove the classification rule can be rewritten as

Ŷ = argmax
y

( V∏
w=1

P (Xw|Y = y)

)
P (Y = y).
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2. [5 points] How many parameters are needed to represent the distribution P (X|Y = y) when
using the Naive Bayes assumption? How many are needed if we do not use the Naive Bayes
assumption? Based on this difference, in which cases is there a big gain from making this
assumption?

Of course, since we don’t know the true joint distribution over feature vectors X and class labels
Y , we need to estimate the probabilities P (X|Y = y) and P (Y = y) from the training data. For
each word index w ∈ {1, . . . , V } and class label y ∈ {1, 2}, the distribution of Xw given Y = y is a
Bernoulli distribution with parameter θyw. In other words, there is some unknown number θyw such
that

P (Xw = 1|Y = y) = θyw and P (Xw = 0|Y = y) = 1− θyw.

For both The Economist and The Onion, we believe that each word w has a non-zero chance of
appearing, but it is more likely that w will not occur in any particular document. We incorporate
this belief by computing a MAP estimate using a Beta(1.001, 1.9) prior on θwy. This has the added
benefit of ensuring that none of our estimates of θwy are equal to 0 or 1 (which can cause problems
for Naive Bayes).

Similarly, the distribution of Y (when we consider it alone) is a Bernoulli distribution (except
taking values 1 and 2 instead of 0 and 1) with parameter ρ. In other words, there is some unknown
number ρ such that

P (Y = 1) = ρ and P (Y = 2) = 1− ρ.

In this case, since we have many examples of articles from both The Economist and The Onion,
there is no risk of having zero-probability estimates, so we will instead use the MLE.

Programming Instructions

Parts (3) through (5) of this question each ask you to implement one function related to the Naive
Bayes classifier. You will submit your code online through the CMU autolab system by uploading
NB.py, which will execute it remotely against a suite of tests. Your grade will be automatically
determined from the testing results. Since you get immediate feedback after submitting your code
and you are allowed to submit as many different versions as you like (without any penalty), it easy
for you to check your code as you go.

Our autograder requires that you write your code using Python 3 and numpy 1.13.3. Otherwise,
when running your program on Autolab, it may produce a result different from the result produced
on your local computer

The file hw2data.pkl contains the data that you will use in this problem. You can load it into
Python using pickle. After loading the data, you will see that there are 5 variables: Vocabulary,
XTrain, yTrain, XTest, and yTest.

• Vocabulary is a V × 1 dimensional array that that contains every word appearing in the
documents. When we refer to the jth word, we mean Vocabulary[j,0].

• XTrain is a n×V dimensional matrix describing the n documents used for training your Naive
Bayes classifier. The entry XTrain[i,j] is 1 if word j appears in the ith training document
and 0 otherwise.

• yTrain is a n × 1 dimensional matrix containing the class labels for the training documents.
yTrain[i,0] is 1 if the ith document belongs to The Economist and 2 if it belongs to The
Onion.
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• Finally, XTest and yTest are the same as XTrain and yTrain, except instead of having n
rows, they have m rows. This is the data you will test your classifier on and it should not be
used for training.

Logspace Arithmetic

When working with very large or very small numbers (such as probabilities), it is useful to work
in logspace to avoid numerical precision issues. In logspace, we keep track of the logs of numbers,
instead of the numbers themselves. For example, if p(x) and p(y) are probability values, instead of
storing p(x) and p(y) and computing p(x)∗p(y), we work in log space by storing log(p(x)), log(p(y)),
and we can compute the log of the product, log(p(x) ∗ p(y)) by taking the sum: log(p(x) ∗ p(y)) =
log(p(x)) + log(p(y)).

Training Naive Bayes

3. [8 Points] Complete the function D = NB XGivenY(XTrain, yTrain). The output D is a
2 × V matrix, where for any word index w ∈ {1, . . . , V } and class index y ∈ {1, 2}, the entry
D[y-1,w-1] is the MAP estimate of θyw = P (Xw = 1|Y = y) with a Beta(1.001,1.9) prior
distribution. To help with numerical issues clip D to be in [10−5, 1−10−5] before this function
returns it.

4. [8 Points] Complete the function p = NB YPrior(yTrain). The output p is the MLE for
ρ = P (Y = 1).

5. [8 Points] Complete the function yHat = NB Classify(D, p, X). The input X is an m× V
matrix containing m feature vectors (stored as its rows). The output yHat is a m× 1 vector of
predicted class labels, where yHat[i] is the predicted label for the ith row of X. [Hint: In this
function, you will want to use Logspace Arithmetic function to avoid numerical problems.]

Questions

6. [5 Points] Train your classifier on the data contained in XTrain and yTrain by running

D = NB_XGivenY(XTrain, yTrain)

p = NB_YPrior(yTrain)

Use the learned classifier to predict the labels for the article feature vectors in XTrain and
XTest by running

yHatTrain = NB_Classify(D, p, XTrain)

yHatTest = NB_Classify(D, p, XTest)

Use the function ClassificationError to measure and report the training and testing error
by running

trainError = ClassificationError(yHatTrain, yTrain)

testError = ClassificationError(yHatTest, yTest)

How do the train and test errors compare? Which is more representative of the error we would
expect to have on a new collection of articles? Does Naive Bayes attempt to minimize the
training error?
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7. [8 Points] In this question we explore how the size of the training data set affects the test and
train error. For each value of m in {100, 130, 160, . . . , 580}, train your Naive Bayes classifier on
the first m training examples (that is, use the data given by XTrain[0:m,] and yTrain[0:m]).
Plot the training and testing error for each such value of m. The x-axis of your plot should be
m, the y-axis should be error, and there should be one curve for training error and one curve
for testing error. Explain the general trend of both the training and testing error curves.

8. [8 Points] Finally, we will try to interpret the learned parameters. Train your classifier on
the data contained in XTrain and yTrain. For each class label y ∈ {1, 2}, create three lists
according to the following criteria (Note that some of the words may look a little strange
because we have run them through a stemming algorithm that tries to make words with
common roots look the same. For example, “stemming” and “stemmed” would both become
“stem”):

• Top five words that the model says are most likely to occur in a document from class y.
That is, the top five words according to this metric:

P (Xw = 1|Y = y)

• Top five words w according to this metric:

P (Xw = 1|Y = y)

P (Xw = 1|Y 6= y)
.

Which list of words is more informative about the class y? Briefly explain your reasoning.
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