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Abstract—To mitigate climate change, we must reduce carbon
emissions from hyperscale cloud computing. We find that cloud
compute servers cause the majority of emissions in a general-
purpose cloud. Thus, we motivate designing carbon-efficient
compute server SKUs, or GreenSKUs, using recently-available low-
carbon server components. To this end, we design and build three
GreenSKUs using low-carbon components, such as energy-efficient
CPUs, reused old DRAM via CXL, and reused old SSDs.

We detail several challenges that limit GreenSKUs’ carbon
savings at scale and may prevent their adoption by cloud providers.
To address these challenges, we develop a novel methodology and
associated framework, GSF (GreenSKU Framework), that enables
a cloud provider to systematically evaluate a GreenSKU’s carbon
savings at scale. We implement GSF within Microsoft Azure’s
production constraints to evaluate our three GreenSKUs’ carbon
savings. Using GSF, we show that our most carbon-efficient
GreenSKU reduces emissions per core by 28% compared to
currently-deployed cloud servers. When designing GreenSKUs to
meet applications’ performance requirements, we reduce emissions
by 15%. When incorporating overall data center overheads, our
GreenSKU reduces Azure’s net cloud emissions by 8%.

I. INTRODUCTION

To mitigate climate change, we must reduce carbon emissions

from Information and Communication Technology (ICT), which

can cause 20% of global carbon emissions by 2030 [76]. Histori-

cally, ICT’s emissions reduced when sharing compute resources

using cloud computing [36]. However, today, projections show

that significant emissions arise from cloud computing itself,

due to its massive growth [73], [76]. Thus, it is now critical to

reduce cloud computing’s emissions [38], [47]. Indeed, major

cloud providers have set aggressive decarbonization deadlines,

targeting significant emissions reductions by 2030 [10], [27].

To reduce ICT’s emissions from cloud computing, we must

reduce the cloud’s operational emissions (e.g., from producing

electricity to run data centers) and embodied emissions (e.g.,

from semiconductor fabs that make server components) [65].

Historically, cloud computing’s operational emissions exceeded

its embodied emissions. To reduce operational emissions,

hyperscale cloud providers improve energy efficiency [45], [52],

[62], [79], [96], [118], [132], [134] and use more renewable

energy [35], [48], [65]. Today, the decrease in operational

emissions due to such solutions has caused embodied emissions

to account for 50%–82% of cloud emissions [65], [88]. Thus,

it is crucial to reduce both emission types.

To reduce cloud computing’s operational and embodied

emissions, we identify designing carbon-efficient cloud com-

pute server Stock Keeping Units (SKUs) as a promising

solution. Server SKU design is the process by which existing

hardware components are selected and composed into servers.

Typically, cloud providers design compute server SKUs to meet

performance and cost goals. To reduce emissions, we introduce

a new way of designing carbon-efficient compute server SKUs,

or “GreenSKUs,” that trade off performance for lower carbon.

We find that designing and deploying carbon-efficient Green-
SKUs is promising for four reasons. First, we show that compute

servers cause the majority of cloud emissions, and their design

directly impacts both embodied and operational emissions.

Indeed, with a ∼six-year lifetime for cloud servers [88],

design choices made in the next two years directly affect

the industry’s 2030 carbon goals. Second, it is challenging for

cloud providers to rely on manufacturing’s decarbonization,

as many manufacturers have decarbonization targets that lag

behind cloud providers’ targets by over a decade [88]. Third,

as we will show, cloud servers are often underutilized [50],

making a case for designing servers that right-size performance

to save emissions. Fourth, GreenSKU design and deployment

is more feasible today due to the availability of carbon-efficient

commodity server components, e.g., energy-efficient cores [4].

Due to GreenSKUs’ promise, we design and build three

GreenSKUs using low-carbon components that mitigate cloud

compute servers’ key sources of operational and embodied

emissions. Our GreenSKUs incrementally incorporate three

low-carbon components: energy-efficient high-thread-count

CPUs [4], reuse of old DRAM with Compute Express Link

(CXL) [103], and reuse of old Solid State Drives (SSDs).

While GreenSKUs promise carbon savings, we demonstrate

several challenges that limit cloud providers from practically

deploying them at scale. First, we find that a GreenSKU may

compromise performance. For example, a GreenSKU built with

many energy-efficient, i.e., efficient, cores [4] typically has

lower single-thread performance. In practice, only some cloud

applications, e.g., those not bound by single-thread performance,

will run on such a GreenSKU. Thus, it is challenging to

design GreenSKUs while effectively navigating their emissions

vs. performance tradeoff, to justify deploying them at scale.

Second, a GreenSKU’s operational and embodied emissions

can have complex tradeoffs. For example, reusing an older

server component can reduce embodied emissions, but may

increase operational emissions due to the component’s poor

energy efficiency [64]. Third, each new SKU adds operational

complexity and cost. Thus, while cloud applications are highly

diverse, cloud providers must limit how many SKU types
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they deploy. We refer to these factors (e.g., performance) that

impact whether a GreenSKU can practically be deployed at

scale, as the “adoption” of the GreenSKU. It is critical and

challenging for cloud providers to identify which GreenSKU
designs are adoptable, i.e., able to save carbon while meeting

diverse applications’ deployment requirements at scale.
To address these challenges, we develop a novel methodology

and framework, GSF, to enable cloud providers to evaluate a

GreenSKU’s carbon savings in the cloud. GSF systematically

considers the major factors that influence a GreenSKU’s

benefits at scale. GSF’s components model each major factor,

such as modeling a GreenSKU’s at-scale impact on carbon,

performance, maintenance, server adoption, resource allocation,

and server fragmentation. GSF abstracts these components’

relationships from how a cloud provider implements each

component, enabling a cloud provider to flexibly use GSF in

their cloud to estimate a GreenSKU’s net carbon savings.
We implement GSF within Microsoft Azure’s production

constraints to evaluate our three GreenSKUs’ carbon savings at

scale. Our carbon model reflects Azure’s data center design. We

study representative applications in Azure to identify those that

run effectively on our GreenSKUs. We also simulate workload

packing on our GreenSKUs under production constraints.
Using our GSF implementation, we show that our Green-

SKUs reduce carbon emissions per core by 28% compared to

currently-deployed cloud servers at Azure. When deploying

GreenSKUs in a way that meets applications’ performance

goals, we reduce emissions by 15%. Finally, when incorporating

overall data center overheads, our GreenSKUs reduce net cloud

emissions by 8%, which is a significant reduction at scale.
In summary, we contribute:

• A demonstration of the opportunity to significantly reduce

cloud emissions by designing and deploying carbon-

efficient server hardware, i.e., GreenSKUs, at scale.

• The development of three new GreenSKU prototypes with

carbon-efficient server components.

• A study of the challenges that limit GreenSKUs’ adoption

and carbon savings at scale.

• A novel methodology and associated framework, GSF1,

that helps cloud providers to systematically evaluate a

GreenSKU’s carbon savings at scale.

• An evaluation of our GreenSKUs by using GSF within

a leading cloud provider’s production constraints, to

demonstrate our GreenSKUs’ carbon savings.

We motivate GreenSKUs in §II and describe our GreenSKU
prototypes in §III. We detail GSF in §IV and its implementation

in §V. We use GSF to evaluate our GreenSKUs in §VI. We

discuss GreenSKUs’ practicality in §VII, open questions in

§VIII, and related work in §IX. We conclude in §X.

II. OPPORTUNITIES AND CHALLENGES WITH DESIGNING

GREENSKUS

Cloud platforms offer diverse services including infrastruc-

ture, platform, and software as a service. In a general-purpose

1We open-source an implementation of GSF’s carbon model [18], [123],
which is available at https://github.com/Azure/AzurePublicDataset

public cloud like Azure, applications typically run within

Virtual Machines (VMs) on compute servers [66]. While there

are many compute server types, the most common types today

use a general-purpose x86 or ARM CPU, significant DDR5

memory capacity, a few NVMe SSDs, and a Network Interface

Card (NIC). Additionally, storage services, such as object stores,

are hosted on dedicated storage servers that contain arrays of

hard disks, with fewer computational resources.
We focus on reducing emissions for general-purpose cloud

compute servers that form a large portion of Azure’s global

fleet and carbon emissions. Although we do not focus on

heterogeneous compute, our work may be used to develop

GreenSKUs for heterogeneous platforms in future work.
In this section, we first detail a breakdown of a cloud’s overall

emissions. We then discuss how cloud servers are designed

and utilized today. Finally, we introduce key design goals for

low-carbon compute servers, i.e., GreenSKUs.
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Fig. 1. Carbon breakdown of general-purpose data centers at Azure.

Sources of data center carbon emissions. To understand

GreenSKU design opportunities, we analyze how different

server types and their hardware components contribute to a

general-purpose cloud’s emissions. Similar to prior work [64],

[65], we adopt the greenhouse gas protocol’s definition of

emissions from Scope 1 (i.e., direct emissions), Scope 2

(i.e., indirect emissions from consuming power), and Scope 3

(i.e., indirect emissions from manufacturing and transporting

procured products like servers). We refer to Scope 1 emissions

as direct emissions, Scope 2 emissions as operational emissions,

and Scope 3 emissions as embodied emissions, matching prior

work’s terminology [64], [65], [115]. With these definitions,

we use our carbon model (detailed later in §IV and §V) to

estimate a cloud data center’s carbon emissions breakdown.
We estimate operational emissions using power traces from

Azure. To calculate embodied emissions, we estimate raw

materials from vendor manifests, measure devices’ silicon

area, and use averaged emissions for manufacturing processes

reported in industry datasets such as IMEC [21] and Maker-

site [25]. Our embodied emission estimation counts emissions

once per component across the supply chain, making it directly

comparable to operational emissions. The sum of all three

emission types, i.e., direct, operational, and embodied, defines

a cloud’s total carbon emissions.
We find that direct emissions are negligible, as they mainly

arise from backup diesel generators [78]. Thus, we only

study operational and embodied emissions. The relative weight
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between the two differs between data centers due to local energy

mixes [35]. Hence, we present these emission breakdowns

separately and then discuss their relative weights.

Fig. 1 shows the breakdown of operational and embodied

emissions in Azure’s cloud data centers. At the data center level,

IT equipment dominates operational and embodied emissions.

The rest arises due to cooling, power distribution, and building

emissions. Within IT, there are three dominant server types:

compute, storage, and network servers. Of these, compute

servers consume most of the power, while storage servers have

a large embodied footprint and consume relatively less power.

We further attribute compute servers’ emissions to their

composite hardware components. This breakdown is influenced

by server generation and vendor; we focus on a current-

generation AMD Genoa server [6]. We find that the largest

carbon contributors differ between the operational and em-

bodied emissions breakdown. For operational, CPUs have the

largest impact with the remaining emissions distributed across

DRAM, SSDs, NICs, and other components like fans. For

embodied, DRAM and SSDs dominate emissions, mainly due

to their high capacities and large silicon area: our server has

12 DIMMs and 6 SSDs, each containing many chips.

In our accounting, we only count renewable energy purchases

that match a data center’s location. We find that most data cen-

ters use 40%–80% renewable energy at Azure. This renewable

energy mix leads to operational emissions accounting for about

58% of total carbon emissions, implying that compute servers

account for 57% of data center emissions. Within compute

servers, the top three component contributors are DRAM (35%

total contribution), SSDs (28%), and CPUs (24%). With a

hypothetical 100% renewable energy mix, operational emissions

would account for 9% of data center emissions and compute

servers for 44% of data center emissions. These results motivate

the urgent need to reduce compute servers’ emissions.

Today’s performance-focused cloud server design. To

enable carbon-aware server design, we must first understand

the conventional server design process and objectives. In the last

decade, to design cloud servers, cloud providers have followed

the faster-at-similar-price (FSP) business model. With FSP,

the provider introduces a faster VM generation at roughly the

same price every few years. Faster implies a target X% higher

per-core performance on a fixed benchmark set [3], [9], [17].

Unfortunately, achieving these per-core speed-ups is in-

creasingly challenging in today’s age of limited technology

scaling [54]. For example, consecutive Intel VM generations

on Amazon AWS (M6i and M7i) achieve X=15% higher

performance per core at almost the same price per core [28].

However, achieving this higher performance forces AWS to

use 48-core Intel Xeon CPUs [8], [28], which maximize power,

cache, and memory bandwidth per core. Intel also offers 60-core

Xeon CPUs in the same generation [2], which have significantly

lower carbon emissions per core, due to their lower Thermal

Design Power (TDP) per core (i.e., 5.83 Watts vs. 6.25 Watts).

However, 60-core Xeon CPUs would not have achieved the

required 15% per-core speedup. In this paper, we denote SKUs

constructed within the FSP model as baseline SKUs. Typically,

there is one baseline SKU for every CPU generation.

Cloud customers underutilize cloud servers. There is

significant evidence that cloud users frequently do not utilize

high per-core performance, thereby exacerbating emissions.

First, prior work has extensively documented that cloud CPUs

are severely underutilized [37], [50], [63], [88], [116], [121],

[128]. For example, 75% of Azure VMs exhibit less than

25% CPU utilization [50]. Of note, this low CPU utilization

persists despite significant advances in cluster scheduling,

which allocate up to 85% of cores to VMs [39], [66], [116],

[121]. However, VMs frequently do not use these allocated

cores, which causes underutilization [50].

Other cloud server resources are similarly underutilized. For

example, average memory bandwidth utilization in Azure is

only ∼15% [41]. We find similar underutilization of SSD IOPS

and bandwidth. While underutilization occurs on most servers,

some customers’ VMs utilize all available performance. Thus,

the demand for higher per-core performance exists and is likely

to continue to exist on some servers.

Second, we find that customers continue to use old VM

generations even when higher-performing generations are

available. We even see new deployments of VMs that are

multiple generations behind the latest. Thus, the core-hours

of old VM generations continue to grow, which can require

running old VM generations on new servers, where components

like the CPU may be under-clocked to match old servers’

performance. Maintainability and compatibility in large code

bases may take precedence over new VMs’ higher performance.

Design goals and constraints for low-carbon servers. Our

goal is to reduce net cloud emissions by designing low-carbon

GreenSKUs. To this end, we must address three design goals.

(D1) Account for tradeoffs between operational vs. embodied
emissions. Operational and embodied emissions have complex

tradeoffs [88]. For example, reusing components reduces

embodied [64], but may increase operational emissions due to

worse energy efficiency. Thus, a GreenSKU that reduces cloud

emissions must balance operational and embodied emissions.

(D2) Account for data center impacts and side effects from
introducing GreenSKUs. Adding server SKUs to a data center

fleet can have side effects that may increase emissions. For

example, cloud providers deploy extra servers as a buffer to

absorb spikes in demand growth, to account for the time it takes

to deploy additional servers. Offering numerous server options

can reduce demand multiplexing among applications, which

may increase the variance in demand growth for each option.

Thus, adding many server options may require larger buffers,

increasing emissions. We detail this challenge in §IV-D.

(D3) Model performance and adoption impacts for user
applications. We must design a server that will be widely

adopted and in a way that reduces net emissions. This design

is challenging as many low-carbon components’ performance

is lower than the servers built under the FSP model (see §III).

III. OUR GREENSKU PROTOTYPES

The design space for GreenSKUs is large. We show the

practicality and effectiveness of building GreenSKUs that target
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CPU Characteristic Bergamo Rome(Gen 1) Milan (Gen 2) Genoa (Gen 3)
Cores per socket 128 64 64 80
Max core freq. (GHz) 3.0 3.0 3.7 3.7
LLC size per socket (MiB) 256 256 256 384
TDP (W) 350 240 280 300-350

TABLE I
COMPARING BASELINE AMD CPUS TO THE EFFICIENT BERGAMO CPU.

Fig. 2. Moving average (black) of raw (gray) normalized failure rates vs.
DDR4 DIMMs’ deployment time in production. Failure rates tend to stay
constant over a 7-year period.

the top three carbon contributors in compute servers: CPUs,

DRAM, and SSDs (Fig. 1), which cause 67% of a server’s

net emissions. We build GreenSKUs with efficient CPUs and

reduce embodied emissions by reusing DRAM and SSDs from

decommissioned servers. These designs are deployable today.

Other GreenSKU designs that reuse NICs or use low-power

DRAM may be feasible, but, yield low returns today. These

designs can help target residual emissions for a potential second-

generation GreenSKU. Future GreenSKU designs may also

include optimizations that are at a research stage today (e.g.,

leaner processor microarchitectures [65]). We design GSF to

flexibly consider various such GreenSKU designs.

Low-carbon components. We use three low-carbon compo-

nents in our prototype. First, we use efficient CPUs. Power-

efficient cores, which enable very high thread and core counts

for scale-out applications, are now widely available [102].

They include Ampere’s 192-core ARM CPUs [7], AMD’s 128-

core/256-thread x86 Bergamo CPUs [4], and Intel’s 288-core

x86 Sierra Forest CPUs [22]. Since these CPUs have 40%–60%

more cores at comparable power consumption to mainstream

CPUs, they significantly reduce operational emissions per core.

We specifically choose AMD Bergamo in our GreenSKU
prototype, as it provides the highest thread-count option on

the market today and has full support for Type 3 CXL devices

(CXL.mem), making it practically deployable in our cloud.

CXL 1.1
Controller

PCIe5 Interface

Old DDR4 DIMMs (~2015)

Old DDR4 DIMMs (~2015)

Fig. 3. Old DDR4, deployed starting in 2015, can be attached in new servers
with a CXL controller card that attaches to PCIe5.

Next, we consider reused DRAM. We find that it is practical

to reuse old DRAM in new servers. In a review of old server

life cycles at Azure, we find that numerous old DDR4 DIMMs

can be reused due to their host servers reaching the end of

their deployment. Critically, these old DIMMs show no sign

of increasing failure rates. Prior work notes that DRAM shows

no signs of aging within five years [106]. Fig. 2 shows failure

rates for DDR4 DIMMs in Azure over a 7-year deployment

period. After an initial period of higher Annual Failure Rates

(AFRs), they tend to stay constant [111]. While we do not

yet have at-scale data for beyond 7 years, internal accelerated

aging studies show that AFRs remain flat beyond 12 years.
Historically, reusing old DRAM was challenging as DDR

generations are not backward compatible, i.e., it was infeasible

to attach DDR4 in currently-deployed DDR5 servers. However,

with the wide availability of CXL [103], old DDR4 can be

attached to CXL controllers, which, in turn, are attached to

the modern PCIe5 interface. Fig. 3 shows an exemplary CXL

card that can hold DDR4 DIMMs. Reusing old DRAM can

significantly reduce embodied emissions at the cost of higher

operational emissions, due to more power consumed by CXL

and the old DIMMs’ lower density compared to new DIMMs.
We use off-the-shelf CXL controllers that support DDR4

(e.g., SMC [32], MXC [12]). We decommission a rack of

Azure servers that was deployed in 2018. These servers have

two sockets, each with six low-capacity and six high-capacity

DDR4 DIMMs. We reuse the high-capacity DDR4 DIMMs in

our prototype, attaching four DIMMs to each CXL controller.

Old SSD (~2015)

m
.2

In
te

rf
ac

e

e1
.s

In
te

rf
ac

e

Fig. 4. Old m.2 SSDs from 2015 can be attached in new servers with a
passive adapter card in the modern e1.s format.

Finally, we consider reused SSDs, as it is also practical to

reuse old SSDs in new servers. Similar to DRAM, the SSD

interface standard has moved from m.2 PCIe3 to E1.S PCIe5

drives. Fortunately, PCIe is backward compatible.
SSDs have enough lifetime left for reuse. Typically, modern

SSDs fail due to exhausting flash erasure cycles [91], [101].

After seven years, most SSDs offer more than half of the

guaranteed erasure cycles. Reusing SSDs can reduce embodied

emissions at the cost of higher operational emissions.
We use m.2 SSD drives from decommissioned Azure servers.

They are attached via an off-the-shelf passive PCB-adapter (e.g.,

2008M2 [24]), as shown in Fig. 4. Further, we 3D print cases,

so that the PCB fits into existing E1.s rails and cages.

Reused
DDR4

Reused
SSDs

e1.s

Reused
DDR4

Reused
DDR4 DDR5 DDR5efficient

CPU

2 
O

U

Fig. 5. Our GreenSKU-Full design with AMD’s efficient CPU, reused DDR4
DRAM (via CXL), and reused m.2 SSDs (via e1.s and PCIe adapters).

Prototype SKUs. In Fig. 5, we show a logical diagram of our

GreenSKU and an image of our GreenSKU prototype. We build

three GreenSKUs by incrementally adding each component.

1) GreenSKU-Efficient: a GreenSKU with AMD’s efficient

Bergamo CPU
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2) GreenSKU-CXL: GreenSKU-Efficient with reused DDR4

memory attached through CXL

3) GreenSKU-Full: GreenSKU-CXL with reused SSDs

The GreenSKU-Full design reuses 8 DDR4 DIMMs attached

via two CXL cards (2DPC). We also reused 12 old m.2 SSDs in

addition to two new E1.s drives. In aggregate, our components

use all 128 PCIe lanes on the AMD Bergamo server.

Performance characteristics. Low-carbon components may

have lower performance than baseline SKUs’ components. We

briefly describe these performance properties, which motivates

key components in GSF.

AMD Bergamo has a lower frequency and less LLC capacity

compared to three AMD generations deployed at Azure (see

Table I). Thus, Bergamo incurs 10% and 6% per-core slowdown

in Sysbench [77], relative to Genoa and Milan, respectively.

Reusing DDR4 memory via CXL incurs higher latency [81]

of about 280ns at medium load, compared to 140ns for local

DDR5 accesses. While CXL adds memory bandwidth on top

of DDR5, bandwidth per core may be lower than in baseline

SKUs. For example, 32 CXL/PCIe5 lanes offer about 100 GB/s

using CXL’s 256-byte interleaving [103]. AMD Genoa, with 80

cores and 460 GB/s, offers 5.8 GB/s per core. AMD Bergamo,

with 128 cores and 460 + 100 GB/s, offers 4.4 GB/s per core.

Our internal analyses show some deployed applications for

which memory bandwidth usage is growing, as well as many

important applications that exhibit low memory bandwidth

usage. We expect low-bandwidth applications to continuously

provide opportunities for memory reuse via CXL.

To reduce CXL-induced slowdowns, we use Pond’s ap-

proach [81]. We use hardware counters to identify which

applications can run entirely using CXL memory without facing

a slowdown. For other applications, we provision memory

across DDR5 and DDR4 and use Pond’s prediction model [81]

to identify untouched memory regions that can be located on

DDR4. On average, untouched memory is almost half of a

VM’s memory capacity [81]. When this untouched memory is

exposed as a virtual compute-less NUMA node, the VM leaves

it untouched and does not incur a slowdown [81]. This approach

ensures that 98% of applications incur <5% slowdown with

CXL, compared to running entirely with DDR5. In future CPUs,

hardware tiering can further improve CXL performance [136].

Reused SSDs also provide lower bandwidth and lower

random IO per second. In our measurements for random write

speeds, old SSDs offer 1GB/s and 250 IOPS, whereas new

SSDs offer 2.3 GB/s and 600 IOPS. We mitigate lower SSD

performance using multiple striped RAID sets that each offer

more bandwidth and IOPS than the FSP configurations. Due

to this mitigation, old SSDs have no adoption side effects.

Although we build our GreenSKUs using low-carbon com-

ponents, they may not be deployable due to the challenges

outlined in §II. Thus, we need a systematic way of accounting

for these challenges, to evaluate GreenSKUs’ benefits at scale.

IV. GSF: THE GREENSKU FRAMEWORK

To evaluate a GreenSKU, GSF estimates a data center’s

emissions from deploying a GreenSKU at scale. Thus, GSF

enables a cloud provider to evaluate different GreenSKU
designs. GSF systematically considers seven major factors that

influence a GreenSKU’s carbon savings at scale. GSF considers

each factor using distinct components in its framework, as

shown in Fig. 6. We believe GSF can be flexibly used by other

cloud providers, as it abstracts components’ relationships from

cloud-provider-specific component implementation details.

Assumptions. GSF estimates operational and embodied

emissions and excludes negligible direct emissions (§II). It

assumes that cloud users make SKU adoption decisions

based on application performance. However, GSF can also

accommodate other decision factors with minimal changes.

GSF considers key first-order effects of GreenSKU design

and assumes that other effects stay constant. For example,

it assumes that the total workload (e.g., application’s load),

networking emissions, and storage emissions remain the same.

While we have limited experience with using GSF within

automatic design space exploration tools, we recommend

humans in the SKU design process.

High-level overview. GSF’s initial inputs are highlighted in

yellow in Fig. 6. They are: (1) a target data center workload,

represented as a record of VM deployments over a time

period, (2) data used to calculate data center emissions, which

includes carbon data (e.g., a component’s power and embodied

emissions) and data center parameters (e.g., a component’s

lifetime), (3) component annual failure rates (AFRs), (4) a

GreenSKU design, (5) a set of currently-deployed baseline

SKU designs, and (6) a set of representative applications that

report their performance and can run on the GreenSKU. We

believe this framework specification is generic and can apply

to evaluate carbon optimizations beyond the ones we explore.

GSF’s final output is the data center emissions from deploy-

ing a GreenSKU. To estimate this final output, GSF calculates

the following intermediate outputs for both the GreenSKU
and baseline SKUs (shown in blue boxes in Fig. 6): (1) the

number of servers that must be deployed to serve a given data

center workload, (2) the cores per server, and (3) the carbon-

per-core emitted over the server’s lifetime. Multiplying these

intermediate outputs per SKU and adding all SKUs’ results

yields compute clusters’ carbon emissions. Then, adding in

other carbon sources (e.g., storage servers’ emissions) estimates

the overall data center emissions. Note that while we use cores

as the main server resource unit, other units can be substituted.

GSF formalizes relationships between components with

explicit definitions of inputs and outputs that connect each

component. These definitions account for dependencies between

components while allowing a cloud provider to implement a

component based on their unique cloud constraints. In §V, we

describe how we implement each GSF component at Azure.

We organize GSF’s components into three levels, i.e., the

server-, rack-, and data center-level, based on which physical

level of the data center the component models. We first detail

GSF’s carbon model (§IV-A) which spans all levels. We then

discuss each component in each level (§IV-B - §IV-D) by

specifying (1) which factor the component considers, (2) the

component’s inputs, and (3) the component’s outputs.
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Fig. 6. Overview of the GreenSKU Framework (GSF). Components are solid-
line boxes. GSF’s inputs are highlighted in yellow. Inputs and outputs between
components are in gray boxes. Each component contributes to producing the
necessary outputs, as shown in blue, to calculate data center emissions.

A. Carbon Model Component

GSF’s carbon model component must calculate a given

SKU’s emissions as a carbon dioxide equivalent (CO2e), which

is a common metric to measure global warming potential [94].

To calculate carbon, the model must estimate embodied emis-

sions and power consumption at the server, rack, and data center

level. The model’s inputs include server lifetime and the carbon

intensity of the energy consumed (CO2e/MWh). By accounting

for the operational emissions over the server’s lifetime, the

model can aggregate operational and embodied emissions.

Finally, the model must account for power consumed by onsite

non-IT equipment, e.g., cooling and power distribution devices,

to determine the Power Usage Effectiveness (PUE) factor.

The model must also amortize emissions across levels in the

data center. For example, a rack’s emissions can be divided

across the rack’s servers to amortize it. Thus, the model

must consider constraints on the number of servers-per-rack

and racks-per-data center, which depend on space and power.

Moreover, as components can have different lifetimes, each

component’s embodied emissions must be normalized.

To model emissions at the application level, the carbon

model must output emissions amortized at a hardware resource

granularity that allows attributing emissions to VMs. For

example, we chose to use CO2e-per-core as a common metric

and output of this model.

B. Server-Level Components

We identify server performance and maintenance as the main

considerations that directly influence a GreenSKU’s emissions.

Performance. Since an application running on a GreenSKU
may face a lower performance-per-core, it may scale up/out

to suitably serve the target workload. GSF’s performance

component must quantify such performance effects.

As shown in the bottom table in Fig. 6, the performance

component profiles a GreenSKU’s relative performance. To

this end, it takes as input (1) the GreenSKU and baseline SKU

designs to compare against and (2) representative applications

that each report a metric to define the application’s performance

(e.g., tail latency, peak throughput, low-load latency).

This component outputs a scaling factor for each application.

This factor defines how many GreenSKU cores per baseline

SKU core are needed for a VM to achieve the applica-

tion’s performance goals. To maintain accurate application

characterization over time, GSF can work in tandem with

existing capacity planning approaches, such as Flux [53], which

maintains an active view of the major services in a data center.

Maintenance. When server failures occur, a fraction of

servers are out of service, waiting to be repaired [89]. These

failures result in the need for additional servers, i.e., an out-of-

service overhead. Since GreenSKUs can influence the rate

of server failures, this overhead must be calculated (e.g.,

using server components’ AFRs). The maintenance component

outputs out-of-service overheads for all SKUs.

C. Cluster-Level Components

A GreenSKU’s adoption and VM allocation can impact the

entire compute cluster’s design and efficiency.

Adoption. GSF’s adoption component helps decide which

applications in the target workload can run on a GreenSKU
while meeting deployment goals (e.g., performance goals).

As performance is often a first-order goal for applications,

this component’s inputs are (1) each application’s scaling factor

as outputted by the performance component and (2) the CO2e-

per-resource value for the baseline SKUs and GreenSKU from

the carbon model. The carbon information enables the adoption

component to balance a GreenSKU’s carbon savings against

the carbon cost of additional server resources required to

scale on the GreenSKU. If applications have other deployment

constraints (e.g., an application requiring a full baseline server

to run on), they must be annotated with such constraints.

The adoption component outputs whether each application

should adopt the GreenSKU, i.e., whether the GreenSKU meets

applications’ goals and reduces carbon emissions.

VM allocation and packing. Server design impacts how well

VMs can be packed into a cluster: a logical unit of hundreds of

servers to which a VM deployment is routed. Packing density,

which is the ratio of allocated to allocatable resources, such as

CPU cores and memory, on non-empty servers [66], directly

affects the required number of servers. Packing density is

influenced by a GreenSKU’s resource capacities and the number

of servers in a cluster. The VM deployment also defines the

workload demand over time that the cluster must serve.

This component takes as input (1) a VM workload, which

defines a trace of server resource requests, (2) the adoption

and scaling factor for each application to account for which

VMs can run and then must scale on GreenSKUs, and (3)

457

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 08,2026 at 01:55:35 UTC from IEEE Xplore.  Restrictions apply. 



the cluster configuration, i.e., the number of GreenSKUs and

baseline SKUs, that is being used to support the VM workload.

This component leverages packing efficiency information to

output whether the given cluster configuration can support the

workload without rejecting any VM’s resource requests.

D. Data Center-Level Components

We identify two factors, cluster sizing and growth buffers,

that influence the total number of servers required across all

compute clusters in a data center.

Cluster sizing. The cluster sizing component’s goal is

to determine how many baseline SKUs and GreenSKUs
are required to service a data center’s VM workload. This

component must determine the maximum portion of the cluster

that can run GreenSKUs while still servicing the demand from

applications that cannot adopt the GreenSKU.

To this end, this component takes as input (1) the VM

allocation component’s output, i.e., whether a given cluster of

GreenSKUs and baseline SKUs can support a workload and

(2) the maintenance component’s output, i.e., the servers’ out-

of-service overhead, which influences how clusters are sized

to manage out-of-service GreenSKUs and baseline SKUs.

This component tunes the cluster size using the VM alloca-

tion component to check if a cluster can host the workload trace,

via simulation. The final output is the number of GreenSKUs
and baseline SKUs in a right-sized cluster configuration.

Growth buffer. Following standard inventory management

practices, a cloud provider maintains a growth buffer, i.e.,

extra server capacity to absorb spikes in VM deployment

growth rates, thus mitigating delays in acquiring and deploying

additional servers. This buffer is sized to trade off the cost

of deploying unused capacity with the risk and subsequent

opportunity cost of not having enough capacity.

To determine the growth buffer size, this component’s input

is the cluster sizing component’s final output, which provides

a cluster configuration that is properly sized for a certain VM

workload demand while not considering future growth.

This component’s output is the total number of GreenSKUs
and baseline SKUs required in a cluster deployment to both

service the current demand and also handle VM deployment

growth using the growth buffer.

V. GSF IMPLEMENTATION FOR AZURE

To evaluate the carbon savings of the three GreenSKUs we

built (see §III), we implement each GSF component under

Azure’s production constraints.

Implementing GSF’s carbon model component. Our

carbon model implementation aggregates embodied and opera-

tional emissions from server, rack, and data center components.

We build on prior carbon models [64], [115] to model server

emissions in the cloud. Similar to the ACT model [64],

we calculate server-level emissions by aggregating server

components’ embodied and operational emissions.

First, to model operational emissions, we calculate average

server power (Ps), which includes the power consumed by

each server component, including CPUs, DIMMs, SSDs, NICs,

CXL controllers, fans, and secure control management boards.

Typically, a server’s average power consumption is lower

than the sum of its components’ TDP [79]. Thus, we scale

components’ TDP using a derating factor, d. We model

inefficiencies in power electronics (e.g., voltage regulators)

using a loss factor, l. Thus,

Ps =
( ∑

comp. i

TDPi ∗ di
)
(1 + l) (1)

To model rack-level power (Pr), we estimate each rack-level

component’s power and the number of servers per rack (Ns):

Pr = Ns ∗ Ps +
∑

rack comp. j

Pj (2)

To calculate Ns, if Pr,cap is the rack’s power capacity and

Ns,cap is the number of servers that can fit in the rack: Ns =
min(�Pr,cap/Ps�, Ns,cap).

Then, to model the data center’s power (PDC), we use the

number of racks (Nr), the power dedicated to networking and

storage (X), and PUE: PDC = (Nr ∗ Pr + X) ∗ PUE. We

calculate Nr similarly to how we calculate Ns, except using

data center space/power limitations for compute racks. Since a

data center’s operational emissions depend on server lifetime

(L) and the energy source’s carbon intensity (CI), its operational

emissions are: Eop,DC = PDC ∗ L ∗ CI , which includes server-

(Eop,s) and rack-level (Eop,r) operational emissions.

Next, we model embodied emissions by aggregating a data

center components’ embodied emissions. To model a server’s

embodied emissions (Eemb,s), we use carbon data derived

using a model similar to those in the literature [64]. To

model the carbon embodied in silicon chips, circuit boards,

auxiliary electronics, server chassis, and power supplies, we use

component tear downs, CO2e/cm2 data, and CO2e/kg values

from public and private data sources [21], [25]. Similar to prior

work [115], we consider reused server components to be in

their “second life,” with zero embodied emissions.

To model rack-level embodied emissions (Eemb,r), we add

embodied emissions from servers, rack structures, and other

rack-level hardware (e.g., power bus, rack controller):

Eemb,r = Ns ∗ Eemb,s +
∑

rack comp. j

CO2ej (3)

To model data center-level embodied emissions (Eemb,DC),

we add the embodied emissions from compute racks, net-

working/storage (Y ), and the non-IT equipment/building (Z):

Eemb,DC = Nr ∗ Eemb,r + Y + Z.

Finally, we determine the final CO2e-per-core value by first

calculating the number of cores in the data center: Nc,DC =
Nc,s ∗Ns ∗Nr, where Nc,s is the number of cores per server.

Then, the CO2e-per-core is: (Eop,DC + Eemb,DC)/Nc,DC.

We now show an example of how we calculate emissions at

the server- and rack-level using our above model. For brevity,

we omit data center-level carbon calculations, which are similar

to rack-level carbon calculations. In our carbon model, we use

proprietary carbon values. As we are unable to open-source

this data, in this example, we use values from public datasets
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of components’ carbon, as well as best-effort estimates when

data is unavailable. From these datasets, we source embodied

emissions and power data for key GreenSKU-CXL components—

CPU, DRAM, SSD, and CXL controller. We provide this data

in Table V in Appendix A. We describe key carbon calculations

for brevity2, round intermediate calculations’ outputs, and show

how to calculate amortized emissions across CPU cores.

To calculate GreenSKU-CXL’s embodied emissions, Eemb,s,

we multiply each server component’s capacity by its embodied

emissions-per-capacity. GreenSKU-CXL has an AMD Bergamo

CPU, 768GB of DDR5 DRAM, 256GB of reused DDR4

DRAM, 20TB of SSD, and a CXL controller. Thus, for example,

to calculate the DDR5 DRAM’s embodied emissions, we

multiply its capacity (768GB) with its embodied emissions-

per-capacity (1.65 kgCO2e). We then add these components’

embodied emissions to calculate a total Eemb,s of 1644 kgCO2e.

To estimate GreenSKU-CXL’s operational emissions, we

use Eq. 1 to calculate server-level power as the product of

each component’s capacity, TDP-per-capacity, and derating

factor, while considering losses from power electronics. As an

example of power loss, we model that the CPU faces a 5%

power overhead from its voltage regulator losses. We derive

the derating factor as a fraction of TDP utilization at a given

percentage of max SPEC rate [122]; at 40% SPEC rate, the

corresponding derating factor is 0.44. Applying this derating

factor to every component, Eq. 1 results in Ps = 403W.

Next, we calculate rack-level emissions. Since there is a

lack of public data on an empty rack’s emissions, we use the

estimates for a rack’s TDP and embodied emissions in Table V.

To calculate rack-level emissions, we consider the number

of servers in a rack; a rack with 32U of space available for

servers can fit 16 GreenSKU-CXL servers with a form factor

of 2U. We calculate rack power constraints by subtracting the

rack’s power (500W) from the rack’s power capacity limit

(15,000W) and dividing by the server-level power, Ps, i.e.,

�(15, 000− 500)/403� = 35. As this value is greater than 16,

the rack is space-constrained to Ns = 16 servers.

To calculate rack-level embodied emissions, we use Eq. 3 to

multiply the number of GreenSKU-CXLs and the server-level

embodied emissions. We then add an empty rack’s embodied

emissions, i.e., Eemb,r = 16 ∗ 1644 + 500 = 26, 804 kgCO2e.

To calculate rack-level operational emissions, we apply Eq. 2

to calculate rack-level power, Pr. An empty rack’s power

consumption is 500W. Thus, Pr = 16 ∗ 403 + 500 = 6953W.

The lifetime of our servers, L, is 6 years (52, 560 hours).

We calculate that CI = 0.1 kgCO2e/kWh by averaging the

estimated carbon intensity across Azure’s large data center

regions. Thus, Eop,r = L ∗ CI ∗ Pr = 36, 547 kgCO2e.

The net rack-level emissions, Er, is the sum of a rack’s

operational and embodied emissions, i.e., Er = Eop,r+Eemb,r =
26, 804 + 36, 547 kgCO2e = 63, 351 kgCO2e.

Finally, we calculate the rack-level CO2e-per-core by di-

viding Er by number of cores in a rack, Nc,r. To calculate

2The complete set of calculations using our open-source carbon model [18]
is in Appendix A.

Nc,r, we multiply the number of servers in a rack by the

number of cores per server, i.e., Nc,r = 16 ∗ 128 = 2048.

GreenSKU-CXL’s rack-level CO2e-per-core is then Er/Nc,r =
63, 351/2, 048 kgCO2e = 31 kgCO2e.

Implementing GSF’s performance component. Prior work

identifies that six application classes run in the majority of VMs

in Azure [95]. They include: (1) big data (e.g., in-memory data

stores), (2) web applications (e.g., information retrieval), (3)

real-time communication or RTC (e.g., speech recognition), (4)

Machine Learning (ML) inference (e.g., image recognition), (5)

web proxy (e.g., front-end web server), and (6) DevOps (e.g.,

code compilation). The reported share of production core-hours

for each application class [95] is shown in Table III.

Across these six classes, we benchmark 20 open-source

and closed-source applications’ performance. For big data,

we study Redis [43]: an in-memory key–value store,

Masstree [74], [90]: a key-value database, Silo [74],

[108]: an Online Transaction Processing (OLTP) database, and

Shore [68], [74]: an OLTP database. For web applications,

we study Xapian [33], [74] and four Microsoft production

services—WebF-Dynamic, WebF-Hot, WebF-Cold, and

WebF-Mix. For RTC, we study Moses: a speech translation

service [74], [130] and Sphinx [74], [80]: a speech recognition

service. For ML inference, we study Img-DNN [74]—an

image recognition service. For web proxy, we study front-

end web servers like Nginx [109], Caddy [58], Envoy [16],

HAProxy [19], and Traefik [104]. For DevOps, we evaluate

Build-Python, Build-Wasmer, and Build-PHP.

We measure a GreenSKU’s performance by setting a Service

Level Objective (SLO) based on a baseline SKU’s performance.

Our baseline SKUs are three deployed server generations, Gen

1, 2, 3 (see Table I). Successive baseline SKUs use newer

hardware and have better performance. To achieve comparable

performance as the high-performance baseline SKU, we scale

up the number of VM cores on the GreenSKU to 8, 10, and

12 cores and compare the resulting performance against an

8-core VM running on the baseline SKU. Using these results,

we calculate the scaling factors relative to each baseline SKU.

Implementing GSF’s maintenance component. We use

Little’s law [107] to estimate that the fraction of out-of-service

servers is the product of average repair time and server AFR.

From observations at Azure, we find that our GreenSKUs’

design choices do not significantly affect repair time. Our

GreenSKUs’ components like reused DIMMs and SSDs are

easily accessible, and diagnosing them is a well-established

process due to their previous deployment at Azure.

To estimate our GreenSKU-Full’s AFR, we must consider

failures from reusing older DIMMs and SSDs. These compo-

nents typically increase server AFR, as they often fail even in

baseline SKUs3. We approximate the average failure rate by

adding these components’ AFRs4. For example, a baseline SKU

with 12 DIMMs and 6 SSDs has an AFR of 4.8. Our GreenSKU-

3DIMMs and SSDs constitute half of a server’s AFR [89], with AFRs of
approximately 0.1 and 0.2, respectively.

4Concurrent failures largely occur due to class failures, e.g., recalls for
production days of a component, and occur rarely for old reused components.
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Full has 20 DIMMs and 14 SSDs (Table IV), causing an AFR

of 7.2. We use the same AFRs for new and reused components,

as we empirically observe that reused DIMMs and SSDs have

lower or equal AFRs than new components (§II).

To reduce repair rates, we use Fail-In-Place (FIP) [89] at

Azure. FIP is highly effective for GreenSKU-Full, due to its

large number of DIMMs and SSDs. Using a conservative FIP

effectiveness rate of 75% for DRAM and SSD [89], the repair

rate per 100 servers for the baseline SKU and GreenSKU-Full
reduces to 3 and 3.6 (from AFRs of 4.8 and 7.2), respectively.

We now estimate the higher maintenance emissions, COOS ,

due to GreenSKU-Full’s higher repair rate. COOS is the product

of a SKU’s per-server repair rate, the number of servers (Ns)

needed to run our applications, and the per-server emissions

(Es). On average, we need 0.66 GreenSKU-Fulls per baseline

SKU, when we factor in a GreenSKU-Full’s increased resources

while scaling VM cores to match baseline SKU performance.

However, we must also account for our GreenSKU-Full’s per-

server carbon being 26.2% higher than the Gen3 baseline

SKU, as GreenSKU-Full has more resources. On multiplying

the calculated repair rate, Ns, and Es normalized to the baseline

SKU’s Es, we get: COOS = 3×1×1 = 3 for the baseline SKU

and COOS = 3.6× 0.66× 1.262 = 2.98 for GreenSKU-Full.
Thus, GreenSKU-Full’s maintenance overheads are negligible.

Implementing GSF’s adoption component. Our adoption

component assumes that cloud users aim to reduce their

applications’ emissions while meeting performance goals. Thus,

to decide whether an application can adopt a GreenSKU, we

calculate the carbon required to service the application on a

GreenSKU. To this end, we multiply the number of GreenSKU
cores needed to achieve the baseline SKU’s performance

(determined from GSF’s performance component) by the CO2e-

per-core determined from the carbon model. We also calculate

this value for the baseline SKU, using 8 cores and the baseline

SKU’s CO2e-per-core. We model that an application will adopt

a GreenSKU if the calculated carbon value to run the application

on the GreenSKU is lower than the baseline’s, i.e., running on

the GreenSKU saves carbon while meeting performance goals.

We repeat this step for each representative application.

Implementing GSF’s VM allocation component. To

evaluate how effectively varied-sized VMs can be packed within

GreenSKU servers, we use a VM allocation simulator that

captures Azure’s production scheduler’s key VM placement

rules. These rules include (1) using best-fit placement heuristics

that reduce resource fragmentation, (2) preferring to place

VMs on non-empty nodes, and (3) enforcing VM placement

constraints. Our simulations use real VM arrival/departure

traces and VM configurations from multiple Azure data centers.

Since the applications running in VMs are opaque in

production traces, we assign each VM in our trace to one of

our representative benchmark applications. We determine the

application class by sampling from the core hour percentages

in Table III. We then uniformly sample from that application

class to assign an application to the VM.

The VM’s server generation (i.e., Gen 1, 2, or 3) is pre-

defined in our traces. We determine whether a VM can run its

application on a GreenSKU instead, i.e., adopt it, using our

adoption model and the VM’s application assignment. If a VM

can adopt the GreenSKU, we multiply the VM’s core count

and memory allocation size by the scaling factor required to

run its application on the GreenSKU. We use the scaling factor

that corresponds to the VM’s pre-defined server generation.

Apart from VMs that do not adopt the GreenSKU, we have

long-living “full-node VMs” that require a dedicated server.

We strictly assign these VMs to baseline SKUs, as they have

fewer resources, i.e., dedicating a GreenSKU’s increased cores

and memory to such a VM would cause wasted resources.

Implementing GSF’s cluster sizing component. We use

the VM arrival/departure trace and each VM’s GreenSKU
adoption decision to determine how many baseline SKUs and

GreenSKUs are required to serve the cluster’s VM workload.

We find the number of such servers using our VM allocation

simulator. To this end, we first right-size a baseline SKU-

only cluster by increasing the number of simulated servers

until no VM is rejected, i.e., identify the minimum number

of servers in a baseline SKU-only cluster that can host all

VMs. Next, we incrementally replace each baseline SKU with

enough GreenSKU servers until no VM is rejected. We repeat

this process until we can no longer replace baseline SKUs,

to identify the right number of baseline SKUs required to

run the VMs that cannot adopt the GreenSKU. This search

identifies the cluster size of GreenSKUs and baseline SKUs

that minimizes emissions while supporting our VM workload.

Implementing GSF’s growth buffer component. Typically,

the growth buffer size is calculated using models that require

historical workload trends [49]. As we do not have such trends

for a new GreenSKU, we use a workaround that enables a

VM to fungibly run on a GreenSKU while there is enough

GreenSKU capacity available. If there is no such capacity, the

VM may also run on a baseline SKU. This approach maintains

the growth buffer using only baseline SKUs, whose historical

workload trends are available. It also overcomes the need for

multiple buffers, simplifying GreenSKU deployment. However,

this approach marginally increases emissions, as the entire

buffer has carbon-inefficient baseline SKUs. We consider these

emissions in our savings estimate.

VI. EVALUATING OUR GREENSKUS USING GSF

We use our GSF implementation at Azure to evaluate our

GreenSKUs from §III. We compare each of our GreenSKUs,

i.e., GreenSKU-Efficient, GreenSKU-CXL, and GreenSKU-Full,
against baseline SKUs from three generations. Since we noted

the quantitative carbon contributions of some GSF components

(e.g., maintenance) earlier, in §V, we omit those components.

Evaluating GreenSKUs’ performance and adoption. To

evaluate our GreenSKUs’ performance, we measure the 95th%
tail latency across different Queries Per Second (QPS) loads for

one representative applications in each application class. Similar

to prior work [46], [85], [137], we set applications’ SLO as the

95th% (tail) latency achieved at 90% of the compared baseline

SKU’s peak saturation throughput. Across all experiments with

these applications, we conduct three trials and report our data
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Fig. 7. 95th% tail latency vs. load (QPS) for applications spanning five of our
six application categories. Tail latency is shown for 8-core configurations for
the Gen3 baseline SKU (in orange). Results for GreenSKU-Efficient are shown
up to the scaling required to achieve comparable performance, if possible, to
Gen3. The dotted orange line indicates an SLO set using Gen3’s latency at
90% of peak load. For some applications (e.g., Xapian and Nginx), our
GreenSKU-Efficient can achieve the SLO with scaling; for other applications
(e.g., Masstree), the scaling required outweighs carbon savings.

DevOps App. Gen1 Gen2 Gen3 GreenSKU-
Efficient GreenSKU-CXL

Build-PHP 1.27 1.11 1.00 1.17 1.38
Build-Python 1.28 1.13 1.00 1.15 1.21
Build-Wasmer 1.34 1.19 1.00 1.15 1.28

TABLE II
GREENSKU-EFFICIENT’S NORMALIZED SLOWDOWN COMPARED TO

BASELINE SKUS WHEN COMPILING THREE DEVOPS PROGRAMS.

with 99% confidence intervals. We also measure 99th% latency

and notice similar behaviors.

We first evaluate GreenSKU-Efficient’s performance and

adoption. We study 20 applications running on GreenSKU-
Efficient and compare its performance against the baseline

Gen 1, 2, 3 servers. For brevity, in Fig. 7, we show the

95th% (tail) latency across different loads for one representative

application in each application class. To compare performance

and determine the scaling factors, we scale the number of VM

cores on GreenSKU-Efficient to 8, 10, and 12 and compare the

resulting tail latency against an 8-core VM running on Gen 1,

2, 3 servers. We show results up to the minimum number of

cores on GreenSKU-Efficient that achieves a peak saturation

throughput closest to our Gen3 server. We omit results for Gen1

and Gen2, as they consistently perform worse than Gen3.

We observe that for applications such as Masstree, even

with 12 cores, GreenSKU-Efficient cannot match Gen3’s peak

throughput, and violates SLOs beyond 6000 QPS. However,

for other applications, such as Xapian, Moses, and Nginx,

GreenSKU-Efficient achieves SLOs with 10–12 cores. Thus,

GreenSKU-Efficient effectively meets the performance goals

of several latency-critical applications, albeit with scaling.

Next, we show our DevOps applications’ results in Table II

separately, as they only report throughput. We report average

GreenSKU Performance
Scaling Factor

Application Category % of Fleet
Core Hours Application Gen1 Gen2 Gen3

Redis 1 1 1
Masstree 1 1 >1.5

Silo >1.5 >1.5 >1.5
Big Data 32

Shore 1 1 1

Xapian 1 1 1.5
WebF-Dynamic * 1 1.25 1.25

WebF-Hot * 1 1.25 1.5
WebF-Cold * 1 1 1

Web App 27

WebF-Mix * 1 1 1

Moses 1 1 1.25
Real-Time Communication 24

Sphinx 1 1.25 1.25

Machine Learning Inference 11 Img-DNN 1 1 1

Nginx 1 1 1.25
Caddy 1 1 1
Envoy 1 1 1

HAProxy 1 1 1.25
Web Proxy 4

Traefik 1 1 1.25

Build-Python 1 1 1.25
Build-Wasmer 1 1 1.25DevOps 1

Build-PHP 1 1 1.25

TABLE III
GREENSKU-EFFICIENT’S PERFORMANCE SCALING FACTOR COMPARED TO

GEN 1, 2, 3 FOR EACH APPLICATION. “∗” IS A PRODUCTION APPLICATION.

slowdowns normalized to the Gen3 server, when using 8 cores.

GreenSKU-Efficient outperforms Gen1 for all applications,

while facing only 1.15x-1.17x slowdown compared to Gen3.

We repeat these experiments for all 20 applications, calcu-

lating the scaling factors required relative to the three baseline

SKUs. We report these scaling factors in Table III.

For seven applications, GreenSKU-Efficient meets Gen3’s

SLO without any scaling. For another nine applications,

scaling by 25% is required to achieve Gen3’s SLO. Some

applications, such as Silo, have a significant scaling factor.

Our GSF adoption component’s implementation notes that

these applications cannot be run on GreenSKU-Efficient, as

they offset GreenSKU-Efficient’s carbon savings. These results

show that GSF can help determine scaling factors to identify

when an application can be deployed on a GreenSKU to achieve

carbon savings while meeting performance goals.

As with prior work [46], [119], we define 30% of peak

throughput as “low” load to measure GreenSKU-Efficient’s
impact on low-load latency, which is a key metric for some

latency-critical applications. We compare the low-load latency

of each application running on GreenSKU-Efficient when

scaled with the scaling factor relative to our baseline SKUs.

Running on GreenSKU-Efficient results in a median low-load

latency (across applications) that is 8.3% and 2% lower than

Gen1 and Gen2, respectively, and 16% higher than Gen3. As

applications often express SLOs in terms of tail latency and

peak throughput [95], this 16% increase in low-load latency is

unlikely to significantly impact the GreenSKU’s adoption.

Next, we study GreenSKU-CXL’s performance by evaluating

the performance impact of reusing older memory via CXL. In

Fig. 8, we show the 95th% latency vs. load for two represen-

tative applications, Moses and HAProxy, that, respectively,

exhibit a high and low latency penalty with CXL compared to

GreenSKU-Efficient’s performance.

We find that running on GreenSKU-CXL greatly affects
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Fig. 8. 95th% tail latency vs. load for an application that is more (Moses)
and less (HAProxy) impacted by reusing memory via CXL. The number of
cores is equivalent in both GreenSKU configurations and is the number of
cores required to achieve that application’s SLO relative to Gen3.

Moses’s performance. Moses saturates early, at 1700 QPS,

and fails to meet the SLO from 1200 QPS. Since Moses uses

speech language models that have a large memory footprint, it

is significantly memory bound. Thus, its performance is heavily

impacted by the increased memory latency with CXL.

In contrast, HAProxy meets the SLO across most high load

conditions and only faces an 11% reduction in peak throughput

compared to GreenSKU-Efficient. Since HAProxy is a load

balancer that is compute- and network-bound, its performance

is minimally affected when running on GreenSKU-CXL.

We note that 20.2% of our applications, weighted by pro-

portion of fleet core-hours, do not face significant performance

penalties when running on GreenSKU-CXL. These applications

can run in VMs whose entire memory is backed by CXL. Other

VMs can benefit from running on a GreenSKU that uses a mix

of DDR5 and CXL-attached DDR4 memory (§III).

Evaluating GreenSKUs’ impact on VM packing. We now

evaluate how well we can pack VMs on our GreenSKUs. We

run VM packing simulations on 35 production VM traces. For

each trace, we select the minimum size of the baseline SKU

and GreenSKU clusters that avoid VM rejection.

Fig. 9 shows the mean VM packing densities’ distribution

across production traces, comparing right-sized clusters of

baseline SKUs and GreenSKU-Fulls. We find different VM

packing densities across the baseline SKU and GreenSKU-
Full due to differing core counts, i.e., 80 vs. 128 cores, and

memory:core ratios, i.e., 9.6 vs. 8, respectively. The baseline

SKU’s higher memory:core ratio causes higher core-packing

density at the expense of memory wastage. Thus, we show how

GSF’s VM allocation and cluster sizing components can help

study VM packing on GreenSKUs and its impact on emissions.

The packing density also helps understand server compo-

nents’ utilization. Using the packing density, we validate if we

can back untouched memory with reused DRAM via CXL, thus

reducing CXL-induced performance loss. To this end, we note

that in our VM traces, each VM reports the maximum amount

of its allocated memory that it uses over its lifetime. We replay

each trace and periodically take snapshots of the servers, to

aggregate the maximum memory usage across all VMs on

each server. We then average across servers and snapshots to

identify a trace’s average maximum memory utilization.

We show a CDF of the mean per-server maximum memory

utilization in Fig. 10 for clusters with both baseline-only

SKUs and GreenSKU-CXLs. The shaded portion is the 25% of

Fig. 9. CDF of the mean packing density for core (solid) and memory
(dashed) across servers for each trace. We show the packing density for the
all-baseline cluster (in orange) and the GreenSKU-Fulls in the final simulated
cluster (in green). Our GreenSKU-Full design makes a carbon tradeoff, as it
shows better memory packing density with worse core packing density.

Fig. 10. CDF of the mean per-server maximum memory utilization across
all servers for a cluster of baseline SKUs and GreenSKU-CXL. The shaded
region indicates memory accessed through CXL on the GreenSKU. Almost all
servers can service their VMs’ memory demand with local DDR5 memory.

memory reused via CXL. In most traces, we see a maximum

memory utilization below 60%, which can be accommodated

by GreenSKU-CXL’s local memory. Only 3% of traces have a

memory utilization that would require using CXL.

Moreover, we can leverage our observation that CXL does

not cause a performance loss for 20% of our applications, to

schedule these applications to use CXL-backed memory. Thus,

using the VM allocator, we show that reusing DRAM via CXL

does not significantly impact GreenSKU-CXL’s adoption.

Evaluating GreenSKUs’ carbon savings. We now evaluate

our GreenSKUs’ carbon savings using the average grid carbon

intensity across major Azure data center regions. Table IV

shows our GreenSKUs’ per-core operational and embodied

emissions savings over the Gen3 baseline SKU. “Baseline-

Resized” is the baseline SKU when its memory:core ratio is

reduced from 9.6 to 8. This ratio is carbon-optimal for our

workload traces, based on GSF’s estimates. Thus, “Baseline-

Resized” saves 4% carbon compared to the baseline SKU (3%

operational and 6% embodied carbon savings).

GreenSKU-Efficient uses the carbon-optimal memory:core

ratio of 8 with its efficient CPU. Due to its efficient CPU’s lower

power consumption per core, GreenSKU-Efficient saves 29%

in operational emissions. Furthermore, as GreenSKU-Efficient
leads to more cores per server and rack, it better amortizes the

rack- and data-center-level embodied emissions per core. Thus,

GreenSKU-Efficient saves 14% embodied emissions per core,

resulting in 23% net per-core carbon savings.

GreenSKU-CXL replaces 30% of GreenSKU-Efficient’s mem-

ory with 32GB DDR4 DIMMs connected via CXL. Since these

CXL controllers consume additional power, GreenSKU-CXL
achieves 6% lower per-core operational emission savings com-

pared to GreenSKU-Efficient. However, due to DDR4 memory

reuse, GreenSKU-CXL saves 11% more per-core embodied

emissions compared to GreenSKU-Efficient, improving the net

per-core savings by 1% compared to GreenSKU-Efficient.
Finally, GreenSKU-Full replaces 60% of GreenSKU-CXL’s
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SKU
Config.

#
Cores

# × DIMM
(GB)

# × SSD
(TB)

Operational
Savings

Embodied
Savings

Total
Savings

Baseline 80 12 × 64 6 × 2 - - -
Baseline-
Resized 80 10 × 64 6 × 2 3% 6% 4%

GreenSKU-
Efficient 128 12 × 96 5 × 4 29% 14% 23%

GreenSKU-
CXL 128

12 × 64
8 × 32 CXL

5 × 4 23% 25% 24%

GreenSKU-
Full 128

12 × 64
8 × 32 CXL

2 × 4
12 × 1 Reuse

17% 43% 28%

TABLE IV
PER-CORE OPERATIONAL, EMBODIED, AND TOTAL CARBON SAVINGS

(CALCULATED BASED ON THE AVERAGE CARBON INTENSITY FOR MAJOR

AZURE REGIONS) RELATIVE TO OUR GEN3 BASELINE SKU FOR FOUR

INCREMENTAL GREENSKU CONFIGURATIONS.

Fig. 11. End-to-end cluster-level carbon savings relative to clusters of all
baseline SKUs across a range of carbon intensities evaluated for our three
GreenSKU configurations. The vertical lines mark estimated carbon intensities
for the energy used by three Azure data center regions [26]. The best GreenSKU
design depends on the data center’s operating conditions.

storage with reused SSDs. As reused SSDs are less energy

efficient, GreenSKU-Full saves 6% lesser per-core operational

emissions compared to GreenSKU-CXL. However, due to SSD

reuse, GreenSKU-Full saves 18% more embodied emissions

compared to GreenSKU-CXL. Thus, GreenSKU-Full achieves

a 28% per-core carbon savings compared to the baseline SKU.

We now evaluate our GreenSKUs’ cluster-level carbon

savings. We compare the carbon savings achieved by a cluster

of GreenSKUs and baseline SKUs against a cluster of all

baseline SKUs. In Fig. 11, we show the cluster-level carbon

savings achieved by GreenSKU-Efficient, GreenSKU-CXL, and

GreenSKU-Full. We evaluate across a spectrum of carbon

intensity values. We annotate the carbon intensities for the

energy used by three Azure data center regions.

The cluster with GreenSKUs saves 6%–25% carbon com-

pared to the baseline SKUs’ cluster. The lower-carbon Green-
SKU configuration depends on the carbon intensity of the data

center’s grid, which affects operational emissions. At higher

carbon intensity, as with the Azure-europe-north data

center region, GreenSKU-Efficient saves more carbon as it

does not have inefficient reused components. At lower carbon

intensity, as with the Azure-us-south region, saving

embodied emissions matters more. Thus, GreenSKU-Full saves

more carbon as it saves more embodied emissions from reuse.

VII. WHY DESIGN GREENSKUS?

We detail why reducing emissions by deploying GreenSKUs
(1) also reduces cost and (2) is more practical compared to other

cloud emission reduction approaches. We use the flexibility of

our GSF’s carbon model to perform such comparisons.

A. GreenSKU Cost Analysis

GSF can be adapted to analyze GreenSKUs’ effect on Total

Cost of Ownership (TCO) by replacing the carbon model with

a TCO model. Since TCO data is sensitive, we share high-level

insights from our TCO analysis.

Our TCO analysis reveals that a cost-efficient server SKU is

only 5% less costly compared to our carbon-efficient GreenSKU.

This relatively small TCO loss may be tolerable to a cloud

provider seeking to meet aggressive decarbonization targets.

Moreover, cloud providers can use GSF to evaluate other SKUs

that achieve the required carbon vs. cost tradeoff.

B. GreenSKU vs. Other Carbon Reduction Strategies

To reduce emissions, prior work has proposed (1) in-

creasing renewables use [10], (2) improving servers’ energy

efficiency [93], and (3) increasing server lifetimes [115], [126].

We comment on how designing GreenSKUs can be a more

practical and complementary approach to reduce emissions.

Increasing renewable generation. Cloud providers reduce

emissions by increasing renewable energy use [1], [10]. We

calculate that an increase of 2.6% in the percentage of energy

coming from renewables for the average Azure data center is

required to match our GreenSKU-Full’s data center-wide carbon

savings. While this increase appears small, there are major

challenges in realizing it. First, in many parts of the world,

including the United States, grid decarbonization has been

slow due to infrastructural and political challenges, with the

renewable percentage increasing by 1.2% annually on average

in the last five years [15]. Second, it is challenging for a data

center to fully utilize an increase in renewables; prior work

suggests that increasing renewable energy coverage from 95%

to 99.9% requires investing 5× the cost required to go from

0% to 95%, due to the long tail in generation variance [35].

Improving server energy efficiency. Improving energy effi-

ciency reduces operational emissions [64], [131]. We analyze

how much servers’ energy efficiency must increase to achieve

our GreenSKU-Full’s data center-wide carbon savings. We

optimistically assume that improvements in energy efficiency

(1) do not increase embodied emissions and (2) occur uniformly

across server components. We use the current average grid

intensity of some of Azure’s largest regions for our analysis.

We estimate that all server components must become 28%

more energy efficient. Achieving such improvements can take

years. For example, upgrading from AMD’s Zen 3 to Zen 4

(separated by two years) improves energy-efficiency by 25% [6].

Note that upgrading every cloud server every two years would

cause high embodied emissions, decreasing carbon savings.

Increasing server lifetime. To reduce emissions, prior

works extend server lifetime via scheduling [126], better

maintenance [88], and reuse of discarded devices [115]. We

analyze how much server lifetimes must increase by, to achieve

our GreenSKU-Full’s carbon savings, with a simplifying as-

sumption that extending lifetimes does not increase operational

emissions. Using Azure’s renewables mix, we estimate the

required lifetime extension to be 6 → 13 years.
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Extending lifetimes to 13 years requires a radical data center

stack redesign. For example, maintenance can become cost

prohibitive over this time frame [88], [89]. Older servers also

tend to have higher per-core operational emissions relative

to newer hardware [64], [75]. GSF can evaluate server

lifetime extension by considering such extension’s impact on

maintenance, performance, and emissions.

Summary. Thus, strategies like increasing renewable energy

use, improving energy efficiency, and increasing lifetimes

require significant investment and navigation of deployment

challenges, to achieve our GreenSKUs’ carbon savings. The

latter two approaches trade off operational vs. embodied

emissions in a way that can hurt net carbon savings in some

deployment scenarios. Our evaluation with GSF shows that

our GreenSKU designs navigate this tradeoff to save carbon

across diverse carbon intensities, as summarized in Fig. 11.

VIII. DISCUSSION

We briefly discuss open questions and limitations.

Scheduling real-time applications. We show how to eval-

uate GreenSKU deployment. Run-time systems that leverage

GreenSKUs, post-deployment, are an opportunity for future

work. For example, auto-scalers [98], [100] can improve

GreenSKUs’ performance during load changes. Tuning CPU

configurations (e.g., frequency) [70], [112] can also help a

GreenSKU adapt to application changes post-deployment.

Navigating component search space. While our GreenSKU
achieves significant carbon savings, it may not be the optimal

configuration. When designing our GreenSKUs, we used parts

of GSF to iterate through hundreds of configurations. To

identify optimal configurations, we must consider components’

dynamic interactions in terms of performance (e.g., memory and

core frequency) and compatibility (e.g., CXL-compatibility).

We expect that a future search framework could consider such

interactions and repeatedly run GSF to evaluate emissions.

Heterogeneous compute on GreenSKUs. GSF focuses

on general-purpose compute servers. Extending GSF to study

GreenSKUs with heterogeneous accelerators, e.g., for ML, may

require adjustments. For example, the adoption model’s “scaling

factor” may need to reflect scaling out across CPUs and/or

accelerators. Such extensions can help study accelerator-reuse

for less compute-intensive ML models and reusing offload

engines for less IO-intensive tasks [55], [82], [83].

Assumptions. GSF pessimistically assumes that scaling out

requires a proportional increase in core count, memory, and

disk capacity. While this assumption may be true for some

applications, it was rarely true in our experiments. Thus, it may

be possible to further reduce DRAM and SSD provisioning.

Limitations. While our carbon model considers key carbon

contributors, it may not cover all factors. The underlying carbon

data is also changing as emissions-tracking processes mature.

IX. RELATED WORK

To the best of our knowledge, GSF is the first framework

to help cloud providers systematically evaluate server designs’

emissions at data center scale. We now discuss related work.

Designing server SKUs. Prior work on server SKU de-

sign [44], [69] primarily improves performance and cost, rather

than carbon. SoftSKU [112] considers the performance impact

of running services on efficient cores, but does not consider

carbon. Other works [56], [67], [93], [114], [133] redesign

servers to improve energy efficiency. In contrast, we show

how to systematically evaluate a carbon-efficient server SKU’s

potential to reduce emissions.
Reducing carbon emissions. Many works build systems

to improve cloud resource utilization [46], [57], [59], [60],

[72], [86], [87], [92], [97], [113], [135], energy efficiency [45],

[51], [52], [62], [105], and power management [71], [79], [96],

[118], [132], [134]. While these systems might indirectly lower

carbon emissions, they do not explicitly consider the tradeoffs

between operational and embodied emissions. Moreover, these

works can augment GreenSKUs to improve resource utilization.
Prior work reduces operational emissions by shifting a

data center’s workload spatially (i.e., across data centers) and

temporally (i.e., batching workloads during certain periods) to

leverage renewables’ availability [20], [35], [40], [99], [110],

[129]. These solutions can apply on top of GreenSKUs.
Switzer et al., [115] run some services on discarded smart-

phones, as they find that it offers more carbon savings compared

to old laptops and servers. Prior works [89], [117], [124]–[126]

also extend server lifetimes to reduce embodied emissions,

which adds a dimension to the GreenSKU design space. Gupta

et al. [64] motivate saving carbon from reducing and reusing

hardware. GSF enables evaluating such carbon-efficient server

optimizations’ benefits at data center scale.
Planning cloud capacity. Prior works on capacity planning

determine the resource capacity required to support a data

center’s workload [42], [61], [84], [120], [127]. We build on

these approaches by introducing emissions as a key metric to

consider in capacity planning decisions. Flux [53] distributes

service capacity across geo-distributed servers. Such capacity

management solutions can help intelligently distribute services

across data centers with different GreenSKU capacities.

X. CONCLUSION

To reduce cloud emissions, designing carbon-efficient Green-
SKUs is a promising solution. Thus, we designed three

GreenSKUs with low-carbon server components. However, it

is challenging to determine our GreenSKUs’ carbon savings at

scale. To this end, we developed a novel framework, GSF, to

help cloud providers to systematically evaluate a GreenSKU’s

benefits. We applied GSF within Azure’s production constraints

to evaluate our GreenSKUs. We found that our GreenSKUs
reduce emissions by 28% compared to the currently-deployed

cloud servers. They also reduce Azure’s net emissions by 8%.
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APPENDIX A

ARTIFACT APPENDIX

A. Abstract

The artifact provides the carbon model that we use to evaluate

our GreenSKU designs’ carbon emissions (as described in §V).

The artifact includes Python source code that implements the

carbon and maintenance models. As input to the carbon model,

it includes a set of open-source embodied emissions and power

numbers for (1) the components we use to evaluate and design

our GreenSKUs and (2) the Gen3 baseline SKU. The artifact

also provides source code to reproduce the open-source carbon

savings results reported in §A-F.

In summary, this artifact contributes (1) a reusable carbon

model to calculate the carbon emissions of SKU designs, (2)

open-source data that can be used as input to the carbon model,

and (3) code to reproduce our paper’s open-source results.

B. Artifact Check-List (meta-information)
• Program: Python3 scripts and Jupyter Notebook.
• Data set: We provide all required data sets in our artifact

repository [18]. This repository includes open-source data sets
for (1) carbon numbers for components used in our servers,
(2) compute cluster information, and (3) data center carbon
intensities.

• Run-time environment: Any standard Python environment.
• Hardware: No special hardware is required.
• Output: The Jupyter notebook will output the exact numbers,

tables, and figures that can be directly compared against expected
results.

• Experiments: We provide a Jupyter Notebook that uses the
model and the inputs we provide to replicate the carbon savings
calculations and analysis shown in the paper.

• How much disk space is required (approximately)? About
500MB (mainly for the Python environment).

• How much time is needed to prepare the workflow (approx-
imately)? Less than an hour.

• How much time is needed to complete the experiments
(approximately)? A few minutes.

• Is the artifact publicly available? The artifact is available on
Zenodo: https://doi.org/10.5281/zenodo.10896255 and GitHub:
https://github.com/Azure/AzurePublicDataset.

• Code licenses (if publicly available)? See GitHub: https://
github.com/Azure/AzurePublicDataset.

C. Artifact Description

Access. The live repository [18], which contains all the

information about performing the artifact evaluation and

reproducing the desired results, is available on GitHub:

https://github.com/Azure/AzurePublicDataset. The artifact is

also archived and available on Zenodo with the DOI:

https://doi.org/10.5281/zenodo.10896255.

Hardware dependencies. Any machine with a Python

environment can execute our scripts.

Software dependencies. The carbon model requires a

working Python environment. We suggest an Anaconda environ-

ment [11], installed through Miniconda (see the live repository

for details on installation and setup). All Python dependencies

are provided and are installed when performing the evaluation.

Data sets. In §VI, we use closed-source, internal carbon

data to calculate our GreenSKUs’ carbon savings. While this

data is useful within Azure, we cannot use it to describe

our GreenSKU’s carbon savings. Thus, we collect open-

source carbon data from public sources to both explain our

carbon model in §V and to provide a reproducible version

of our results (§A-F). For brevity, in this appendix, we only

include the data that is used in §V. However, the full data

set and explanations for how we source each data value

is available in the artifact’s GitHub repository [18] within

analysis/GreenSKU-Framework. Note that all paths in

this artifact are relative to this subdirectory.

The open-source carbon data we use reasonably aligns with

our internal carbon data, with inevitable differences, due to the

specifics of Azure’s supply chain and hardware sourcing. Thus,

we do not officially endorse these data sources and we do

not claim that this open-source data represents internal carbon

values. Rather, we collect this open-source data to show an

example of how to calculate a GreenSKU’s carbon savings.

In Table V, we show the TDP and embodied emissions

values used in Sec. V’s operational and embodied emissions

example calculations. We require some additional parameters to

convert these raw carbon numbers into data center-level carbon

estimates. We detail these parameters in Table VI. The complete

data set and derivations for the data we provide is available in

data/README.md in our GitHub repository [18].

Component TDP (W) Embodied carbon
(kgCO2e)

AMD Bergamo CPU 400 [5] 28.3 [4], [64]
DRAM (DDR5) 0.37 per GB [23] 1.65 per GB [14], [64]
DRAM (DDR4) 0.37 per GB [23] 0 (reused)
SSD 5.6 per TB [29] 17.3 per TB [29]
CXL Controller 5.8 [30] 2.5 [32], [64]
Rack misc. 500 500

TABLE V
OPEN-SOURCE TDP AND EMBODIED CARBON VALUES FOR COMPONENTS

USED IN THE CARBON MODEL’S EXAMPLE CALCULATION.

Parameter Value
Carbon intensity 0.1 kgCO2e/kWh [1]
Lifetime 6 years [88]
Derate factor at 40% SPEC throughput 0.44 [122]
Rack space capacity 42U (−10U overhead) [31]
Rack power capacity 15kW [13]
CPU voltage regulator loss 1.05 [34]

TABLE VI
OPEN-SOURCE MODEL PARAMETERS USED FOR THE CARBON MODEL’S

EXAMPLE CALCULATION.

D. Artifact Installation

We now detail our artifact’s installation instructions. The

same instructions are available in our GitHub repository [18],

which we suggest using to more easily copy commands. The

installation should take less than half an hour.

First, install Anaconda [11]. Once installed, create the

conda environment:

$ conda c r e a t e −−name carbon model \
py thon =3 .9

To activate the virtual environment, run the following command:
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Result in paper to reproduce Run time Output file(s)
Last three columns of Table VIII <1 minute figures/generated_figures/Table_VIII.csv
Appendix A-F claims: “We re-calculate the
savings we report to find an average cluster-
level savings of 14%, leading to an overall data
center-level savings of 7%.”

<1 minute
figures/generated_figures/cluster_savings.txt
figures/generated_figures/dc_savings.txt

Figure 12 1 minute figures/generated_figures/Figure_12.png

TABLE VII
RESULTS TO REPRODUCE AND THEIR RESPECTIVE RUN TIMES AND OUTPUT FILES.

$ conda a c t i v a t e carbon model

Next, clone our GitHub repository [18] into your working direc-

tory. Then, run the following commands with the environment

activated to install the required dependencies.

$ cd A z u r e P u b l i c D a t a s e t

$ cd a n a l y s i s / GreenSKU−Framework

$ p i p i n s t a l l − r r e q u i r e m e n t s . t x t

$ conda i n s t a l l j u p y t e r l a b

Once this is done, installation is complete.

E. Experiment Workflow

Once installed, the workflow to validate

the model results is fully contained within

notebooks/carbon_savings.ipynb. This notebook

uses the carbon model source code, the details of which are

in src/README.md.

The notebook performs the following tasks in order:

• Imports required packages, including the carbon model

and maintenance model Python modules.

• Configures the required model parameters and steps

through how parameters are calculated/derived.

• Performs the carbon savings calculations using the carbon

model to reproduce the results detailed in the next section.

F. Evaluation and Expected Results

This artifact only reproduces results that can be obtained

from the carbon model alone. All results will be generated

from running notebooks/carbon_savings.ipynb. Ta-

ble VII describes the results to reproduce, their run time, and

where the results are outputted. The output exactly matches

Fig. 12, as the model is fully deterministic for the same inputs.

We now show the main results of the paper reproduced using

the open-source data we provide.

Per-core carbon savings. We use the open-source compo-

nent carbon numbers outlined in §A-C to reproduce Table IV

using our open-source data, which we show in Table VIII.

We find that the relative savings in Table IV are similar to

Table VIII. The net carbon savings of GreenSKU-Full in

Table VIII is similar to the reported savings using internal

numbers: 26% vs 28%.

Cluster carbon savings across carbon intensities We

also use the open-source data to recreate Fig. 11, one of our

main results, containing the cluster-level carbon savings across

carbon intensities. The reproduced results using open-source

SKU
Config.

#
Core

# × DIMM
(GB)

# × SSD
(TB)

Operational
Savings

Embodied
Savings

Total
Savings

Baseline 80 12 × 64 6 × 2 - - -
Baseline-
Resized 80 10 × 64 6 × 2 6% 10% 8%

GreenSKU-
Efficient 128 12 × 96 5 × 4 16% 14% 15%

GreenSKU-
CXL 128

12 × 64
8 × 32 CXL

5 × 4 15% 32% 24%

GreenSKU-
Full 128

12 × 64
8 × 32 CXL

2 × 4
12 × 1 Reuse

14% 38% 26%

TABLE VIII
OPEN-SOURCE PER-CORE OPERATIONAL, EMBODIED, AND TOTAL CARBON

SAVINGS (CALCULATED BASED ON THE AVERAGE CARBON INTENSITY FOR

MAJOR AZURE REGIONS) RELATIVE TO OUR GEN3 BASELINE SERVER FOR

FOUR INCREMENTAL GREENSKU CONFIGURATIONS.

Fig. 12. End-to-end cluster-level carbon savings relative to baseline clusters
across a range of carbon intensities evaluated for our three GreenSKUs. Vertical
lines are estimated carbon intensities for the energy used by three Azure data
center regions [26]. Calculated using open-source data.

data are shown in Fig. 12. While there are differences in terms

of the achieved carbon savings for each design, we still see that

reuse is especially effective at lower carbon intensities, where

embodied emissions dominates. We re-calculate the savings we

report to determine an average cluster-level savings of 14%,

leading to an overall data center-level savings of 7%.

G. Experiment Customization

No changes to the original scripts/notebook are necessary to

reproduce the results. The model, however, is generalizeable

to evaluate other server designs, and the original parameters

and inputs can be changed.

H. Methodology

Submission, reviewing, and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-and-badging-current

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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