
10-315 Introduction to Machine Learning

Due:11:59 p.m. Monday, Feb 11, 2019

Instructions

• Submit your homework on time electronically by submitting to Autolab.

• Late homework policy: Homework is worth full credit if submitted before the due date.
Up to 50 % credit can be received if the submission is less than 48 hours late. The lowest
homework grade at the end of the semester will be dropped. Please talk to the instructor in
the case of extreme extenuating circumstances. Note that, your scores on the coding
part will also be penalized if you choose to submit the writeup after the due date.

• Collaboration policy: You are welcome to collaborate on any of the questions with anybody
you like. However, you must write up your own final solution, and you must list the names of
anybody you collaborated with on this assignment.

• Writeup format:

– The written portion should be typeset (e.g. LaTeX).

– The submission format should be PDF.

– Every problem should be on a different page.

1



1 Linear Separators [30 pts]

Recall that a linear separator in 2 dimensions is given a function of the form

y = φ(w1x1 + w2x2 + b)

Pictorially:

Figure 1: Linear Separator for question 1

where xi ∈ {0, 1}, and transfer function

φ(z) =

{
0 if z ≤ 0
1 otherwise

a. [4 pts] Complete the following truth table for the AND operation.

x1 x2 AND
0 0
0 1
1 0
1 1

b. [4 pts] Provide values of w1, w2 and b to use the linear separator for logical AND.

c. [4 pts] Complete the following truth table for the OR operation.

x1 x2 OR
0 0
0 1
1 0
1 1

2



d. [4 pts] Provide values of w1, w2 and b to use the linear separator for logical OR.

e. [4 pts] Complete the following truth table for the XOR operation.

x1 x2 XOR
0 0
0 1
1 0
1 1

f. [10 pts] Prove that the linear separator depicted in Figure 1 cannot be used to create logical
XOR.

3



Early Finished hmk Senior Likes Coffee Liked The Last Jedi A
1 1 0 0 1 1
1 1 1 0 1 1
0 0 1 0 0 0
0 1 1 0 1 0
0 1 1 0 0 1
0 0 1 1 1 1
1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 0 1 1
1 0 0 0 0 0
1 1 1 0 0 1
0 1 1 1 1 0
0 0 0 0 1 0
1 0 0 1 0 1

Table 1: decision tree features and labels

2 Decision Trees [30 pts]

a. [5 pts] How many unique, perfect binary trees of depth 3 can be drawn if we have 5 attributes.
By depth, we mean depth of the splits, not including the nodes that only contain a label. So a tree
that checks just one attribute is a depth 1 tree. By perfect binary tree, we mean every node has
either 0 or 2 children, and every leaf is at the same depth. Note also that a tree with the same
attributes but organized at different depths are considered “unique”. Do not include trees that test
the same attribute along the same path in the tree.

(Bonus) [5 pts] In general, for a problem with A attributes, how many unique full D depth trees can
be drawn? Assume A >> D

b. [15 pts] Consider the following dataset for this problem. Given the five attributes on the left,
we want to predict if the student got an A in the course. Create 2 decision trees for this dataset.
For the first, only go to depth 1. For the second go to depth 2. For all trees, use the ID3 entropy
algorithm from class. For each node of the tree, show the decision, the number of positive and
negative examples and show the entropy at that node.
Hint: There are a lot of calculations here. You may want to do this programatically. Table 1 is
provided as a txt file on the website.

(Bonus) [5 pts] Make one more decision tree. Use the same procedure as in (b), but make it
depth 3. Now, given these three trees, which would you prefer if you wanted to predict the grades
of 10 new students who are not included in this dataset? Justify your choice.

c. [10 pts] Recall the definition of the “realizable case.” For some fixed concept class C, such
as decision trees, a realizable case is one where the algorithm gets a sample consistent with some
concept c ∈ C. In other words, for decision trees, a case is realizable if there is some tree that
perfectly classifies the dataset.

4



If the number of attributes A is sufficiently large, under what condition would a dataset not be
realizable for decision trees of no fixed depth? Prove that the dataset is unrealizable if and only if
that condition is true.

5



3 Programming Assignment: Perceptrons [40 pts]

3.1 Implementation [30 pts]

Algorithm In this part, you will be implementing the perceptron algorithm for classifying hand-
written digits.

Recall the perceptron algorithm we learned in class for xi ∈ Rd and yi ∈ {−1, 1}

• Initialize the weight vector w ∈ Rd

• Iterate until convergence:

• For i = 1...n

• ŷi = φ(wTxi)

• If: ŷi 6= yi; Then w = w + yixi

Where we use a slightly altered definition from Problem 1:

φ(z) =

{
−1 if z ≤ 0
1 otherwise

Note that this is an iterative algorithm and there are different ways to define “convergence” In
this assignment we provide the convergence rule for you. It stops that algorithm when ŷ = ŷ(prev).
Note that ŷ and ŷ(prev) are both vectors. This condition means that the algorithm is no longer
changing the predicted values of ŷ.

Code structures Two files are provided:

• data.py: it provides functions to load the dataset. Do not change this file.

• perceptron.py: it provides a template for implementing the perceptron algorithm.

You should complete the following function:

• Complete the standardize and the standardize by mean and std function: compute the
mean and std in the standardize function and then use function standardize by mean and std

to standardize features to mean 0 and variance 1 in this function. In addition, append a con-
stant with value 1 to the feature. You will find numpy.mean and numpy.std useful.

• Complete the perceptron pred function: the function preceptron pred(x, w) takes in a
weight vector w and a feature vector x, and outputs the predicted label based on φ(z). You
will find numpy.dot useful.

• Complete the perceptron function: the function perceptron(X, Y, w) runs the perceptron
training algorithm taking in an initial weight vector w, feature matrix X, and vector of labels
Y. It outputs a learned weight vector w.

6



Software versions Make sure that you are using Python 3 and numpy 1.13.3. Otherwise, when
running your program on Autolab, it may produce a result different from the result produced on
your local computer.

Testing on Datasets

(1) [10 pts] First let’s try your implementation on a very simple dataset. The dataset is a
simple 2D dataset with a cluster of positive and a cluster of negative examples. Your al-
gorithm should easily separate the two clusters. You can find the dataset in the hand-
out named simple dataset.mat. You can test your implementation’s accuracy using function
test simple dataset.

You will get full score if your implementation can get 100% accuracy on this dataset. Otherwise,
your score would be calculated by:

exp((acc− 1) ∗ 10) ∗ 10 (1)

where acc is your implementation’s accuracy.

(2) [20 pts] Then, test your algorithm on a subset of the MNIST dataset. You can find this in
the handout as perceptron train.mat and perceptron test.mat. Run perceptron.py to perform
training and see the performance on training and test sets. Record your accuracy on both
datasets. For reference, we achieved a 97.6% test accuracy. You can test your implementation’s
accuracy using function test mnist.

You will get full score if your implementation can get 96.0% accuracy on this dataset. Other-
wise, your score would be calculated by:

exp((acc− 96.0) ∗ 10) ∗ 20 (2)

where acc is your implementation’s accuracy.

Submission Instructions DO NOT change the name of any of the files or folders in the handout.
In other words, your submitted files should have exactly the same names as those in the submission
template. Do not modify the directory structure. Do not change functions other than the four
previously mentioned functions.

Run the following command to generate a tarfile:
$ tar -cvf src.tar src
Then submit your tarfile to Autolab. (DO NOT change this command.) After submission,

if you do not get a full score, you can click your score and see the logs of the autograding. We
recommend debugging your code locally since autograding is very slow.

3.2 Visualization [10 points]

Write a visualization function to visualize the decision boundary on the simple dataset. The visual-
ization should look something like Figure 2.

Once you have done that, plot the decision boundary for the first 5 iterations of the algorithm
on the simple dataset, and then once more at convergence. You should have 6 figures in your
writeup. Even if the convergence criterion described in Section 3.1 happens before 5 iterations, on
this dataset please still run the algorithm for enough iterations to generate these plots.

7



Figure 2: Plot of perceptron decision boundary

8


