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Abstract

Modern processors use branch prediction and speculative
execution to maximize performance. For example, if the
destination of a branch depends on a memory value that is
in the process of being read, CPUs will try to guess the des-
tination and attempt to execute ahead. When the memory
value finally arrives, the CPU either discards or commits
the speculative computation. Speculative logic is unfaith-
ful in how it executes, can access the victim’s memory and
registers, and can perform operations with measurable
side effects.

Spectre attacks involve inducing a victim to speculatively
perform operations that would not occur during correct
program execution and which leak the victim’s confidential
information via a side channel to the adversary. This paper
describes practical attacks that combine methodology from
side-channel attacks, fault attacks, and return-oriented pro-
gramming that can read arbitrary memory from the victim’s
process. More broadly, the paper shows that speculative exe-
cution implementations violate the security assumptions
underpinning numerous software security mechanisms, such
as operating system process separation, containerization,
just-in-time (JIT) compilation, and countermeasures to
cache timing and side-channel attacks. These attacks repre-
sent a serious threat to actual systems because vulnerable
speculative execution capabilities are found in microproces-
sors from Intel, AMD, and ARM that are used in billions of
devices.

Although makeshift processor-specific countermeasures
are possible in some cases, sound solutions will require fixes
to processor designs as well as updates to instruction set
architectures (ISAs) to give hardware architects and software
developers a common understanding as to what computa-
tion state CPU implementations are (and are not) permitted
to leak.

1. INTRODUCTION
Computations performed by physical devices often leave
observable side effects beyond the computation’s nominal
outputs. Side-channel attacks focus on exploiting these side
effects to extract otherwise-unavailable secret information.
Since their introduction in the late 90s,'* various physical
effects such as power consumption have been leveraged to
extract cryptographic keys as well as other secrets.*
External side-channel measurements can be used to
extract secret information from complex devices such as
PCs and mobile phones. However, because these devices
often execute code from a potentially unknown origin,
they face additional threats in the form of software-based

attacks, which do not require external measurement equip-
ment. Although some attacks exploit software logic errors,
other software attacks leverage hardware properties to
infer sensitive information. Attacks of the latter type include
microarchitectural attacks exploiting cache timing® ®*” and
branch prediction history.! Software-based techniques
have also been used to induce computation errors, such as
fault attacks that alter physical memory** or internal CPU
values.”

Several microarchitectural design techniques have facili-
tated the increase in processor speed over the past decades.
One such advancement is speculative execution, which is
widely used to increase performance and involves having
the CPU guess likely future execution directions and pre-
maturely execute instructions on these paths. More spe-
cifically, consider an example where the program’s control
flow depends on an uncached value located in external
physical memory. As this memory is much slower than the
CPU, it often takes several hundred clock cycles before the
value becomes known. Rather than wasting these cycles by
idling, the CPU attempts to guess the direction of control
flow, saves a checkpoint of its register state, and proceeds
to speculatively execute the program on the guessed path.
When the value eventually arrives from memory, the CPU
checks the correctness of its initial guess. If the guess was
wrong, the CPU discards the incorrect speculative execution
by reverting the register state back to the stored checkpoint,
resulting in performance comparable to idling. However, if
the guess was correct, the speculative execution results are
committed, yielding a significant performance gain as use-
ful work was accomplished during the delay.

From a security perspective, speculative execution involves
executing a program in possibly incorrect ways. However,
because CPUs are designed to maintain functional cor-
rectness by reverting the results of incorrect speculative
executions to their prior states, these errors were previously
assumed to be safe.

In this paper, we analyze the security implications of such
incorrect speculative execution. We present a class of micro-
architectural attacks which we call Spectre attacks. At a high
level, Spectre attacks trick the processor into speculatively
executing instruction sequences that should not have been
executed under correct program execution. As the effects
of these instructions on the nominal CPU state are eventu-
ally reverted, we call them transient instructions. Transient

The original version of this paper appeared in
Proceedings of the 40" IEEE Symposium on Security and
Privacy (May 2019).
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instructions can, however, have observable effects that con-
vey information. By influencing which transient instructions
are speculatively executed, we are able to leak information
from within the victim’s memory address space.

Spectre attacks can be applied to leak information across
abroad range of security domains. In this paper, we describe
several implementations and variations, such as attacks that
extract information from other processes and from kernel
memory, and that violate sandboxes enforced by program-
ming languages.

At a high level, Spectre attacks violate memory isolation
boundaries by combining speculative execution with data
exfiltration via microarchitectural covert channels. More
specifically, to mount a Spectre attack, an attacker starts by
locating or introducing a sequence of instructions within
the process address space which, when executed, acts as a
covert channel transmitter that leaks the victim’s memory
or register contents. The attacker then tricks the CPU into
speculatively and erroneously executing this instruction
sequence, thereby leaking the victim’s information over the
covert channel. Finally, the attacker retrieves the victim’s
information over the covert channel. Although the changes
to the nominal CPU state resulting from this erroneous
speculative execution are eventually reverted, previously
leaked information or changes to other microarchitectural
states of the CPU, for example, cache contents, can survive
nominal state reversion.

The above description of Spectre attacks is general and
needs to be concretely instantiated with a way to induce erro-
neous speculative execution as well as with a microarchitec-
tural covert channel. Although many choices are possible
for the covert channel component, the implementations
described in this work use cache-based covert channels,*
that is, Flush+Reload® and Evict+Reload.> '®

The underlying vulnerability arises from the composi-
tion of widely used microarchitectural features, rather than
an implementation error in a single component. We have
verified the vulnerability in all processors tested that imple-
ment speculative execution, such as multiple designs from
Intel, AMD, and ARM. This contrasts with a related issue,
Meltdown,'® which exploits a vulnerability specific to many
Intel and a few ARM processors, which allows user-mode
instructions to infer the contents of kernel memory.

Following the practice of responsible disclosure, we par-
ticipated in an embargo of the results. This process was
unusually complex due to the large number of stakeholders
and affected products.

2. BACKGROUND

In this section, we introduce some of the microarchitectural
components of modern high-speed processors as well as
several attack techniques.

2.1. Speculative execution

Often, the processor does not know the future instruction
stream of a program. For example, this occurs when out-of-
order execution reaches a conditional branch instruction
whose direction depends on preceding instructions whose
execution is not completed yet. In such cases, the processor
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can preserve its current register state, make a prediction as
to the path that the program will follow, and speculatively
execute instructions along the path. If the prediction turns
out to be correct, the results of the speculative execution are
committed (i.e., saved), yielding a performance advantage
over idling during the wait. Otherwise, when the processor
determines that it followed the wrong path, it abandons the
work it performed speculatively by reverting its register state
and resuming along the correct path.

We refer to instructions which are performed erroneously
(i.e., as the result of a misprediction), but may leave micro-
architectural traces, as transient instructions. Although the
speculative execution maintains the architectural state of
the program as if execution followed the correct path, micro-
architectural elements may be in a different (but valid) state
than before the transient execution.

Speculative execution on modern CPUs can run several
hundred instructions ahead.

2.2. Branch prediction

During speculative execution, the processor makes guesses
as to the likely outcome of branch instructions. Better pre-
dictions improve performance by increasing the number of
speculatively executed operations that can be successfully
committed.

Branch predictors of modern processors can have multi-
ple prediction mechanisms for direct and indirect branches.
Indirect branch instructions can jump to arbitrary target
addresses computed at runtime, such as instructions that
jump to an address in a register, memory location, or on
the stack (e.g., “jmp eax” on x86). Return instructions are
a type of indirect branch, and modern CPUs often include
additional mechanisms for predicting return addresses.

For conditional branches, recording the target address
is not necessary for predicting the outcome of the branch,
because the destination is typically encoded in the instruction
although the condition is determined at runtime. To improve
predictions, the processor maintains a record of branch out-
comes, both for recent direct and indirect branches.

2.3. The memory hierarchy

To bridge the speed gap between the faster processor and the
slower memory, processors use a hierarchy of successively
smaller but faster caches. The caches divide the memory into
fixed size chunks called lines, with typical line sizes being
64 or 128 bytes. When the processor needs data from mem-
ory, it first checks if the L1 cache contains a copy. In the case
of a cache hit, that is, the data is found in the cache, the datais
retrieved from the L1 cache and used. Otherwise, in the case
ofacachemiss,the procedure is repeated to attempt to retrieve
the data from the next cache levels, and finally the external
memory. Once a read is completed, the data is typically stored
in the cache (and a previously cached value is evicted to make
room) in case it is needed again in the near future.

2.4. Microarchitectural side-channel attacks

The microarchitectural components discussed above
improve the processor performance by predicting future
program behavior. To that aim, they maintain state that



depends on past program behavior and assume that future
behavior is similar to or related to past behavior.

When multiple programs execute on the same hard-
ware, either concurrently or via time-sharing, changes in
the microarchitectural state caused by the behavior of one
program may affect other programs. This, in turn, may
result in unintended information leaks from one program
to another.

Initial microarchitectural side-channel attacks exploited
timing variability' and leakage through the L1 data cache®
to extract keys from cryptographic primitives. Over the years,
channels have been demonstrated over multiple micro-
architectural components, such as lower level caches'™ "
and branch history.!

In this work, we use the Flush+Reload technique,® *
and its variant Evict+Reload.” Using these techniques, the
attacker begins by evicting a cache line from the cache that
is shared with the victim. After the victim executes for
a while, the attacker measures the time it takes to per-
form a memory read at the address corresponding to the
evicted cache line. If the victim accessed the monitored
cache line, the data will be in the cache, and the access will
be fast. Otherwise, if the victim has not accessed the line,
the read will be slow. Hence, by measuring the access time,
the attacker learns whether the victim accessed the monitored
cache line between the eviction and probing steps.

The main difference between the two techniques is the
mechanism used for evicting the monitored cache line
from the cache. In the Flush+Reload technique, the attacker
uses a dedicated machine instruction, for example, x86’s
clflush, to evict the line. Using Evict+Reload, eviction
is achieved by forcing contention on the cache set that
stores the line. Due to the limited size of the cache, read-
ing several other memory locations that map to the same
cache set can cause the processor to discard (evict) the
desired line.

3. ATTACK OVERVIEW

Spectre attacks induce a victim to speculatively perform
operations that would not occur during strictly serialized
in-order processing of the program’s instructions, and that
leak victim’s confidential information via a covert channel
to the adversary.

In most cases, the attack begins with a setup phase,
where the adversary performs operations that mistrain the
processor so that it will later make an exploitably erroneous
speculative prediction. In addition, the setup phase may
include steps that help induce speculative execution, such
as manipulating the cache state to remove data that the pro-
cessor will need to determine the actual control flow. During
the setup phase, the adversary can also prepare the covert
channel that will be used for extracting the victim’s informa-
tion, for example, by performing the flush or evict part of a
Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively
executes instruction(s) that transfer confidential informa-
tion from the victim context into a microarchitectural covert
channel. This maybe triggered by having the attackerrequest
that the victim performs an action, for example, via an API

call. In other cases, the attacker may leverage the speculative
(mis-)execution of its own code to obtain sensitive informa-
tion from the same process. For example, attack code, which
is sandboxed by an interpreter, a just-in-time compiler, or a
“safe” language, may wish to read memory it is not supposed
to access. Although speculative execution can potentially
expose sensitive data via a broad range of covert channels,
the examples given cause speculative execution to first read
amemory value at an attacker-chosen address and then per-
form a memory operation that modifies the cache state in a
way that exposes the value.

For the final phase, the sensitive data is recovered. For
Spectre attacks using Flush+Reload or Evict+Reload, the
recovery process consists of timing the access to memory
addresses in the cache lines being monitored.

Spectre attacks only assume that speculatively exe-
cuted instructions can read from memory that the victim
process could access normally, for example, without trig-
gering a page fault or exception. Hence, Spectre is orthog-
onal to Meltdown,*® which exploits scenarios where some
CPUs allow out-of-order execution of user instructions
to read kernel memory. Consequently, even if a proces-
sor prevents speculative execution of instructions in user
processes from accessing kernel memory, Spectre attacks
still work.

4. VARIANT 1: EXPLOITING CONDITIONAL BRANCH
MISPREDICTION

In this section, we demonstrate how conditional branch
misprediction can be exploited by an attacker to read arbi-
trary memory from another context, for example, another
process.

Consider the case where the code here is part of a func-
tion (e.g., a system call or a library) receiving an unsigned
integer x from an untrusted source. The process running
the code has access to an array of unsigned bytes: array1l
of size arrayl size, and a second byte array array2 of
size 1 MB.

if (x < arrayl size)

(
y = array2[arrayl[x] * 4096];

The code fragment begins with a bounds check on x.
This check is essential for security because it prevents
the processor from reading sensitive memory outside of
arrayl. Otherwise, an out-of-bounds input x could trigger
an exception or could cause the processor to access sensi-
tive memory by supplying x = (address of a secret byte to
read) — (base address of array1).

Figure 1 illustrates the four cases of the bounds check in
combination with speculative execution. Before the result of
the bounds check is known, the CPU speculatively executes
code following the condition by predicting the most likely
outcome of the comparison. There are many reasons why
the result of a bounds check may not be immediately known,
for example, a cache miss preceding or during the bounds
check, congestion of a required execution unit, complex
arithmetic dependencies, or nested speculative execution.
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Figure 1. Before the correct outcome of the bounds check is
known, the branch predictor continues with the most likely
branch target, leading to an overall execution speed-up if the
outcome was correctly predicted. However, if the bounds check
is incorrectly predicted as true, an attacker can leak secret
information in certain scenarios.

if <in bounds>

predicted

However, as illustrated, a correct prediction of the condition
in these cases leads to faster overall execution.

Unfortunately, during speculative execution, the condi-
tional branch for the bounds check can follow the incorrect
path. In this example, suppose an adversary causes the code
to run such that:

« the value of x is maliciously chosen (out-of-bounds),
such that array1l [x] resolves to a secret byte k some-
where in the victim’s memory;

« arrayl size and array2 are uncached, but k is
cached; and

« previous operations received values of x that were valid,
leading the branch predictor to assume the if will
likely be true.

This cache configuration can occur naturally or can be cre-
ated by an adversary, for example, by causing eviction of
arrayl size and array?2 and then having the kernel use
the secret key in a legitimate operation.

When the compiled code above runs, the processor begins
by comparing the malicious value of x against arrayl
size. Reading arrayl size results in a cache miss, and
the processor faces a substantial delay until its value is avail-
able from DRAM. In the meantime, the branch predictor
assumes the if will be true, then speculative execution adds
x to the base address of array1 and requests the data at the
resulting address from the memory subsystem. This read is a
cache hit, and quickly returns the value of the secret byte k.
Speculative execution continues, using k to compute the
address of array2 [k«4096], and sending a request to
read this address from memory (resulting in a cache miss).
At some point after the read from array?2 is initiated, the
processor realizes that its speculative execution was errone-
ous and rewinds its register state. However, the speculative
read from array2 affects the cache state in an address-
specific manner, where the address depends on k.

To complete the attack, the adversary measures which
location in array2 was brought into the cache, for example,
via Flush+Reload or Prime+Probe. This reveals the value of k,
because the victim’s speculative execution cached array2

[kx4096], causing array2 [i¥4096] to read quickly for
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i =k, but slowly for all other k € 0.255. Alternatively, by using
Evict+Time, the adversary can immediately call the target
function again with an in-bounds value x’ and measure
how long this second call takes. If arrayl [x’] equals &,
then the location accessed in array?2 is in the cache, and
the operation will tend to be faster. (The multiplication by
4096 simplifies the attack by ensuring that each potential
value of k maps to a different memory page, avoiding effects
due to intra-page prefetching.)

Many different scenarios can lead to exploitable leaks
using this variant. For example, instead of performing a
bounds check, the mispredicted conditional branch(es)
could be checking a previously computed safety result or an
object type. Similarly, the code that is speculatively executed
can take other forms, such as leaking a comparison result into
a fixed memory location or may be spread over a much larger
number of instructions. The cache status described above is
also more restrictive than may be required. For example, in
some scenarios, the attack works even if arrayl size is
cached, for example, if branch prediction results are applied
during speculative execution even if the values involved in
the comparison are known. As a result, mitigation efforts
are likely to be ineffective if targeted narrowly to a specific
code pattern or scenario (see Sections 6 and 7).

4.1. Experimental results

We performed experiments on multiple Intel x86 processor
architectures (Ivy Bridge, Haswell, Broadwell, Skylake, and
Kaby Lake) and AMD Ryzen. The Spectre vulnerability was
observed on all these CPUs, and we observed that specu-
lative execution can run hundreds of instructions ahead.
Similar results were observed on both 32- and 64-bit modes,
and under both Linux and Windows. Some processors based
on the ARM architecture also support speculative execution,
and our initial testing confirmed that ARM Cortex-A57 and
Cortex-A53 and Qualcomm Kyro 280 CPUs.

4.2. Example implementation in C

Proof-of-concept code in C for x86 processors is found in
the full paper or is available from https://gist.github.com/
anonymous/99a72¢9¢1003f8ae0707b4927ec1bd8a. This unop-
timized implementation can read around 10KB/s on an
i7-4650U with a low (<0.01%) error rate.

4.3. Example implementation in JavaScript

We developed a proof-of-concept in JavaScript and tested it
in Google Chrome version 62.0.3202, which allows a Website
to read private memory from the process in which it runs.
The code is illustrated in Listing 1.

On branch-predictor mistraining passes, index is set
(via bit operations) to an in-range value. On the final
iteration, index is set to an out-of-bounds address into
simpleByteArray. We used a variable localJunk to ensure
that operations are not optimized out. The “| 0” operation
converts the value to a 32-bit integer, acting as an optimiza-
tion hint to the JavaScript interpreter. Like other optimized
JavaScript engines, V8 performs just-in-time compilation to
convert JavaScript into machine language. Dummy opera-
tions were placed in the code surrounding Listing 1 to make



1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index % 4096) |0) & (32x1024%x1024-1))0;
4 localdunk "= probeTable[index|0]]0;
5}
Listing 1. Exploiting speculative execution via JavaScript.
1 cmpl rl5, [rbp-0xe0] ; Compare index (rlb) against simpleByteArray.length
2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movqg below
3 REX.W leaq rsi, [rl2+rdxx1] ; Set rsi = rl12 + rdx = addr of first byte in simpleByteArray
4 movzxbl rsi, [rsi+rl5x1] ; Read byte from address rsi+rl5 (= base address + index)
5 shll rsi, 12 ; Multiply rsi by 4096 by shifting left 12 bits
6 andl rsi,Ox1ffffff ; AND reassures JIT that next operation is in-bounds
7 movzxbl rsi, [rsi+r8x1] ; Read from probeTable
8 xorl rsi,rdi ; XOR the read result onto localJdunk
9 REX.W movq rdi,rsi ; Copy localJdunk into rdi

Listing 2. Disassembly of JavaScript example from Listing 1.

simpleByteArray.length be stored in local memory so
that it can be removed from the cache during the attack. See
Listing 2 for the resulting disassembly output from D8.

Asthe c1flush instruction is not accessible from JavaScript,
we use cache eviction instead,' that is, we access other mem-
ory locations in a way such that the target memory locations
are evicted afterward. The leaked results are conveyed via the
cache status of probeTable [nx4096] for n € 0.255, so the
attacker has to evict these 256 cache lines. The length param-
eter (simpleByteArray.length in the JavaScript code and
[ebp-0xe0] in the disassembly) needs to be evicted as well.

JavaScript does not provide access to the rdt scp instruc-
tion, and Chrome intentionally degrades the accuracy of
its high-resolution timer to dissuade timing attacks using
performance.now (). However, the Web Workers feature
of HTML5 makes it simple to create a separate thread that
repeatedly decrements a value in a shared memory loca-
tion.”? This approach yields a high-resolution timer that pro-
vides sufficient resolution.

4.4. Example implementation exploiting eBPF

As a third example of exploiting conditional branches, we
developed a reliable proof-of-concept which leaks kernel
memory from an unmodified Linux kernel without patches
against Spectre by abusing the extended BPF (eBPF) inter-
face. eBPF is a Linux kernel interface based on the Berkeley
Packet Filter (BPF)' that can be used for a variety of pur-
poses, such as filtering packets based on their contents.
eBPF permits unprivileged users to trigger the interpreta-
tion or JIT compilation and subsequent execution of user-
supplied, kernel-verified eBPF bytecode in the context of the
kernel. The basic concept of the attack is similar to the con-
cept of the attack against JavaScript.

In this attack, we use the eBPF code only for the specu-
latively executed code. We use native code in user space to
acquire the covert channel information. This is a difference
to the JavaScript example above, where both functions are
implemented in the scripted language. To speculatively
access secret-dependent locations in user-space memory,
we perform speculative out-of-bounds memory accesses to

an array in kernel memory, with an index large enough that
the user-space memory is accessed instead.
See the full paper for additional details.

5. VARIANT 2: POISONING INDIRECT BRANCHES
In this section, we demonstrate how indirect branches can
be poisoned by an attacker and the resulting misprediction
of indirect branches can be exploited. If the determination
of the destination address of an indirect branch is delayed,
due to a cache miss, speculative execution will often con-
tinue at a location predicted from previous code execution.
In Spectre variant 2, the adversary mistrains the branch
predictor with malicious destinations, such that speculative
execution continues at a location chosen by the adversary.
This is illustrated in Figure 2, where the branch predictor
is (mis-)trained in one context and applies the prediction
in a different context. More specifically, the adversary can
misdirect speculative execution to locations that would
never occur during a legitimate program execution. This
is an extremely powerful means for attackers, for example,
enabling exposure of victim’s memory even in the absence
of an exploitable conditional branch misprediction lever-
aged in Section 4.

Figure 2. The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes its
prediction on the basis of training data from context A, leading

to speculative execution at an attacker-chosen address which
corresponds to the location of the Spectre gadget in the victim’s
address space.

Context A | Context B |

! |
! |
Lol Lo

o)
call [function] P ?call [function]-,

L)

p—

ale]ﬁgads

function A spectre gadget <

Branch
Predictor

function B | legit function
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For a simple example attack, we consider an attacker
seeking to read a victim’s memory, who has control over two
registers when an indirect branch occurs. This commonly
occurs in real-world binaries because functions manipulat-
ing externally received data routinely make function calls
although registers contain values that an attacker controls.
Often these values are ignored by the called function and
instead they are simply pushed onto the stack in the func-
tion prologue and restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget,” that
is, a code fragment whose speculative execution will trans-
fer the victim’s sensitive information into a covert channel.
For this example, a simple and effective gadget would be
formed by two instructions (which do not necessarily need
to be adjacent) where the first adds (or XORs, subtracts, etc.)
the memory location addressed by an attacker-controlled
register R1 onto an attacker-controlled register R2, followed
by any instruction that accesses memory at the address in
R2. In this case, the gadget provides the attacker control (via
R1) over which address to leak and control (via R2) over how
the leaked memory maps to an address which is read by the
second instruction. On the CPUs we tested, the gadget must
reside in memory executable by the victim for the CPU to
perform speculative execution. However, with several mega-
bytes of shared libraries mapped into most processes,® an
attacker has ample space to search for gadgets without even
having to search in the victim’s own code.

The choice of gadget depends on what state is known or
controlled by the adversary, where the information sought
by the adversary resides (e.g., registers, stack, memory,
etc.), the adversary’s ability to control speculative execution,
what instruction sequences are available to form gadgets,
and what channels can leak information from speculative
operations. For example, a cryptographic function that
returns a secret value in a register may become exploitable
if the attacker can simply induce speculative execution at
an instruction that brings memory from the address speci-
fied in the register into the cache. Likewise, although the
example above assumes that the attacker controls two regis-
ters, the attacker’s control over a single register, value on the
stack, or memory value is sufficient for some gadgets.

In many ways, exploitation is similar to return-oriented
programming (ROP),* except that the correctly written soft-
ware is vulnerable, gadgets are limited in their duration
but need not terminate cleanly (because the CPU will even-
tually recognize the speculative error), and gadgets must
exfiltrate data via side channels rather than explicitly. Still,
speculative execution can perform complex sequences of
instructions, such as reading from the stack, performing
arithmetic, branching (including multiple times), and read-
ing memory.

The full paper includes details about branch predictor
behavior and mistraining techniques for a range of pro-
cessors, as well as attack implementations targeting a
Microsoft Windows application and the KVM hypervisor.

6. VARIATIONS
So far, we have demonstrated attacks that leverage changes
in the state of the cache that occur during speculative
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execution. Future processors (or existing processors with
different microcode) may behave differently, for example, if
measures are taken to prevent speculatively executed code
from modifying the cache state. In this section, we examine
potential variants and conclude that virtually any observable
effect of speculatively executed code can potentially lead
to leaks of sensitive information. Although the following
techniques are not needed for the processors we tested, it is
essential to understand potential variations when designing
or evaluating mitigations.

Spectre variant 4. Spectre variant 4 uses speculation in
the store-to-load forwarding logic.” The processor specu-
lates that a load does not depend on the previous store. The
exploitation mechanics are similar tovariant 1 and 2 that we
discussed in detail in this paper.

Evict+Time. The Evict+Time attack® works by measur-
ing the timing of operations that depend on the state of the
cache. This technique can be adapted to use Spectre as fol-
lows. Consider the code:

if (false but mispredicts as true)
read arrayl[R1]
read [R2]

Suppose register R1 contains a secret value. If the spec-
ulatively executed memory read of arrayl [R1] is a cache
hit, then nothing will go on the memory bus, and the read
from [R2] will initiate quickly. If the read of arrayl [R1]
is a cache miss, then the second read may take longer,
resulting in different timing for the victim thread. In
addition, other components in the system that can access
memory (such as other processors) may be able to sense
the presence of activity on the memory bus or other
effects of the memory read. We note that this attack can
work even if speculative execution does not modify the
contents of the cache. All that is required is that the state
of the cache affects the timing of speculatively executed
code or some other property that ultimately becomes vis-
ible to the attacker.

Instruction timing. Spectre vulnerabilities do not nec-
essarily need to involve caches. Instructions whose timing
depends on the values of the operands may leak information
on the operands. In the following example, the multiplier is
occupied by the speculative execution of multiply R1, R2.
The timing of when the multiplier becomes available for
multiply R3, R4 (either for out-of-order execution or after
the misprediction is recognized) could be affected by the
timing of the first multiplication, revealing information
about R1 and R2.

if (false but mispredicts as true)
multiply R1, R2
multiply R3, R4

Contention on the register file. Suppose the CPU has a
register file with a finite number of registers available for
storing checkpoints for speculative execution. In the follow-
ing example, if condition on R1 inthe second “if” is true,
then an extra speculative execution checkpoint will be created



thanif condition on R1 isfalse. If an adversary can detect
this checkpoint, if speculative execution of code in hyper-
threads is reduced due to a shortage of storage, this reveals
information about R1.

if (false but mispredicts as true)
if (condition on R1)
if (condition)

Variations on speculative execution. Even code that con-
tains no conditional branches can potentially be at risk.
For example, consider the case where an attacker wishes to
determine whether R1 contains an attacker-chosen value X
or some other value. The ability to make such determina-
tions is sufficient to break some cryptographic implementa-
tions. The attacker mistrains the branch predictor such that
after an interrupt occurs, the interrupt return mispredicts to
an instruction that reads memory [R1]. The attacker then
chooses X to correspond to a memory address suitable for
Flush+Reload, revealing whether R1 = X. Although the iret
instruction is serializing on Intel CPUs, other processors
may apply branch predictions.

Leveraging arbitrary observable effects. Virtually any
observable effect of speculatively executed code can be lev-
eraged to create the covert channel that leaks sensitive infor-
mation. For example, consider a processor that has been
designed so that speculative reads cannot modify the cache.
When the code here runs, the speculative lookup in array?2
still occurs, and its timing will be affected by the cache state
entering speculative execution. This timing in turn can
affect the depth and timing of subsequent speculative oper-
ations. Thus, by manipulating the state of the cache prior to
speculative execution, an adversary can potentially leverage
virtually any observable effect from speculative execution.

if (x < arrayl size){
y = array2[arrayl[x] = 4096];
// do something detectable when
// speculatively executed

}

The final observable operation could involve virtually
any side channel or covert channel, such as contention for
resources (buses, arithmetic units, etc.) and conventional
side-channel emanations (such as electromagnetic radia-
tion or power consumption).

A more general form of this would be:

if (x < arrayl size) {
y = arrayl[x];
// something using y that is observable
// when speculatively executed

}

7. MITIGATION OPTIONS

Several countermeasures for Spectre attacks have been pro-
posed. Each addresses one or more of the features that the
attack relies upon. We now discuss these countermeasures
and their applicability, effectiveness, and cost.

7.1. Preventing speculative execution

Speculative execution is required for Spectre attacks.
Ensuring that instructions are executed only when the
control flow leading to them is ascertained would prevent
speculative execution and, with it, Spectre attacks. Although
effective as a countermeasure, this would cause a significant
degradation in the performance of the processor.

Although current processors do not appear to have meth-
ods that allow software to disable speculative execution,
such modes could be added in future processors, or poten-
tially be introduced via microcode changes. Still, this solu-
tion is unlikely to provide an immediate fix to the problem.

Alternatively, the software could be modified to use seri-
alizing or speculation blocking instructions that ensure that
instructions following them are not executed speculatively.
For x86, CPU vendors recommend the use of the 1fence
instruction.” The safest approach to protect conditional
branches would be to add such an instruction on the two
outcomes of every conditional branch, but this amounts
to disabling branch prediction and would dramatically
reduce performance. An improved approach is to use static
analysis® to reduce the number of speculation blocking
instructions required, as many code paths do not have the
potential to read and leak out-of-bounds memory. In con-
trast, Microsoft’s C compiler MSVC takes an approach of
defaulting to unprotected code unless the static analyzer
detects a known bad code pattern but, as a result, misses
many vulnerable code patterns.*

The approach requires that all potentially vulnerable soft-
ware is instrumented. Hence, for protection, updated soft-
ware binaries and libraries are required. This could be an
issue for legacy software. In addition, this approach is primar-
ily focused on variant 1, and does not address all variants.

7.2. Preventing access to secret data

Other countermeasures can prevent speculatively executed
code from accessing secret data. One such measure, used by
the Google Chrome Web browser, is to execute each Website
in a separate process.?® Because Spectre attacks only lever-
age the victim’s permissions, an attack such as the one we
performed using JavaScript (cf. Section IV-C) would not be
able to access data from the processes assigned to other
Websites.

WebKit employs two strategies for limiting access to
secret data by speculatively executed code.?! The first strat-
egy replaces array bounds checking with index masking.
Instead of checking that an array index is within the bounds
of the array, WebKit applies a bit mask to the index, ensur-
ing that it is not much bigger than the array size. Although
masking may result in access outside the bounds of the
array, this limits the distance of the bounds violation, pre-
venting the attacker from accessing arbitrary memory. The
second strategy protects access to pointers by xoring them
with a pseudo-random poison value. An adversary who does
not know the poison value cannot use a poisoned pointer
(although various cache attacks could leak the poison value),
and the poison value ensures that mispredictions on the
branch instructions used for type checks will result in point-
ers associated with the type being used for another type.
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7.3. Preventing data from entering covert channels
Future processors could potentially track whether data was
fetched as the result of a speculative operation and, if so,
prevent that data from being used in subsequent operations
that might leak it. However, current processors do not gen-
erally have this capability.

7.4. Limiting data extraction from covert channels

To exfiltrate information from transient instructions,
Spectre attacks use a covert communication channel.
Multiple approaches have been suggested for mitigating
such channels (cf. Ge et al.?). A common approach is to
degrade timers, which may decrease attack performance,
but does not guarantee that attacks are not possible.

7.5. Preventing branch poisoning

To prevent indirect branch poisoning, Intel and AMD
extended the ISA with mechanisms for limiting adversar-
ies’ ability to influence indirect branch speculation.>® The
performance impact varies from a few percent to a factor
of 4 or more, depending on which countermeasures are
employed, how comprehensively they are applied (e.g.,
limited use in the kernel vs. full protection for all pro-
cesses), and the efficiency of the hardware and microcode
implementations.

Google suggests an alternative mechanism for prevent-
ing indirect branch poisoning called retpolines.*® A retpo-
lineisacodesequencethatreplacesindirectbrancheswith
return instructions. The construct further contains code
that makes sure that the return instruction is predicted
to a benign endless loop through the return stack buffer,
although the actual target destination is reached by push-
ing it on the stack and returning to it, that is, using the
ret instruction. When return instructions can be pre-
dicted by other means, the method may be impractical.
Intel issued microcode updates for some processors,
which fall back to the BTB for the prediction, to disable
this fallback mechanism.’

8. CONCLUSION
A fundamental assumption underpinning software secu-
rity techniques is that the processor will faithfully execute
program instructions, such as its safety checks. This
paper presents Spectre attacks, which leverage the fact
that speculative execution violates this assumption. The
techniques we demonstrate are practical, do not require
any software vulnerabilities, and allow adversaries to read
private memory and register contents from other pro-
cesses and security contexts.

Software security fundamentally depends on having
a clear common understanding between hardware and
software developers as to what information CPU imple-
mentations are (and are not) permitted to expose from
computations. As a result, although the countermea-
sures described in the previous section may help limit
practical exploits in the short term, they are only stop-
gap measures as there is typically formal architectural
assurance as to whether any specific code construction
is safe across today’s processors—much less future
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designs. As a result, we believe that long-term solutions
will require fundamentally changing instruction set
architectures.

More broadly, there are trade-offs between security
and performance. The vulnerabilities in this paper, as
well as many others, arise from a long-standing focus in
the technology industry on maximizing performance. As
a result, processors, compilers, device drivers, operating
systems, and numerous other critical components have
evolved compounding layers of complex optimizations
that introduce security risks. As the costs of insecurity
rise, these design choices need to be revisited. In many
cases, alternative implementations optimized for security
will be required.
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