
Scalable and Secure Row-Swap: Efficient and Safe
Row Hammer Mitigation in Memory Systems

Jeonghyun Woo
University of British Columbia

jhwoo36@ece.ubc.ca

Gururaj Saileshwar∗
NVIDIA Research

gsaileshwar@nvidia.com

Prashant J. Nair
University of British Columbia

prashantnair@ece.ubc.ca

Abstract—As Dynamic Random Access Memories (DRAM)
scale, they are becoming increasingly susceptible to Row Hammer.
By rapidly activating rows of DRAM cells (aggressor rows),
attackers can exploit inter-cell interference through Row Ham-
mer to flip bits in neighboring rows (victim rows). A recent
work, called Randomized Row-Swap (RRS), proposed proactively
swapping aggressor rows with randomly selected rows before an
aggressor row can cause Row Hammer.

Our paper observes that RRS is neither secure nor scalable.
We first propose the ‘Juggernaut attack pattern’ that breaks RRS
in under 1 day. Juggernaut exploits the fact that the mitigative
action of RRS, a swap operation, can itself induce additional
target row activations, defeating such a defense. Second, this
paper proposes a new defense Secure Row-Swap mechanism
that avoids the additional activations from swap (and unswap)
operations and protects against Juggernaut. Furthermore, this
paper extends Secure Row-Swap with attack detection to defend
against even future attacks. While this provides better security, it
also allows for securely reducing the frequency of swaps, thereby
enabling Scalable and Secure Row-Swap. The Scalable and Secure
Row-Swap mechanism provides years of Row Hammer protection
with 3.3× lower storage overheads as compared to the RRS
design. It incurs only a 0.7% slowdown as compared to a not-
secure baseline for a Row Hammer threshold of 1200.

I. INTRODUCTION

Technology scaling has been a double-edged sword [38].
While it has enabled high-density Dynamic Random Access
Memory (DRAM) chips, it has also uncovered security
vulnerabilities. A key vulnerability called Row Hammer
(RH) [20, 24, 30, 34] allows malicious processes to rapidly
activate rows (aggressors) of DRAM cells and flip bits in their
immediate neighboring (victim) rows [4, 11, 15, 17, 18, 27, 54].

There has been an arms race between RH attacks and
defenses. To prevent RH, prior proposals tend to proactively
refresh the contents of victim rows. This is called victim-
focused mitigation (VFM) [15, 20, 24, 28, 44]. However,
new attack patterns, such as the half-double attack from
Google [16, 25], have shown that they could trigger RH even in
distance-of-2 (or more) rows away from the aggressor row by
exploiting the mitigative action of VFM. To overcome this, the
state-of-the-art solution, Randomized Row-Swap (RRS) [51],
uses an aggressor-focused mitigation mechanism. To this end,
RRS swaps aggressor rows with random rows. Our paper finds
that RRS is not secure. We show that, akin to the half-double
attack, one can create a new access pattern by exploiting the
mitigating action of RRS (the act of swapping rows) to break
RRS. As a defense, our paper develops solutions that enable
future-proof, secure, and scalable row swaps.

∗This work was partially performed when Gururaj Saileshwar was affiliated
with Georgia Institute of Technology.

Malicious processes must activate their aggressor rows above
a certain threshold to trigger RH. This threshold is called the
RH threshold (TRH). The RH threshold must be crossed on
a single row within an epoch of a refresh window (typically
64ms) to cause bit-flips within victim rows. To prevent this,
RRS proactively swaps aggressor rows with randomly chosen
rows before they reach TRH . The number of activations at
which a row is swapped is denoted by TS , and the ratio of
TRH to TS (i.e., TRH

TS
) is called the ‘swap rate’. The choice

of swap rate has security and performance implications.
For security, the swap rate is chosen such that no row in

memory can reach the TRH number of activations within an
epoch under years of attack. As shown in Figure 1, for a 32GB
16-bank DDR4-3200 system with a TRH of 4800 and a swap
rate of 6 (default in RRS), it would take more than 103 days
(∼3 years) for an untargeted attack to succeed (as studied in
RRS). A higher swap rate is even better for security, as it
increases the attack time by increasing the adversarial effort
of finding the attacked rows repeatedly. So, our first goal is to
investigate if a targeted attack pattern can break such defenses
in under 1 day. Our second goal is to develop a secure defense
against not just the Juggernaut attack pattern but even future
unknown attack patterns.

For performance, a lower swap rate is better as this reduces
the memory bandwidth and latency overheads. At a TRH of
4800 and a swap rate of 6, the system incurs an average
slowdown of 0.3% due to swaps. But as TRH drops in
future generations (it has dropped 29× in 8 years [21, 24]),
swaps will be needed after fewer activations, resulting in
increased slowdowns and higher storage overheads to track
more swapped rows. So, our third goal is to enable a low-cost
swap mechanism that securely tolerates lower swap rates to
minimize performance and storage overheads.

(TRH)

GOAL

Fig. 1. (a) Time-to-break (in days) Randomized Row-Swap (RRS) with varying
Swap Rate and Row Hammer Thresholds (TRH). Our goal is to break RRS
in under 1 day. (b) The normalized performance of RRS as values of TRH

vary. Our goal is to minimize the performance overheads of RRS at lower
values of TRH and enhance security; thereby making it scalable and secure.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE 374

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
20

23
 IE

EE
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

H
ig

h-
Pe

rf
or

m
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A
) |

 9
78

-1
-6

65
4-

76
52

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

PC
A

56
54

6.
20

23
.1

00
70

99
9

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Key Observation 1 – Security: The act of swapping rows,
called the swap operation, itself incurs additional row acti-
vations to read and write the original row. These additional
activations can be used to bias any target row towards higher
row activation counts. In the case of RRS, which picks random
rows for swaps, let us assume that the internal chip address of
the aggressor row is Rowaggr and that of the randomly chosen
row is Rowrand. A swap requires separately activating both
Rowaggr and Rowrand and copying each row to the other’s
locations. Thus, if we repeatedly cause Rowaggr to be swapped
to new locations, then we can increase Rowaggr’s activation
count each time due to the mitigating action (i.e., row swap) 1.

After a swap, if we continue to activate Rowaggr for other TS

activations, the memory controller must first unswap Rowaggr

before swapping it again with a newly chosen random location.
The unswap operation itself also performs an additional row
activation for Rowaggr. Thus, we can develop a targeted attack
that uses a combination of unswap-swap operations on a single
Rowaggr to surpass the RH threshold (TRH) within 64ms. For
instance, even with 1 extra activation per unswap-swap, up to
1700 activations are possible for a row within 64ms, purely
due to unswap-swap operations. This can significantly assist
the demand activations, made to a row during an attack, to
cross a TRH of 4800. Such an attack, called the Juggernaut
attack, can break RRS in a significantly lower time (<1 day).

To defend against such attacks (and even future attacks), we
propose Secure Row-Swap (SRS). SRS avoids unswap-swap
operations from biasing row activations and thereby protects
against the Juggernaut attack. Moreover, we incorporate attack
detection in SRS to detect future attack patterns. As any
successful attack requires swapping a single row multiple times,
we deploy swap counters for mitigated rows in SRS to flag
potential attacks. Thus, SRS enables attack-detection capability
for protection against even future attacks.

Key Observation 2 – Performance: At lower RH thresholds
(TRH ≤ 4800), even benign workloads tend to have frequently
activated rows [30], requiring frequent swaps that can cause
a slowdown. While reducing the swap rate (e.g., from 6 to 3)
can reduce overheads and improve performance, this results in
more frequent outlier rows that cross 3 swaps in an epoch (e.g.,
once every few hours), causing potential security breaches.
However, our swap-count-based attack detection mechanism
can detect outlier rows, and then additional activations can be
prevented by simply pinning these outliers in the Last Level
Cache (LLC) for the rest of the refresh period (using <6% of
the LLC). This enables extending SRS into a scalable design,
called Scale-SRS, that can employ a swap rate of 3 at lower
values of TRH , reducing the performance and storage costs.

Contributions: This paper makes the following contributions.
1) We develop a new targeted attack pattern, Juggernaut, that

breaks RRS by exploiting the mitigative action of row swaps
(and unswap operations) in under 1 day.

1In spirit, this attack is inspired by the half-double attack against victim-
focused mitigation. The half-double attack uses the mitigating act of refreshing
neighboring rows to induce extra activations and trigger RH in farther rows.

2) We propose Secure Row-Swap (SRS), an RH mitigation
that prevents unswap-swap operations and defends against
the Juggernaut attack pattern. Moreover, SRS also includes
attack detection to detect future attack patterns against row-
swap-based RH defenses.

3) We propose Scale-SRS, a scalable solution that can securely
reduce the swap rate by combining outlier-based attack
detection and LLC-pinning of outlier rows as mitigation.
This improves the performance, storage costs, and scalability
of row-swap-based RH defenses at lower TRH values.

We show that Scale-SRS protects against the Juggernaut
under reduced swap rates. Compared to a baseline system
that does not protect against RH, Scale-SRS incurs an average
slowdown of only 0.7%, even at the TRH of 1200. In a similar
setup, we show that RRS can be broken in <1 day (regardless
of the value of the swap rate), incurs a slowdown of >4%,
and has 3.3× higher on-chip storage overheads.

II. BACKGROUND AND MOTIVATION

A. Threat Model

We assume a target system in which an Operating System
(OS) provides process isolation using virtual memory and page
tables. The memory system is composed of DRAM modules
that are vulnerable to Row Hammer (RH). The attacker(s) run
a malicious program in the user privilege and activate DRAM
rows rapidly. These rows, called the aggressor rows, can flip
bits (by leaking charge) in their neighboring victim rows.

We assume that an attack succeeds if an aggressor row
can trigger a bit-flip (i.e., when it incurs more activations
than the RH Threshold (TRH) within a refresh interval of
64ms). Similar to prior work, to showcase the effectiveness of
our technique, we use a TRH value of 4800 [51] (also lower
TRH values to show scalability). It is the lowest demonstrated
TRH value for any attack pattern, including Single-Sided [24],
Double-Sided [54], or Half-Double [16] attack patterns.

B. Memory Organization and Timing Parameters

A DRAM-based memory system consists of independent
channels that are managed by individual memory controllers.
Each channel consists of ranks which are composed of several
banks that operate in parallel over a common memory bus.
Each bank contains rows of DRAM cells that are accessed via
a row-buffer. The memory controller issues an activate (ACT)
command to bring data into the row-buffer. To access another
row, the memory controller must replace the existing data in
the row buffer by issuing the precharge (PRE) command and
subsequently issuing another ACT command.

Each ACT command leaks a small fraction of the charge
within the DRAM cells of neighboring rows. DRAM cells also
leak charge naturally and employ refresh operations (typically
at 64ms intervals) to maintain data integrity. The time between
consecutive ACT commands into the same bank is determined
by the parameter tRC (Row Cycle Time). tRC is approximately
45ns for DDR4 systems. Thus, if we discount the time spent
on refresh, a bank can experience up to 1.36 million activations
(ACTmax) in the 64ms refresh window.

375Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

C. Row Hammer (RH) Thresholds Over Time

The attacker(s) can use RH to flip bits in victim rows by
activating an aggressor row above the RH Threshold (TRH). To
make matters worse, the value of TRH has reduced dramatically
due to technology scaling. Table I shows the demonstrated
values of TRH across different DRAM generations. The table
uses old and new to distinguish different versions of the same
standard that span multiple technology nodes. The value of
TRH has reduced by nearly 29× in the last 8 years – specifically
from 139K [24] to 4.8K [21].

TABLE I
ROW HAMMER THRESHOLD – FROM 2014 TO 2021

DRAM Generation RH-Threshold
DDR3 (old) 139K [24]
DDR3 (new) 22.4K [21]
DDR4 (old) 17.5K [21]
DDR4 (new) 10K [21]

LPDDR4 (old) 16.8K [21]
LPDDR4 (new) 4.8K [21] - 9K [16]

In practice, attackers have used RH to flip bits in the page
table and cause privilege escalation [11, 15, 17, 54]. Attackers
have also used RH to read confidential data [27].

D. Tracking Rows

A key area of research has focused on developing efficient
designs to track aggressor rows [28, 44, 56]. Tracking aggressor
rows helps issue timely mitigation. The row trackers could be
placed within DRAM chips or memory controllers [15, 23, 45].
As the tracking mechanism is orthogonal to our mitigation
mechanism, it is not our main focus. We evaluate our design
with the state-of-the-art trackers, Hydra [45] and the Misra-
Gries tracker (used in RRS [51] and Graphene [44]), although
our mitigation is compatible with any aggressor tracker.

E. Victim-Focused Mitigation

The victim-focused mitigation (VFM) refreshes the victim
rows before the aggressor row receives more than TRH

activations [20, 23, 24, 28, 43, 56]. The number of victim rows
near an aggressor row is determined by the blast radius [29]. If
the blast radius is n (where n > 0), we would need to refresh
n rows on both sides of an aggressor row.

VFM tends to have two key concerns. First, VFM mecha-
nisms implemented in the memory controller need to know
the internal chip mappings of DRAM rows, specifically the
set of neighboring rows for any row. Unfortunately, this
proprietary internal row mapping information is not exposed
to the memory controller [23]. Alternatively, VFM methods
can be implemented inside DRAM chips, but this requires an
additional interface to coordinate with the memory controller.
Second, as shown by the recent half-double attack [16, 25],
refreshing n victim rows can itself cause RH on the n+1th

victim row. To overcome this, recent proposals suggest using
aggressor-focused mitigation. These proposals either blacklist
the aggressor rows or break their spatial correlation with victim
rows by displacing the aggressor rows [51, 52, 59].

F. Aggressor-Focused Mitigation: Randomized Row-Swap

Randomized Row-Swap (RRS) [51] is the state-of-the-
art aggressor-focused mitigation mechanism. RRS uses the
memory controller to swap aggressor rows with randomly
selected rows. The activation threshold for initiating a swap
is typically much lower than TRH and is denoted by TS . The
fraction, TRH

TS
, is called the swap rate. Typically, the swap rate

is chosen such that RRS can tolerate several years of attacks.
For instance, for a DRAM bank with 128K rows with a TRH

of 4800, RRS, with a swap rate of 6, can tolerate more than
3 years of attacks by an adversary continuously hammering
randomly selected rows. This is because it is challenging for
the attacker to guess the location of the aggressor rows as they
are constantly shuffled. Since swaps impact both the security
and performance of RRS, we dive deeper into its design.

Swaps and Unswaps in RRS: RRS swaps a candidate row
each time it crosses TS activations with a randomly chosen
row (swap-partner) within the bank. If the row needs to be
swapped again in the same refresh window (due to TS more
activations), the row and its current swap-partner need to be
unswapped before they may be swapped with new partners.

1. Security Implication: Each mitigative action of swap on an
aggressor row itself causes one additional latent activation at
the original physical location of the aggressor row, which may
be exploited by a new attack. To see why this occurs, consider
the five steps in a swap operation, as shown in Figure 2:

1) First, the aggressor row, Rowaggr (activated by the attacker),
is read out to the memory controller, as shown by 1 .

2) Then, the randomly chosen row, denoted as Rowrand, is
activated, and this closes row Rowaggr, as shown by 2 .

3) The original data of Rowrand is read out, as shown by 3 .
4) The data of Rowaggr is then written into the physical

location of Rowrand, and that row is closed, as per 4 .
5) Finally, the original location of Rowaggr is activated, and

the data contents of Rowrand are written into this location.
This causes a latent activation, as shown by 5 .

Memory
Controller

Read

Rowaggr

Bank

Memory
Controller

Rowaggr

Row Buffer

Read
Rowaggr Rowrand

Write
Rowaggr

Activate
and

Close

Memory
Controller

Rowrand
Write
Rowrand

Latent
Activation

1 3

2

4 5

5
Random

Aggressor

Fig. 2. The latent activation on the aggressor row caused by a swap operation.
This is primarily due to the fact that it takes five steps to activate two different
rows (Rowaggr and Rowrand) and thereby exchange their data contents.

Thereafter, if any one of the pairs of swapped rows continues
to receive TS activations, RRS would first unswap both these
rows and then swap the aggressor row again to a new location.

376Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

All subsequent swaps for the aggressor row, within the
refresh window, would be accompanied by an unswap, and
together the unswap-swap operations cause up to two latent
activations at the aggressor’s original physical row. As shown
in Figure 3, the first latent activation comes during the unswap,
which copies back the swapped aggressor row to its original
location (as shown in 1). Then the swap of the aggressor row
with the new location (Rownext-rand) also causes an additional
activation to the aggressor’s original location (as shown in 2).
Both steps incur extra activations because the row movements
happen within the same bank, share a single row buffer, and
require row-close and row-activate after each movement.

Bank

Latent
Activation

Rowaggr

Rowrand

Unswap

1

Rowrand

Rowaggr

Swap

 Rowaggr

Rownext-rand

Latent
Activation

2

Rowaggr

Rownext-rand

Fig. 3. Latent activations on the aggressor row caused by an unswap followed
by a swap operation. These operations result in two additional activations.

Notably, if an attacker continuously activates the physical
address of Rowaggr, its latent activations increases. In such a
scenario, RRS issues mitigations that first cause one swap and
then ‘N ’ unswap-swap operations. Thus, the physical location
originally storing Rowaggr would have incurred up to 2N + 1
latent activations. This may be exploited by a new targeted
attack to increase the activations for a location by exploiting
latent activations from the mitigative operations.

2. Performance Implications from Swaps and Unswaps:
Unswap operations coupled with swaps are essential to ensure
low-performance costs. This is because if an aggressor row is
continuously swapped without first unswapping to its original
location, it creates a chain of swapped rows that can introduce
a large latency spike to unravel towards the end of a refresh
interval. Figure 4 shows that if RRS does not employ immediate
unswaps, it can cause an additional 3% - 7% slowdown on
average compared to a design with immediate unswaps.

Fig. 4. The normalized performance of RRS, with and without immediate
unswap operations, with respect to a baseline that does not mitigate against
Row Hammer (RH). On average, not employing immediate unswap operations
causes an additional slowdown of 3% to 7% at any given TRH .

Consider a scenario in which RowA is swapped with RowB .
If RowA is continuously activated, it would need to be swapped
again. Without the unswap, the new location containing RowA

is now directly swapped with RowC , and RowA is now in
place of RowC , while RowC is in place of RowB , and so on.
At the end of the refresh interval, all the swapped rows (RowA,
RowB , RowC , . . .) need to be placed back into their original
locations. In practice, even one aggressor row can displace
1000s of random rows as it is swapped. Placing these random
rows back together at the end of an epoch can cause a system
to freeze up under hammering access patterns. Thus, designing
a practical row swap mitigation without unswaps is non-trivial.

In the next section, we demonstrate how the latent activations
of unswap-swaps can be exploited to break the defense and how
a secure defense might be designed without unswap-swaps.

III. JUGGERNAUT ATTACK PATTERN

A. Intuition and Overview

The default attack studied in RRS employs a random-
guess strategy, where the attacker continuously picks random
aggressor rows to activate and makes TS activations on it before
it gets swapped. Eventually, the attacker hopes to repeatedly
activate a single chip address by repeatedly guessing which
row currently maps to it. For an RH threshold (TRH) of 4800
and TS of 800, the attacker would need to correctly guess
the mapping 4800

800 = 6 times – essentially the swap rate. This
attack pattern exploits the birthday paradox and takes years to
break RRS. Rather than using only the birthday paradox attack
pattern, we develop a more effective attack pattern, Juggernaut,
that uses both latent activations and random guesses.

Fig. 5. The high-level flow of the Juggernaut attack pattern. It consists of
two parts. The first part biases an aggressor row with latent activations. The
second part employs a random-guess attack.

Figure 5 shows the high-level flow of Juggernaut (with
latent activations and random guesses). Juggernaut uses latent
activations to bias activations to a single chip address and thus
reduces the adversarial effort for random guesses, as follows:
1) First, we use latent activations to bias any one aggressor row

towards a higher activation count. For instance, for a TRH

of 4800, if the aggressor row incurs 800 unswap-swaps (N),
then its original chip location would have incurred 1601

377Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

(2N + 1) latent activations2 (as described in Section II-F).
Additionally, it would have incurred TS (800) activations
before its initial swap, and in total, 2401 activations.

2) Subsequently, a random-guess attack only needs to land
TS (800) activations 3 times on the aggressor row for it to
cross TRH (4800) activations. As 3 is much lower than the
swap rate (6), it enables us to break RRS quickly.

B. Analytical Model of Juggernaut Attack Pattern

We model our Juggernaut attack pattern statistically to
better understand its impact. Table II shows the parameters
used in its analysis. We also assume a memory controller with
a closed-page policy similar to prior work [32].

TABLE II
KEY PARAMETERS USED IN THE ANALYTICAL MODEL

Parameter Definition
N Number of rounds of repeated unswap-swaps
L Latent activations per round (up to 2)
G Number of Random Guess
R Number of Rows per Bank

tRC Row Cycle Time
treswap Unswap-swap Latency = Reswap latency in RRS
tswap Swap Latency

Goal: For a successful RH attack, any aggressor row
(Rowaggr) should incur ≥ TRH activations (ACTs).

1. Biasing an Aggressor Row with Latent Activations
We consider N attack rounds. Each round increases the latent
activations of Rowaggr by L – as shown in footnote 2, L is 1.5.
Furthermore, if the attack is timed precisely, an attacker can
target a row 2× TS − 1 times before encountering an initial
mitigative action (i.e., swap operation) that causes one latent
activation. This exploits the fact that the refresh operations
may not be synchronized with the reset of trackers [43, 45].
Equation 1 shows the number of activations in the aggressor
row (ACTaggr) after 2× TS initial activations, composed of
2× TS − 1 direct activations and one latent activation, and N
rounds of latent activations (L).

ACTaggr = 2× TS + (L×N) (1)

Equation 2 shows the additional activations required for
Rowaggr to cause a bit flip (ACTleft) after N rounds.

ACTleft = TRH −ACTaggr (2)

2. Employing the Random-Guess Attack
To further activate Rowaggr, as the attacker does not know its
original location, they can repeatedly choose a random row
(Rowrand) and activate it TS times. Some of these choices
could land on the original location of Rowaggr. The number of
swaps (k) needed for this attack is denoted with Equation 3.

k = dACTleft
TS

e (3)

2Although a naive unswap-swap operation causes two latent activations, it
is possible to optimize the unswap-swap using swap buffers in RRS (to be
described in Section IV). In this case, depending on which row is selected
first, a row gets either one or two additional latent activations. Thus, in this
paper, we take an average of 1.5 latent activations per attack round.

tRC (45ns) is the minimum delay between activations. Let
us assume a 64ms refresh interval (epoch). A DRAM bank
performs 8192 refresh operations during an epoch, and each
operation takes tRFC (350ns). Thus, only the remaining time
the attacker can use (tactual) is described by Equation 4.

tactual = 64ms− tRFC × 8192 (4)

In addition, the attacker has N attack rounds (taggr) to bias
the target aggressor row towards a higher activation count. As
each attack round incurs TS activations to force an unswap-
swap operation, with each unswap-swap operation incurring
treswap (5.4µs) latency3, taggr can be expressed by Equation 5.

taggr = ((TS − 1)× tRC + treswap)×N (5)

The time the attacker spends to cause an initial swap should
also be considered. As the attacker could generate 2× TS − 1
activations until to cause an initial swap with tswap (2.7µs)
latency, the total time left (tleft) for employing the Random-
Guess attack is denoted by Equation 6.

tleft = tactual − taggr − (tRC × (2× TS − 1) + tswap) (6)

The total number of possible random guesses (G) within a
refresh interval (epoch) is calculated using Equation 7. Each
randomly chosen row (Rowrand) is activated TS times. These
rows only incur the initial swap (tswap) latency. This is because
most of these rows are picked only once.

G =
tleft

tRC × (TS − 1) + tswap
(7)

Assuming a bank with R (128K) rows, a row has a
probability of p = 1

R of being selected. Thus, the probability
(pk,TS

) of a row having been selected k times within G random
guesses is described by Equation 8.

pk,TS
= GCk × pk × (1− p)(G−k) (8)

Since we only have a single target row, the expected number
of iterations (ATiter) and the time (ATtime) for a successful
attack are represented by using Equation 9 and Equation 10.

ATiter =
1

pk,TS

(9)

ATtime = 64ms×ATiter (10)

C. Juggernaut: Determining the Attack Rounds
Figure 6 shows the time-to-break RRS with Juggernaut for

different RH thresholds (TRH) and varying rounds of attack. We
also perform event-driven Monte Carlo simulations to validate
our analytical model [40, 47]. As shown in Figure 6, the results
with 100,000 iterations of our Monte Carlo simulations closely
match the values from our analytical model.

For a TRH of 4800, even after using a TS of 800 (swap rate
of 6), Juggernaut takes only 4 hours to break RRS. In contrast,
the naive attack pattern using only the birthday-paradox attack
(used in RRS) takes >3 years to cause RH with TS of 800.

3Note that, the Row Indirection Table (RIT) in RRS [51] evicts entries of the
previous epoch before the swap or unswap-swap operations (to be described
in Section IV). To enable this, the attacker can fill RIT after the first refresh
interval (epoch).

378Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Time-to-break RRS [51] with Juggernaut with varying attack rounds -
both analytical and experimental results are shown. This analysis uses a swap
rate of 6 for RRS. Juggernaut can break RRS in under 4 hours.

It is noteworthy to observe periodic ‘steep cliffs’ in the time-
to-break. This is because, as shown in Equation 3, the value
of k (new swap rate) is an integer. Thus, gradually varying the
attack rounds can change the value of k from one integer value
to another – which is manifested as a cliff in the time-to-break.
Figure 7 shows how the number of guesses required to break
RRS (k) varies with attack rounds. As we increase the attack
rounds, the attacker only needs fewer guesses. At a TRH of
4800, if the attacker uses ≤ 500 attack rounds, they would
need to land at the original location of the aggressor row at
least 4 times. In contrast, if we increase the attack rounds
(say ≥ 1100), the attacker needs to guess the original location
only twice. Also, within the same required number of correct
random guesses (k), we see that the time-to-break increases
as the attack rounds increase, as shown in Figure 6. This is
because a larger number of attack rounds decreases the number
of guesses (G) in Equation 7.

Fig. 7. The number of correct guesses required as the attack rounds vary. As
the attack rounds increase, the attacker needs fewer guesses.

Hence, we pick the number of attack rounds (N) such that
it minimizes the value of k, while also maximizing the number
of guesses (G). For instance, at a TRH of 4800, selecting N
as 1100 shows the best attack performance – breaking RRS in
under 4 hours. It is noteworthy to mention that, as shown in
Figure 7, Juggernaut can break RRS in just 1 refresh period
(64ms) using only the latent activations (unswap-swaps) at

lower TRH values (e.g., 2400 and 1200). To make matters
worse, the TRH value is highly likely to drop further due to
the DRAM technology scaling – TRH has already dropped by
29× from 2014 to 2022. Thus, it is vital to develop a low-cost
protection technique not only against the Juggernaut attack but
also other unknown attack patterns.

We also analyze a multiple-bank attack, where the attacker
targets multiple banks instead of a single bank. However, such
an approach considerably reduces the attack effectiveness. This
is because it significantly decreases the number of possible
activations in one refresh interval due to bank-to-bank activation
delays and row migration latencies [51]. For instance, at a TRH

of 4800 with a swap rate of 6, targeting all (16) banks in a
channel increases the attack time from 4 hours to 9.9 years.
Thus, we only focus on a single bank attack.

IV. MITIGATING JUGGERNAUT WITH SECURE ROW-SWAP

A. Overview and Intuition

Secure Row-Swap (SRS) leverages the observation that latent
row activations are due to the subsequent unswap and swap
(unswap-swap) operations. As latent activations are key to
the success of Juggernaut, SRS prevents latent activations by
avoiding unswap-swap operations.

SRS observes that unswap-swap operations create pairs of
tuples of row mappings. This implies that if RowA maps to
RowX , then RowX also maps to RowA. The pairs of tuples
of mappings enable RRS to immediately unswap these rows.

Unlike RRS, SRS manages row mappings such that it can
only employ the swap operation. For instance, in SRS, if
RowA is repeatedly activated TS times, it will perform a swap
operation by choosing a random row (say RowZ), thereby
destroying the original tuple pair. SRS is designed to lazily
unswap rows (across epochs) into their original locations by
using a small per-bank place-back buffer. The lazy unswap
operations help mitigate performance overheads.

B. Row Indirection Table

The Row Indirection Table (RIT) tracks row remappings in
RRS. SRS also uses a modified RIT. RIT is constructed as a
Collision Avoidance Table (CAT) [50]. The total number of
entries in RIT (RITentries) depends on TS and the maximum
number of activations (ACTmax) in a refresh interval (epoch).
Additionally, the CAT structure is over-provisioned to prevent
collision-based attacks [50, 51]. Furthermore, RRS stores RIT
entries as tuples to enable efficient unswap-swap operations.

For instance, if RowA and RowB are swapped, the RIT will
have the tuples < A,B > and < B,A >. If either RowA or
RowB gets additional TS activations, both rows are unswapped
and swapped. Assuming RowA is swapped with RowC and
RowB is swapped with RowD, then the RIT will now have
the tuples < A,C >, < C,A >, < B,D >, and < D,B >.

A lock bit is set for both tuple entries when they are brought
into RIT. The lock bits are reset at the end of the epoch. RIT
randomly evicts tuples from the previous epoch to insert new
tuples. RIT uses lock bits to identify if the tuples are indeed
from the previous epoch.

379Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. An overview of the place-back operation and place-back buffer for enabling Secure Row-Swap (SRS). SRS does not require tuples of row addresses in
RIT. The place-back buffer helps lazily store the rows that are displaced from the original location.

C. SRS: Swap-Only Row Indirection

SRS splits the RIT into two equal parts, namely, the real part
and the mirrored part. Cumulatively, they have the same size
as the RIT from RRS and retain the properties of CAT. The
original mappings are stored in the real part, and the reverse
mappings are stored in the mirrored part of the RIT.

1. Initial Swap: Let us assume that RowA swaps with RowB .
The original RIT now contains the tuples < A,B > and
< B,A >. The mirrored RIT contains the tuples < B,A >
(for < A,B >) and < A,B > (for < B,A >).

2. Subsequent Swaps: Thereafter, if RowA receives TS

activations again, then RowA is simply swapped again – without
unswapping. Let us assume RowA now swaps with RowC .
The < A,B > entry in the original RIT is now updated to
< A,C >. Additionally, as RowC is now placed in the original
location of RowB , a new < C,B > is also added. However,
the original RIT still maintains the valid entry < B,A >.

The mirrored RIT is also updated with the reverse mappings
of the entries in real RIT. Therefore, the mirrored RIT now
contains < C,A >, < A,B >, and < B,C >. Figure 9 shows
these row mappings. A key difference between SRS and RRS
is that the RIT tuples in SRS do not have fixed pairs. As there
are no unswap operations, there is no latent row activation on
the original location of the swapped rows.

Fig. 9. The RIT (real and mirrored) provides indirections to the rows involved
in the swap operations in SRS. The tuples in SRS do not have fixed pairs.

D. SRS: Lazy Evictions and the Place-Back Buffer

SRS employs lazy evictions of RIT entries from the previous
epoch. These lazy evictions occur periodically in the current
epoch. This design serves two purposes. First, the lazy evictions
create space in the RIT for new entries for the next epoch.

Second, due to their lazy nature, these evictions mitigate latency
spikes as they are spread across the entire epoch.

SRS uses a per-bank ‘place-back’ buffer that holds the
contents of the rows that are being evicted. Consider a scenario
where RIT is performing lazy evictions for the entries of
the previous epoch. If the RIT has 1700 valid entries from
the previous epoch, each valid entry will be lazily evicted
periodically at the rate of EpochTime

1700 (i.e., 64ms
1700). Note that,

similar to RRS, the RIT is designed as a CAT. Thus, it can never
be fully occupied and is resilient to conflict-based attacks.

As shown in Figure 8, let us assume that the RIT contains
mappings for RowA, RowB , and RowC . If RowA is lazily
evicted from the RIT, as shown by 1 , it will be first moved
into the swap-buffers (already present in the original design of
RRS [51]), as shown by 1.1. Then, RowB is copied into the
place-back buffer. This is shown by 1.2. RowA then moved
to its original location, as shown by 1.3. As the last step for
the first place-back operation, the RIT invalidates the entries
for RowA and updates the physical location of RowB in the
real part as the place-back buffer This is shown by 1.4.

The next place-back operation moves RowB into its original
location, as shown by 2 . Similar to the first place-back
operation, as shown by 2.1, it first moves the row (RowC) in its
original location into the swap buffer. The RIT invalidates the
entries for RowC , as shown by 2.2. Now, RowB is moved into
its original location, as shown by 2.3. The RIT invalidates the
entry for RowB , as shown by 2.4. Finally, RowC is migrated to
its original location, and the lazy eviction process is completed.
This is shown by 2.5.

E. Security Analysis

We quantitatively analyze the security of SRS against the
Juggernaut attack pattern.

Goal: For a system with Secure Row-Swap (SRS), create a
successful RH attack by causing any specific aggressor row
(Rowaggr) to incur ≥ TRH activations (ACTs).

As illustrated in Section III, Juggernaut is composed of two
parts. First, the attacker would attempt to bias any one aggressor
row towards higher activation counts during N attack rounds.
However, since SRS employs the swap-only row indirection,

380Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

there are no additional latent activations on the original location
of the aggressor row in each round. Thus, the original location
incurs only 1 latent activation (ACT) during the initial swap
operation of the aggressor row (Rowaggr). This is denoted by
Equation 11.

ACTaggr = 2× TS (11)

Since Rowaggr already has received ACTaggr activations,
the additional activations needed to cause this row to incur
Row Hammer (ACTleft) are represented in Equation 12.

ACTleft = TRH −ACTaggr (12)

Thereafter, the attacker uses the random-guess attack to pick
random rows and activate them TS times. We explained this
process in detail in Section III-B. The time for a successful
attack can be obtained by plugging Equation 12 into Equation 3.

Fig. 10. Time-to-break SRS using the Juggernaut attack pattern. For TRH

of 4800, even with a swap rate of 6, SRS has a time-to-break of > 2 years
while under continuous attack. In contrast, RRS can be broken in 4 hours.

Figure 10 shows the time-to-break SRS and RRS using
Juggernaut as we increase the swap rate and vary TRH values.
For a TRH of 4800, even with a swap rate of 6, SRS provides
robust security for >2 years against the Juggernaut attack
pattern. SRS is more robust at higher swap rates. Unfortunately,
even at increased swap rates, RRS is highly vulnerable to the
Juggernaut attack pattern.

F. Future-Proofing Security by Tracking Swap Counts

To protect against any unknown future attack patterns, we
future-proof SRS by adding a per-row swap-tracking counter.
We reserve a small portion of the main memory to store these
counters. Additionally, we also add a 19-bit on-chip register
in the memory controller to count epochs. Similar to prior
work, a refresh interval is divided into two epochs [44, 45].
Each counter is composed of two parts. The first part stores
an epoch-id. The second part stores the cumulative activation
count when a swap occurs – including any latent activations.

Figure 11 shows this design. Let us assume that a counter
with 19 bits of epoch-id and 13 bits of activation count.
Therefore, it can count up to 8192 activations per row (including
latent activations) per epoch. The respective counter for a
row is read before a swap operation. If the on-chip epoch
register is different from the 19-bit epoch-id, then it indicates a
different epoch window. In this case, the activation counts for
that row are reset. However, if the epoch-id and the on-chip

Fig. 11. A memory system with per-row swap-tracking counter. The memory
controller stores an epoch register. The main memory reserves 0.05% of its
space to store a per-row tracking counter. The respective counter for a row is
read and updated before each swap operation.

epoch register have the same value, then activation counts are
updated with TS activations along with any additional latent
activation count. Once the on-chip epoch register shows all ‘1s’,
it immediately resets all the counters. This involves reading
64 counter rows every 219 epochs (each epoch is 32ms) –
incurring a latency of 41µs every 4.6 hours.

In terms of storage, we need only one 32-bit counter per
DRAM row. Assuming we have 128K rows per bank, we would
need to provision 512KB of space per bank. This represents
0.05% of the total DRAM capacity. These 512KB of counters
are stored across sixty-four 8KB DRAM rows accessed only
during swap operations. To prevent any recursive look-ups,
the counter-rows are tracked using dedicated per-bank on-chip
activation counters (similar to prior work [45]).

G. SRS: Performance and Scalability

Figure 12 compares the performance of SRS with RRS.
SRS shows a similar slowdown as RRS. This is because,
while SRS prevents the Juggernaut attack, it still incurs the
same memory bandwidth overheads as RRS. The memory
bandwidth overheads are dictated by the swap rate. As the
swap rate of SRS and RRS are the same, they do not scale well
towards lower values of TRH . SRS and RRS show a variation
in performance occurs due to the sub-optimal schedules of the
lazy eviction mechanism and place-back operations.

Fig. 12. The normalized performance of SRS and RRS compared to an not-
secure baseline. Overall, SRS and RRS show similar slowdowns across different
values of TRH . The variation in performance occurs due to the sub-optimal
schedules of the lazy eviction mechanism and place-back operations.

381Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

V. SCALABLE AND SECURE ROW-SWAP

A. Overview and Intuition

Scalable and Secure Row-Swap (Scale-SRS) aims to reduce
the swap rate and mitigate the memory bandwidth overheads
from swaps while providing years of security. To this end,
Scale-SRS uses the observation that, even during an attack,
the original locations of only a few aggressor rows receive
multiple swaps. RRS and SRS increase the swap rate of the
entire memory system only to take care of these outlier rows.
Instead of designing for the worse-case outlier rows, Scale-SRS
designs for the common case. To this end, Scale-SRS detects
the outlier rows and stores them in the Last Level Cache (LLC).
Fortunately, even during an attack, there tend to be only a few
outlier rows every few hours or days. Thus, the LLC observes
a minor capacity loss only for one refresh interval that occurs
every few hours or days (in the worst case).

B. Improving Scalability by Reducing Swap Rates

Even during an attack, there are only a few such locations that
stand out as outliers. This is because, within a refresh window,
there are only a finite number of activations (ACTmax = 1.36
million) are possible. Assuming a TS = 1200, the attacker can
only activate up to 1134 (ACTmax

TS
) rows TS times. Furthermore,

if a TRH is 4800, then the attacker would need to land on the
original location of any one of these rows 3 times.

Fortunately, the memory bank tends to have several rows
– say between 64K-128K rows. Even during an attack, only
a small fraction of these rows (1134 rows) are swapped, and
they have 64K-128K locations they could be swapped into.
Thus, in most refresh intervals, the original location of any
attacked rows would not have been chosen more than 3 times.
The intervals wherein the row is chosen more than 3 times are
outliers. These occur only every few hours or days. Figure 13
shows the time to appear for these outlier rows with varying
swap rates. For this analysis, we assumed a TRH of 4800.

Fig. 13. The time-to-appear (in days) for outlier rows with varying swap
rates for TRH of 4800. Even at a lower swap rate of 3, it takes at least 64
years for 4 outlier rows with >3 swaps to simultaneously appear within a
bank. Additionally, only one 64ms refresh window every 31 days showcases
3 outlier rows – thus, these outliers are very rare.

Without loss of generality, this paper chooses a swap rate
of 3. We observe that three rows (as shown in Figure 13) are

chosen only three times in a 31-day window4. We use the
per-row swap-tracking counters to identify such events. If any
per-row swap-tracking counter value is ≥ 3× TS , we classify
its respective row as an outlier and pin it within the LLC.

C. Provisioning Space in the Last Level Cache

Assuming a TRH of 4800, the LLC needs to be equipped
to store a maximum of 3 DRAM rows in a single bank attack
(occurring once every 31 days). As each row is 8KB and an
adversary targets a single bank per channel (to maximize attack
bandwidth), we may need up to 3×8×1×2 = 48KB of space
in the LLC. This accounts for only 0.05% of 8MB LLC.

We also analyze the multiple bank attack, as it might increase
the capacity overhead in LLC. Assuming years of continuous
attack, up to 3 outlier rows can appear in 11 banks per channel,
which requires LLC to store 66 DRAM rows. For an 8MB
LLC, this translates to a 6.5% lower capacity. However, as
the multiple bank attack degrades the attack efficiency (as
explained in Section III-C), this scenario now occurs only
once every 2.6 years and only lasts for one refresh interval
(64ms). Thus, on average, pinning rows in LLC has a negligible
impact on performance.

As the LLC employs its own address mappings into its
sets, it cannot simply pin DRAM rows. It could be likely
that these rows could map the same set and thereby conflict
with each other. To prevent this, Scale-SRS employs a small
buffer, called pin-buffer, in front of the LLC to indicate the
pinned physical addresses and redirect them into their new set
locations. For instance, we would need a 66-entry buffer that
stores the addresses of 66 DRAM rows. For an 8KB row, each
entry would be 35 bits long (48-bit physical address - 13-bits).

Each pin-buffer entry points to a fixed set. For instance, the
first entry would point to set 0. Assuming 64 Byte cache lines
and an 8-way cache, we would need 16 contiguous sets to
store this row. Thus, the second entry would now point to set
16, and so on. All accesses into the LLC flow through the
pin-buffer, preventing any new cacheline from evicting these
entries. These entries are cleared, and their respective rows are
evicted once the refresh interval ends. In most 64ms refresh
intervals, the pin-buffer does not contain any rows.

VI. EVALUATION METHODOLOGY

Simulation Framework: We use a detailed memory system
simulator USIMM [2, 9], which is modified to enforce the
DDR4 protocol. The Misra-Gries tracker and the RIT are
modeled as a Collision Avoidance Table (CAT) structure [51]
within the memory controller. We report the performance and
other related metrics from the USIMM memory model.

Table III shows the baseline system configuration. We use a
DRAM configuration with 16 banks per rank and 1 rank per
channel (similar to the prior work [51]) and 2 channels. Each
bank has 128K rows of 8KB each and 1.36 million activations

4The expected number of rows with ‘k’ swaps for a DRAM bank that has
‘R’ rows (RK) is R × pk,TS

. The probability of having ‘M’ rows with ‘k’

swaps (pM,k) can be calculated with the Poisson distribution as e−RK×RM
K

M !

382Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. The normalized performance of Scalable and Secure Row Swap (Scale-SRS) and Randomized Row Swap (RRS) compared to a not-secure baseline at
TRH of 1200. Scale-SRS and RRS incur an average slowdown of only 0.7% and 4% respectively, with several benchmarks in RRS incurring >10% slowdown.

possible per bank in the 64ms refresh interval. To emphasize
the scalability of Scale-SRS, we evaluate against a TRH of
1200 activations. We also perform sensitivity studies for TRH

values of 512, 2400, and 4800 activations.

TABLE III
BASELINE SYSTEM CONFIGURATION

Cores (OoO) 8
Processor clock speed 3.2GHz

ROB size 192
Fetch and Retire width 4

Last Level Cache (Shared) 8MB, 16-Way, 64B lines
Memory size 32 GB – DDR4

Memory bus speed 1.6 GHz (3.2GHz DDR)
TRCD-TRP -TCAS 14-14-14 ns

TRC , TRFC , TREFI 45ns, 350 ns, 7.8µs
Banks x Ranks x Channels 16 x 1 x 2

Rows per bank 128K
Size of row 8KB

Workloads: We evaluate Scale-SRS across SPEC2006 [12],
SPEC2017 [57], GAP [48], BIOBENCH [3], PARSEC [5], and
COMMERCIAL [9] benchmarks. We use Intel Pintool [31]
to extract the SPEC2006, SPEC2017, and GAP benchmarks
for representative regions. The COMMERCIAL, BIOBENCH,
and PARSEC benchmark traces are obtained from the USIMM
distribution. We executed each benchmark for 1 Billion instruc-
tions per core. We also create 6 mixed workloads by randomly
combining benchmarks. We execute the workloads in rate mode
and continue simulating the individual benchmarks until all
cores complete 1 billion instructions each. For conciseness,
we show detailed results only for workloads that encounter at
least one row with 800+ activations within a 64ms time refresh
window and report averages for all 78 workloads.

VII. RESULTS AND ANALYSIS

A. Performance

Figure 14 shows the normalized performance of Scale-SRS
and RRS with respect to a baseline that does not employ RH
mitigation. To emphasize the scalability of Scale-SRS, we use
an aggressively low TRH of 1200. Workloads such as hmmer,
bzip2, gcc, zeusmp, astar, sphinx, and xz_17 have
greater than 10% slowdown while employing RRS. In the
worst case, gcc has a 26.5% slowdown due to frequent swaps

in RRS. On average, across 78 workloads, Scale-SRS has a
slowdown of only 0.7%, whereas RRS has a slowdown of 4%.

B. Sensitivity to Varying RH Thresholds

Figure 15 shows the performance sensitivity of Scale-SRS
and RRS as TRH varies from 4800 to 512. Even when TRH

drops, Scale-SRS minimizes its performance overhead since it
employs a relatively lower swap rate. On the contrary, RRS
incurs higher performance overhead as RRS caters to the
outlier rows, which makes it swaps (and unswaps) rows at
a relatively higher rate. Even at a TRH of 512, Scale-SRS
shows an average slowdown of only 4%, whereas RRS shows
an average slowdown of 14%.

Fig. 15. The normalized performance of SRS and RRS as the value of TRH

varies from 4800 to 512. Even at a TRH of 512, Scale-SRS shows an average
slowdown of only 4%, whereas RRS shows an average slowdown of 14%.

C. Impact of Aggressor Row Tracker

Figure 16 shows the performance sensitivity of Scale-SRS
and RRS if they use the Hydra tracker instead of the Misra-
Gries Tracker. We vary TRH from 4800 to 512. Even at a TRH

of 512, Scale-SRS with Hydra has an average slowdown of only
5.9%, whereas RRS has an average slowdown of 26.8%. Hydra
stores its activation counters in the memory. Thus, despite using
a counter cache, RRS with Hydra tends to access the memory
frequently at lower TRH values.

383Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 16. The normalized performance of Scale-SRS and RRS while using the
Hydra tracker. Even at a TRH of 512, Scale-SRS with Hydra has an average
slowdown of only 5.9%, whereas RRS has an average slowdown of 26.8%.

D. Storage Analysis

Table IV shows the required SRAM-based on-chip storage
for RRS and compares that to Scale-SRS. A key difference
between RRS and Scale-SRS is the reduced swap rate of 3.
This enables Scale-SRS to reduce the size of the RIT.

Scale-SRS requires one additional 8KB place-back buffer
per bank. Additionally, it also uses a 19-bit epoch register
and a pin-buffer. The size of the pin-buffer depends on the
number of outlier rows – which is determined by TRH . The
LLC overhead from pinning rows occurs only once every
few thousand 64ms refresh intervals. Thus, it has a negligible
impact on performance and is not shown in Table IV. Overall,
Scale-SRS has about 3.3× less storage overhead compared to
RRS at a TRH of 1200.

TABLE IV
STORAGE OVERHEAD PER BANK

Structure TRH = 4800 TRH = 2400 TRH = 1200
RRS Scale-SRS RRS Scale-SRS RRS Scale-SRS

RIT 35 KB 9.4KB 130KB 35KB 250KB 67.5KB
Swap-Buffer 1 KB 1 KB 1KB 1KB 1KB 1KB
Place-Back - 8KB - 8KB - 8KBBuffer

Epoch - 19 bits - 19 bits - 19 bitsRegister
Pin Buffer - 289 bytes - 420 bytes - 420 bytes

Total 36 KB 18.7KB 131KB 44.4KB 251KB 76.9KB

E. Power Analysis

Scale-SRS incurs power overheads from extra operations
such as row swaps and accesses to on-chip structures. Ta-
ble V shows the power consumed by DRAM (obtained
from USIMM [9]) and the SRAM structures (obtained using
Cactii [33] in the 32 nm technology) in Scale-SRS and RRS.
Compared to RRS, due to smaller-sized SRAM structures,
Scale-SRS incurs 23% lower on-chip power. Scale-SRS also
reduces the DRAM power as it reduces the effective swap rate.

TABLE V
EXTRA POWER CONSUMPTION PER CHANNEL (TRH = 4800)

Type of Power Overhead RRS Scale
SRS

DRAM Power Overhead (Row-Swap) 0.5% 0.2%
SRAM Power Overhead 903 mW 703 mW

VIII. DISCUSSION

1. Internal Chip Address versus Physical Address:
We have demonstrated Scale-SRS and RRS using physical
addresses supplied by the OS. However, it is possible that the
chip rows are larger. In such scenarios, the memory controller
can use the chip row addresses for the RIT and swap these
rows. While this requires knowledge of the internals of DRAM,
this does not change our technique or the security analysis.

2. Implementing Scale-SRS Near-Memory or In-Memory:
While we have demonstrated Scale-SRS on the CPU-based
memory controller, it does not prevent us from implementing
this as near-memory or in-memory (within DRAM chips [8,
37]). This can help new interfaces such as CXL [13].

3. Juggernaut Attack with Open-Page Policy:
Using an open-page policy [19] for the memory controller
could reduce the attack potency of Juggernaut. This is because
keeping the page open can reduce the number of row activations
and thereby decrease the maximum number of possible attack
rounds. For instance, using open page policy at a TRH of 4800
and a swap rate of 6, the time-to-break RRS using Juggernaut
increases from 4 hours to 10 days. However, the advantages of
using open page policy disappear as TRH decreases. At lower
TRH values, Juggernaut is powerful regardless of page policies.
For example, if TRH ≤ 3300, Juggernaut can break RRS in
under 1 day, even with the swap rate of 10. Thus, developing a
new protection method against Juggernaut, such as our Scale-
SRS, is essential to enable the adoption of randomized-based
defense in the future DRAM generations (with lower TRH).

4. Possible Storage Overhead Reduction of Scale-SRS:
Although Scale-SRS has much less SRAM-based storage
overhead than RRS, there is still room for storage overhead
reduction. One way is to add a bit to every RIT entry to
distinguish between the original and the reverse mapping. This
would prevent the need for a mirrored part of the RIT and can
reduce its storage overhead by almost 2×.

5. Juggernaut and Scale-SRS in Future DRAM Genera-
tions:
The TRH value will highly likely drop further in future
DRAM generations, making them more vulnerable to RH-
based attacks such as Juggernaut and half-double. Thus,
future DRAM generations would involve more features to
mitigate Row Hammer. For instance, recently introduced DDR5
devices perform refresh operations 2× more frequently than
DDR4 [35, 36]. However, even in DDR5 devices, Juggernaut
can break RRS in under 1 day regardless of the swap rate if
TRH ≤ 3100. This demonstrates the potency of the Juggernaut
attack even for future DRAM generations. This also highlights

384Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

the necessity of new protection methods such as Scale-SRS.
Furthermore, Scale-SRS has better scalability (i.e., better
performance and less storage overhead) than RRS at lower
TRH values. This enables Scale-SRS to be commercially viable
as a defense line against RH attacks (known and unknown) for
present and future DRAM generations.

IX. RELATED WORK

A. Aggressor-Focused Mitigation

We have already described and analyzed the most closely re-
lated state-of-the-art aggressor-focused mitigation, Randomized
Row-Swap (RRS), in Section II-F. Besides RRS, BlockHammer
(BH) [59] is another aggressor-focused mitigation. BH exploits
dual counting bloom filters to track potential aggressor rows and
uses a throttling-based approach for such rows. Unfortunately,
BH is vulnerable to denial-of-service (DoS) attacks. For
instance, at a TRH of 4800, memory requests would be delayed
by approximately 20µs per activation. BH also requires complex
memory scheduling policies. In comparison to BH, Scale-SRS
is more efficient and has no DoS concerns. A recent work,
AQUA [53], improves the performance and storage overhead
of RRS by exploiting isolation instead of randomization.
Specifically, AQUA reserves a dedicated region of DRAM
as the quarantine region and migrates the aggressor rows into
the quarantine region when the migration threshold is reached.
As compared to AQUA, Scale-SRS does not need a dedicated
quarantine region and relies on randomized row movement.

B. Victim-Focused Mitigation

Victim-focused mitigation (VFM) prevents RH by perform-
ing targeted refreshes on victim rows. This can be done either
probabilistically (PRA [20], PARA [24], PRoHIT [56], MR-
LoC [60], HammerFilter [22]) or by tracking accesses to partic-
ular rows (CRA [20], CBT [55], TWiCe [28], Graphene [44],
Hydra [45]). While it is effective to prevent classic RH
attacks that target victims that are immediate neighbors, they
are susceptible to attack patterns, such as the half-double
attack [16, 25], that target distant neighbors. One way that
VFM may adapt to defend against half-double is to account
for neighbor refreshes in the activation counts of the tracker.
However, this requires VFM to know the proprietary internal
DRAM row mappings and accurate theoretical modeling of
the half-double and blast-radius effects. To the best of our
knowledge, these effects are not yet fully known.

Mithril [23] and ProTRR [32] suggest using the newly
introduced Refresh Management (RFM)-based RH mitigations.
These solutions are implemented inside DRAM chips and
coordinate with the memory controller using the RFM interface.
This approach solves the limitations of prior VFM methods
(such as requiring proprietary internal DRAM row mappings
or an additional interface to communicate with the memory
controller). ProTRR also shows how to prevent the half-double
attack. However, as TRH becomes lower and blast-radius
increases due to DRAM technology scaling, implementing
these methods inside DRAM chips tends to become infeasible
due to their high storage overhead.

C. ECC-Based Defenses
ECC memories can correct a small number of bit-flips [10,

39, 41, 42, 46]. Such an approach can be used to correct
the bit-flips from RH. However, ECCploit [11] shows that an
attacker can still cause RH by overcoming ECC protection.
Synergy [49] and SafeGuard [14] provide integrity protection
and can detect RH without recovering corrupted data.

D. Software-Based Defenses
Software-based defenses often require information about

DRAM properties that may be proprietary or not readily
accessible to software [4, 6, 26, 58]. Additionally, these
solutions often incur severe performance overheads, demand
intrusive modifications to system software, and only tend to
be effective for certain types of attacks.

For example, ANVIL [4] employs CPU performance counters
to identify RH attacks and perform refreshes to the immediate
victim rows. GuardION [58] prevents RH attacks by putting
a guard row between data of different security domains. In
ZemRAM [26] and RIP-RH [6], isolation is provided by
locating the kernel space and user space(s) in isolated parts
of DRAM. Unfortunately, these solutions require proprietary
internal DRAM mappings information. Other solutions, such
as CATT [7], which carries out profiling of cells and blacklists
pages that contain vulnerable cells to RH, can cause significant
loss of memory capacity at lower TRH .

X. CONCLUSION

As DRAM-based systems are becoming increasingly sus-
ceptible to Row Hammer (RH) attacks, a recent work called
Randomized Row-Swap (RRS) proposed proactively swapping
aggressor rows to break spatial correlations with victim rows.
Our paper shows that RRS neither secure nor scalable. We
propose Juggernaut that breaks RRS in under 1 day regardless
of the swap rate. Juggernaut uses latent activations in RRS to
make a row vulnerable to RH. To overcome this, we propose
the Scalable and Secure Row-Swap (Scale-SRS). Scale-SRS
avoids latent activations and prevents Juggernaut. It also enables
scalable RH mitigation by allowing the use of a much lower
swap rate than RRS. Overall, even at an RH threshold of 1200,
Scale-SRS has a 0.7% slowdown while requiring 3.3× less
on-chip storage compared to RRS, which has a 4% slowdown.

ACKNOWLEDGEMENTS

This project is a part of the Systems and Architecture
Laboratory (STAR Lab) at the University of British Columbia
(UBC). We thank the entire team of the Advanced Research
Computing (ARC) Center at UBC [1]. We also thank the
anonymous reviewers and Moinuddin Qureshi for their in-
valuable feedback. This work was partially supported by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) [funding reference number RGPIN-2019-05059] and
a Gift from Meta Inc. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements
of NSERC, the Canadian Government, Meta Inc., NVIDIA,
Georgia Institute of Technology, or UBC.

385Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. Abstract

This artifact covers two aspects of the results from the
paper: (1) Security analysis of our Juggernaut attack against
Randomized Row-Swap (RRS) and (2) Performance analysis
of our Scalable and Secure Row-Swap (Scale-SRS) and RRS.

For the security analysis, a Bins and Buckets model of the
Juggernaut attack is provided as a C++ program. Our program
is based on event-driven Monte Carlo simulations for faster
simulations. We provide scripts to compile our simulators and
to recreate the results shown in Figure 6.

For the performance analysis, we provide the C code for the
implementation of Scale-SRS and RRS, which is encapsulated
within the USIMM [9] memory system simulator. The Scale-
SRS and RRS structures and operations are implemented within
the memory controller module in our artifact. We provide scripts
to compile our simulator and run the baseline, Scale-SRS, and
RRS for all the workloads and plot the results in Figure 14.

B. Artifact Check-List

1) Security Evaluations:
• Algorithm: Implementation of event-driven Monte Carlo

Simulations of the Juggernaut attack in C++.
• Compilation: Tested with g++ (versions 9.4.0, 11.3.0), but

should compile with most standard compilers.
• Run-time environment: Tested on Ubuntu 20.04 and 22.04,

but should broadly run on any Linux distribution.
• Hardware: Running all simulations with 100,000 iterations for

Row Hammer thresholds of 4800, 2400, and 1200 requires a
single-core CPU.

• Metrics: Attack Time (seconds and days).
• Output: Results shown in Figure 6.
• Experiments: Instructions to run the experiments and parse

the results are available in the README file.
• How much time is needed to complete experiments (approx-

imately)?: 3 minutes with a single-core Intel Xeon CPU.
• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/

zenodo.7445036
2) Performance Evaluations:
• Algorithm: Implementation of Scale-SRS and RRS structures

and operations in C.
• Program: The artifact assumes memory-access traces are

available (filtered through an L1 and L2 cache model) for all of
the benchmarks. This can be generated with any tracing tool (like
Intel Pin [31] v2.12). We tested the artifact with benchmarks
from SPEC-2006, SPEC-2017, PARSEC, BIOBENCH, and GAP
suites.

• Compilation: Tested with gcc (version 11.3.0), but should
compile with most standard compilers.

• Run-time environment: Tested on Ubuntu 22.04, but should
broadly run on any Linux distribution.

• Hardware: Running all 78 benchmarks in parallel (78 simulta-
neous instances of the simulator) requires a CPU with a sufficient
number of cores (64+) and memory (128GB+).

• Metrics: Normalized Performance (IPC).
• Output: Performance results shown in Figure 14.
• Experiments: Instructions to run the experiments and parse

the results are available in the README file.
• How much time is needed to complete experiments (approx-

imately)?: 15 hours on Intel Xeon CPU if all 78 benchmarks

are run in parallel (7-8 hours for baseline and RRS each on our
system).

• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/

zenodo.7445036

C. Access to the Artifact

The code is available at https://github.com/STAR-
Laboratory/scale-srs

D. System Requirements and Dependencies

1) Requirements for Security Evaluations:

• Software Dependencies: C++, Python3, g++ (tested to
compile successfully with the version: 9.4.0 and 11.3.0),
and Python3 Packages (pandas and matplotlib).

• Hardware Dependencies: A single-core CPU desk-
top/laptop will allow 100,000 iterations of Monte Carlo
simulations in 1-3 minutes.

• Data Dependencies: Several input values, such as
the number of attack rounds and the success prob-
ability of attack in a single refresh interval (pk,TS

)
in Equation 8, are required to run the simulation.
We generated these values following the equations
in Section III-B and included the values in ‘scale-
srs/security analysis/montecarlo-event/simscript/input’.

2) Requirements for Performance Evaluations:

• Software Dependencies: Perl (for scripts to run exper-
iments and collate results) and gcc (tested to compile
successfully with the version: 11.3.0).

• Hardware Dependencies: For running all the bench-
marks, a CPU with lots of memory (128GB+) and cores
(64+).

• Trace Dependencies: Our simulator requires traces of
memory accesses for benchmarks (filtered through an L1
and L2 cache). We generate these traces using an Intel
Pin [31] (version 2.12). However, traces extracted in the
format described at the end of the README file by any
methodology (e.g., any Pin version) would be supported.

E. Installation and Experiment Workflow

1) Security Evaluations: The run_artifact.sh in the
scale-srs/security analysis/montecarlo-event folder performs
all the steps required to compile, execute, collate results, and
generate the results shown in Figure 6.

• Compiles the code using the Makefile in the scale-
srs/security analysis/montecarlo-event folder.

• Executes the simulations for all Row Hammer threshold
values, first for 4800, then for 2400, and finally, for
1200.

• Collates the results for all benchmarks and provides the
normalized performance.

• Reproduce the Figure 6.

386Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

2) Performance Evaluations: The run_artifact.sh in
the scale-srs/perf analysis folder performs all the steps required
to compile, execute, collate results, and generate the results
shown in Figure 14.

• Compiles the code using the Makefile in the scale-srs-
/perf analysis/src folder.

• Executes the simulations for all benchmarks in parallel
(assuming the trace files are available), first for the
baseline, then for the Scale-SRS, and finally, for
the RRS configuration.

• Collates the results for all benchmarks and provides the
normalized performance.

• Reproduce the Figure 14.

F. Evaluation and Expected Results
1) Security Evaluations: The artifact provides the

get_results_4800.py, get_results_2400.py,
and get_results_1200.py files in the scale-
srs/security analysis/montecarlo-event/simscript folder.
This script allows the collation of the results, and the
commands to collate the successful attack time of Juggernaut
against RRS are provided in the run_artifact.sh
in the scale-srs/security analysis/montecarlo-event folder
and the README file. After the completion of the
run_artifact.sh, the successful attack time for
Row Hammer thresholds of 4800, 2400, and 1200
can be obtained as the aggregate_trh_4800,
aggregate_trh_2400, and aggregate_trh_1200 in
the scale-srs/security analysis/montecarlo-event/results
folder. Also, the regenerated Figure 6 can be
obtained as the Figure6.pdf file in the scale-
srs/security analysis/montecarlo-event/graph folder.
The sample results files for all of the used Row
Hammer threshold values are provided in the scale-
srs/security analysis/montecarlo-event/result folder.

2) Performance Evaluations: The artifact provides the
plot.sh file in the scale-srs-/perf analysis/simscript folder.
This script allows the collation of the results, and the commands
to collate the IPC are provided in the run_artifact.sh
in the scale-srs/perf analysis folder and the README file.
After the completion of the run_artifact.sh, the nor-
malized performance for all benchmarks can be obtained as
the data.csv file in the scale-srs-/perf analysis/simscript
folder. Also, the regenerated Figure 14 can be obtained as
the Figure14.pdf file in the scale-srs-/perf analysis/graph
folder. The sample results files for the baseline, Scale-SRS,
and RRS configurations for all the benchmarks are provided
in the scale-srs-/perf analysis/output folder of the artifact.

G. Methodology
Submission, reviewing and badging methodology:
• https://ctuning.org/ae/reviewing.html
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] “UBC Advanced Research Computing, ”UBC ARC
Sockeye.” UBC Advanced Research Computing, 2019,
doi: 10.14288/SOCKEYE.”

[2] “3rd JILP Workshop on Computer Architecture Com-
petitions (JWAC-3): Memory Scheduling Championship
(MSC),” 2012.

[3] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin,
B. Jacob, C.-W. Tseng, and D. Yeung, “Biobench: A
benchmark suite of bioinformatics applications,” in IEEE
International Symposium on Performance Analysis of
Systems and Software, 2005. ISPASS 2005. IEEE, 2005,
pp. 2–9.

[4] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin, “Anvil: Software-based protec-
tion against next-generation rowhammer attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
parsec benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 72–81.

[6] C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-
R. Sadeghi, “Rip-rh: Preventing rowhammer-based inter-
process attacks,” in Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security,
2019, pp. 561–572.

[7] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R.
Sadeghi, “CAn’t touch this: Software-only mitigation
against rowhammer attacks targeting kernel memory,” in
26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp.
117–130.

[8] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K.
Qureshi, and O. Mutlu, “Low-cost inter-linked subarrays
(lisa): Enabling fast inter-subarray data movement in
dram,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016, pp.
568–580.

[9] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugs-
ley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and
Z. Chishti, “Usimm: the utah simulated memory module,”
University of Utah, Tech. Rep, 2012.

[10] C. Chou, P. Nair, and M. K. Qureshi, “Reducing refresh
power in mobile devices with morphable ecc,” in 2015
45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2015, pp. 355–366.

[11] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploit-
ing correcting codes: On the effectiveness of ecc memory
against rowhammer attacks,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 55–71.

[12] S. P. E. Corporation, “Spec cpu2006 benchmark suite,”
2006. [Online]. Available: http://www.spec.org/cpu2006/

[13] CXL Consortium, “Compute Express Link: The
Breakthrough CPU-to-Device Interconnect,” https://
www.computeexpresslink.org/, 2022.

387Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

[14] A. Fakhrzadehgan, Y. Patt, P. J. Nair, and M. Qureshi,
“Safeguard: Reducing the security risk from row-hammer
via low-cost integrity protection,” in Proceedings of the
28th IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2022.

[15] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen,
O. Mutlu, C. Giuffrida, H. Bos, and K. Razavi, “Trrespass:
Exploiting the many sides of target row refresh,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 747–762.

[16] Google, “Half-Double: Next-Row-Over Assisted
RowHammer,” https://github.com/google/hammer-
kit/blob/main/20210525 half double.pdf, 2021.

[17] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another
flip in the wall of rowhammer defenses,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 245–261.

[18] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js:
A remote software-induced fault attack in javascript,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2016,
pp. 300–321.

[19] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist
open-page: A dram page-mode scheduling policy for
the many-core era,” in 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2011, pp. 24–35.

[20] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural
support for mitigating row hammering in dram memories,”
IEEE CAL, vol. 14, no. 1, pp. 9–12, 2014.

[21] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi,
L. Orosa, and O. Mutlu, “Revisiting rowhammer: An
experimental analysis of modern dram devices and miti-
gation techniques,” in 2020 ACM/IEEE 47th Annual In-
ternational Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 638–651.

[22] K. Kim, J. Woo, J. Kim, and K.-S. Chung, “Hammerfilter:
Robust protection and low hardware overhead method for
rowhammer,” in 2021 IEEE 39th International Conference
on Computer Design (ICCD), 2021, pp. 212–219.

[23] M. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. Ham,
J. W. Lee, and J. Ahn, “Mithril: Cooperative row hammer
protection on commodity dram leveraging managed
refresh,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, apr 2022,
pp. 1156–1169.

[24] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in
memory without accessing them: An experimental study
of dram disturbance errors,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[25] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp,
N. Boichat, E. Shiu, M. Nissler, and D. Gruss, “Half-
double: Hammering from the next row over,” Aug. 2022,

31st USENIX Security Symposium : USENIX Security
’22, USENIX ’22 ; Conference date: 10-08-2022 Through
12-08-2022.

[26] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos,
C. Giuffrida, and K. Razavi, “ZebRAM: Comprehensive
and compatible software protection against rowhammer
attacks,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad,
CA: USENIX Association, Oct. 2018, pp. 697–710.

[27] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Ram-
bleed: Reading bits in memory without accessing them,”
in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 695–711.

[28] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice:
preventing row-hammering by exploiting time window
counters,” in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 385–396.

[29] K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci, “Stop!
hammer time: rethinking our approach to rowhammer
mitigations,” in Proceedings of the Workshop on Hot
Topics in Operating Systems, 2021, pp. 88–95.

[30] K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and
B. Kasikci, “Moesi-prime: Preventing coherence-induced
hammering in commodity workloads,” in Proceedings of
the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 670–684.

[31] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6,
p. 190–200, jun 2005.

[32] M. Marazzi, P. Jattke, S. Flavien, and K. Razavi, “Protrr:
Principled yet optimal in-dram target row refresh,” in
2022 IEEE Symposium on Security and Privacy (SP),
2022.

[33] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” HP laboratories,
vol. 27, p. 28, 2009.

[34] O. Mutlu, A. Olgun, and A. G. Yağlıkçı, “Fundamentally
understanding and solving rowhammer,” arXiv preprint
arXiv:2211.07613, 2022.

[35] P. Nair, C.-C. Chou, and M. K. Qureshi, “A case for
refresh pausing in dram memory systems,” in 2013
IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 627–638.

[36] P. J. Nair, C.-C. Chou, and M. K. Qureshi, “Refresh
pausing in dram memory systems,” ACM Trans. Archit.
Code Optim., vol. 11, no. 1, feb 2014. [Online]. Available:
https://doi.org/10.1145/2579669

[37] P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi,
“Reducing read latency of phase change memory via early
read and turbo read,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 309–319.

[38] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield:

388Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

Architectural framework for assisting dram scaling by
tolerating high error rates,” in Proceedings of the 40th
Annual International Symposium on Computer Architec-
ture, ser. ISCA ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 72–83.

[39] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel: Ef-
ficiently protecting stacked memory from large granularity
failures,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 51–62.

[40] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Faultsim:
A fast, configurable memory-reliability simulator for
conventional and 3d-stacked systems,” ACM Trans.
Archit. Code Optim., vol. 12, no. 4, dec 2015. [Online].
Available: https://doi.org/10.1145/2831234

[41] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel:
Efficiently protecting stacked memory from tsv and
large granularity failures,” ACM Trans. Archit. Code
Optim., vol. 12, no. 4, jan 2016. [Online]. Available:
https://doi.org/10.1145/2840807

[42] P. J. Nair, V. Sridharan, and M. K. Qureshi, “Xed: Expos-
ing on-die error detection information for strong memory
reliability,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016, pp.
341–353.

[43] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and
J. W. Lee, “Graphene: Strong yet lightweight row hammer
protection,” in 2020 53rd Annual IEEE/ACM MICRO.
IEEE, 2020, pp. 1–13.

[44] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. Ho Ahn, and J. W.
Lee, “Graphene: Strong yet Lightweight Row Hammer
Protection,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Athens,
Greece: IEEE, Oct. 2020, pp. 1–13.

[45] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair,
“Hydra: Enabling low-overhead mitigation of row-hammer
at ultra-low thresholds via hybrid tracking,” in Proceed-
ings of the 49th Annual International Symposium on
Computer Architecture, ser. ISCA ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p.
699–710.

[46] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and
O. Mutlu, “Avatar: A variable-retention-time (vrt) aware
refresh for dram systems,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, 2015, pp. 427–437.

[47] D. A. Roberts and P. J. Nair, “Faultsim: A fast, con-
figurable memory-resilience simulator,” in The Memory
Forum: In conjunction with ISCA-41, Jun 2014.

[48] K. A. S. Beamer and D. Patterson, “The gap benchmark
suite,” in arXiv preprint arXiv:1508.03619, 2015.

[49] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser,
and M. K. Qureshi, “Synergy: Rethinking secure-memory
design for error-correcting memories,” in 2018 IEEE

International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 454–465.

[50] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigat-
ing conflict-based cache attacks with a practical fully-
associative design,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021,
pp. 1379–1396.

[51] G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Ran-
domized row-swap: mitigating row hammer by breaking
spatial correlation between aggressor and victim rows,” in
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2022, pp. 1056–1069.

[52] S. Saroiu and A. Wolman, “How to configure row-
sampling-based rowhammer defenses,” DRAMSec 2022,
2022.

[53] A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi,
“Aqua: Scalable rowhammer mitigation by quarantining
aggressor rows at runtime,” in 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2022, pp. 108–123.

[54] M. Seaborn and T. Dullien, “Exploiting the dram rowham-
mer bug to gain kernel privileges,” Black Hat, vol. 15,
p. 71, 2015.

[55] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigat-
ing wordline crosstalk using adaptive trees of counters,”
in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2018, pp. 612–
623.

[56] M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram
stronger against row hammering,” in Proceedings of the
54th Annual Design Automation Conference 2017, 2017,
pp. 1–6.

[57] Standard Performance Evaluation Corporation, “SPEC
CPU2017 Benchmark Suite,” 2017. [Online]. Available:
http://www.spec.org/cpu2017/

[58] V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai,
G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “Guardion:
Practical mitigation of dma-based rowhammer attacks
on arm,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment.
Springer, 2018, pp. 92–113.

[59] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Ol-
gun, L. Orosa, H. Hassan, J. Park, K. Kanellopoulos,
T. Shahroodi et al., “Blockhammer: Preventing rowham-
mer at low cost by blacklisting rapidly-accessed dram
rows,” in 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE,
2021, pp. 345–358.

[60] J. M. You and J.-S. Yang, “Mrloc: Mitigating row-
hammering based on memory locality,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

389Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 18,2024 at 03:12:29 UTC from IEEE Xplore. Restrictions apply.

