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Abstract—To mitigate climate change, we must reduce carbon
emissions from hyperscale cloud computing. We find that cloud
compute servers cause the majority of emissions in a general-
purpose cloud. Thus, we motivate designing carbon-efficient
compute server SKUs, or GreenSKUs, using recently-available low-
carbon server components. To this end, we design and build three
GreenSKUs using low-carbon components, such as energy-efficient
CPUs, reused old DRAM via CXL, and reused old SSDs.

We detail several challenges that limit GreenSKUs’ carbon
savings at scale and may prevent their adoption by cloud providers.
To address these challenges, we develop a novel methodology and
associated framework, GSF (GreenSKU Framework), that enables
a cloud provider to systematically evaluate a GreenSKU’s carbon
savings at scale. We implement GSF within Microsoft Azure’s
production constraints to evaluate our three GreenSKUs’ carbon
savings. Using GSF, we show that our most carbon-efficient
GreenSKU reduces emissions per core by 28% compared to
currently-deployed cloud servers. When designing GreenSKUs to
meet applications’ performance requirements, we reduce emissions
by 15%. When incorporating overall data center overheads, our
GreenSKU reduces Azure’s net cloud emissions by 8%.

[. INTRODUCTION

To mitigate climate change, we must reduce carbon emissions
from Information and Communication Technology (ICT), which
can cause 20% of global carbon emissions by 2030 [76]. Histori-
cally, ICT’s emissions reduced when sharing compute resources
using cloud computing [36]. However, today, projections show
that significant emissions arise from cloud computing itself,
due to its massive growth [73], [76]. Thus, it is now critical to
reduce cloud computing’s emissions [38], [47]. Indeed, major
cloud providers have set aggressive decarbonization deadlines,
targeting significant emissions reductions by 2030 [10], [27].

To reduce ICT’s emissions from cloud computing, we must
reduce the cloud’s operational emissions (e.g., from producing
electricity to run data centers) and embodied emissions (e.g.,
from semiconductor fabs that make server components) [65].
Historically, cloud computing’s operational emissions exceeded
its embodied emissions. To reduce operational emissions,
hyperscale cloud providers improve energy efficiency [45], [52],
[62], [79], [96], [118], [132], [134] and use more renewable
energy [35], [48], [65]. Today, the decrease in operational
emissions due to such solutions has caused embodied emissions
to account for 50%—-82% of cloud emissions [65], [88]. Thus,
it is crucial to reduce both emission types.

To reduce cloud computing’s operational and embodied
emissions, we identify designing carbon-efficient cloud com-
pute server Stock Keeping Units (SKUs) as a promising

solution. Server SKU design is the process by which existing
hardware components are selected and composed into servers.
Typically, cloud providers design compute server SKUs to meet
performance and cost goals. To reduce emissions, we introduce
a new way of designing carbon-efficient compute server SKUs,
or “GreenSKUs,” that trade off performance for lower carbon.
We find that designing and deploying carbon-efficient Green-
SKUs is promising for four reasons. First, we show that compute
servers cause the majority of cloud emissions, and their design
directly impacts both embodied and operational emissions.
Indeed, with a ~six-year lifetime for cloud servers [88],
design choices made in the next two years directly affect
the industry’s 2030 carbon goals. Second, it is challenging for
cloud providers to rely on manufacturing’s decarbonization,
as many manufacturers have decarbonization targets that lag
behind cloud providers’ targets by over a decade [88]. Third,
as we will show, cloud servers are often underutilized [50],
making a case for designing servers that right-size performance
to save emissions. Fourth, GreenSKU design and deployment
is more feasible today due to the availability of carbon-efficient
commodity server components, e.g., energy-efficient cores [4].
Due to GreenSKUs’ promise, we design and build three
GreenSKUs using low-carbon components that mitigate cloud
compute servers’ key sources of operational and embodied
emissions. Our GreenSKUs incrementally incorporate three
low-carbon components: energy-efficient high-thread-count
CPUs [4], reuse of old DRAM with Compute Express Link
(CXL) [103], and reuse of old Solid State Drives (SSDs).
While GreenSKUs promise carbon savings, we demonstrate
several challenges that limit cloud providers from practically
deploying them at scale. First, we find that a GreenSKU may
compromise performance. For example, a GreenSKU built with
many energy-efficient, i.e., efficient, cores [4] typically has
lower single-thread performance. In practice, only some cloud
applications, e.g., those not bound by single-thread performance,
will run on such a GreenSKU. Thus, it is challenging to
design GreenSKUs while effectively navigating their emissions
vs. performance tradeoff, to justify deploying them at scale.
Second, a GreenSKU’s operational and embodied emissions
can have complex tradeoffs. For example, reusing an older
server component can reduce embodied emissions, but may
increase operational emissions due to the component’s poor
energy efficiency [64]. Third, each new SKU adds operational
complexity and cost. Thus, while cloud applications are highly
diverse, cloud providers must limit how many SKU types
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they deploy. We refer to these factors (e.g., performance) that
impact whether a GreenSKU can practically be deployed at
scale, as the “adoption” of the GreenSKU. It is critical and
challenging for cloud providers to identify which GreenSKU
designs are adoptable, i.e., able to save carbon while meeting
diverse applications’ deployment requirements at scale.

To address these challenges, we develop a novel methodology
and framework, GSF, to enable cloud providers to evaluate a
GreenSKU’s carbon savings in the cloud. GSF systematically
considers the major factors that influence a GreenSKU’s
benefits at scale. GSF’s components model each major factor,
such as modeling a GreenSKU’s at-scale impact on carbon,
performance, maintenance, server adoption, resource allocation,
and server fragmentation. GSF abstracts these components’
relationships from how a cloud provider implements each
component, enabling a cloud provider to flexibly use GSF in
their cloud to estimate a GreenSKU’s net carbon savings.

We implement GSF within Microsoft Azure’s production
constraints to evaluate our three GreenSKUs’ carbon savings at
scale. Our carbon model reflects Azure’s data center design. We
study representative applications in Azure to identify those that
run effectively on our GreenSKUs. We also simulate workload
packing on our GreenSKUs under production constraints.

Using our GSF implementation, we show that our Green-
SKUs reduce carbon emissions per core by 28% compared to
currently-deployed cloud servers at Azure. When deploying
GreenSKUs in a way that meets applications’ performance
goals, we reduce emissions by 15%. Finally, when incorporating
overall data center overheads, our GreenSKUs reduce net cloud
emissions by 8%, which is a significant reduction at scale.

In summary, we contribute:

o A demonstration of the opportunity to significantly reduce
cloud emissions by designing and deploying carbon-
efficient server hardware, i.e., GreenSKUs, at scale.

The development of three new GreenSKU prototypes with
carbon-efficient server components.

A study of the challenges that limit GreenSKUs’ adoption
and carbon savings at scale.

A novel methodology and associated framework, GSF',
that helps cloud providers to systematically evaluate a
GreenSKU'’s carbon savings at scale.

An evaluation of our GreenSKUs by using GSF within
a leading cloud provider’s production constraints, to
demonstrate our GreenSKUs’ carbon savings.

We motivate GreenSKUs in §II and describe our GreenSKU
prototypes in §III. We detail GSF in §IV and its implementation
in §V. We use GSF to evaluate our GreenSKUs in §VI. We
discuss GreenSKUs’ practicality in §VII, open questions in
§VIII, and related work in §IX. We conclude in §X.

II. OPPORTUNITIES AND CHALLENGES WITH DESIGNING
GREENSKUS
Cloud platforms offer diverse services including infrastruc-
ture, platform, and software as a service. In a general-purpose

I'we open-source an implementation of GSF’s carbon model [18], [123],
which is available at https://github.com/Azure/AzurePublicDataset
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public cloud like Azure, applications typically run within
Virtual Machines (VMs) on compute servers [66]. While there
are many compute server types, the most common types today
use a general-purpose x86 or ARM CPU, significant DDRS
memory capacity, a few NVMe SSDs, and a Network Interface
Card (NIC). Additionally, storage services, such as object stores,
are hosted on dedicated storage servers that contain arrays of
hard disks, with fewer computational resources.

We focus on reducing emissions for general-purpose cloud
compute servers that form a large portion of Azure’s global
fleet and carbon emissions. Although we do not focus on
heterogeneous compute, our work may be used to develop
GreenSKUs for heterogeneous platforms in future work.

In this section, we first detail a breakdown of a cloud’s overall
emissions. We then discuss how cloud servers are designed
and utilized today. Finally, we introduce key design goals for
low-carbon compute servers, i.e., GreenSKUs.
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Fig. 1. Carbon breakdown of general-purpose data centers at Azure.

Sources of data center carbon emissions. To understand
GreenSKU design opportunities, we analyze how different
server types and their hardware components contribute to a
general-purpose cloud’s emissions. Similar to prior work [64],
[65], we adopt the greenhouse gas protocol’s definition of
emissions from Scope 1 (i.e., direct emissions), Scope 2
(i.e., indirect emissions from consuming power), and Scope 3
(i.e., indirect emissions from manufacturing and transporting
procured products like servers). We refer to Scope 1 emissions
as direct emissions, Scope 2 emissions as operational emissions,
and Scope 3 emissions as embodied emissions, matching prior
work’s terminology [64], [65], [115]. With these definitions,
we use our carbon model (detailed later in §IV and §V) to
estimate a cloud data center’s carbon emissions breakdown.

We estimate operational emissions using power traces from
Azure. To calculate embodied emissions, we estimate raw
materials from vendor manifests, measure devices’ silicon
area, and use averaged emissions for manufacturing processes
reported in industry datasets such as IMEC [21] and Maker-
site [25]. Our embodied emission estimation counts emissions
once per component across the supply chain, making it directly
comparable to operational emissions. The sum of all three
emission types, i.e., direct, operational, and embodied, defines
a cloud’s total carbon emissions.

We find that direct emissions are negligible, as they mainly
arise from backup diesel generators [78]. Thus, we only
study operational and embodied emissions. The relative weight
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between the two differs between data centers due to local energy
mixes [35]. Hence, we present these emission breakdowns
separately and then discuss their relative weights.

Fig. 1 shows the breakdown of operational and embodied
emissions in Azure’s cloud data centers. At the data center level,
IT equipment dominates operational and embodied emissions.
The rest arises due to cooling, power distribution, and building
emissions. Within IT, there are three dominant server types:
compute, storage, and network servers. Of these, compute
servers consume most of the power, while storage servers have
a large embodied footprint and consume relatively less power.

We further attribute compute servers’ emissions to their
composite hardware components. This breakdown is influenced
by server generation and vendor; we focus on a current-
generation AMD Genoa server [6]. We find that the largest
carbon contributors differ between the operational and em-
bodied emissions breakdown. For operational, CPUs have the
largest impact with the remaining emissions distributed across
DRAM, SSDs, NICs, and other components like fans. For
embodied, DRAM and SSDs dominate emissions, mainly due
to their high capacities and large silicon area: our server has
12 DIMMs and 6 SSDs, each containing many chips.

In our accounting, we only count renewable energy purchases
that match a data center’s location. We find that most data cen-
ters use 40%—-80% renewable energy at Azure. This renewable
energy mix leads to operational emissions accounting for about
58% of total carbon emissions, implying that compute servers
account for 57% of data center emissions. Within compute
servers, the top three component contributors are DRAM (35%
total contribution), SSDs (28%), and CPUs (24%). With a
hypothetical 100% renewable energy mix, operational emissions
would account for 9% of data center emissions and compute
servers for 44% of data center emissions. These results motivate
the urgent need to reduce compute servers’ emissions.

Today’s performance-focused cloud server design. To
enable carbon-aware server design, we must first understand
the conventional server design process and objectives. In the last
decade, to design cloud servers, cloud providers have followed
the faster-at-similar-price (FSP) business model. With FSP,
the provider introduces a faster VM generation at roughly the
same price every few years. Faster implies a target X% higher
per-core performance on a fixed benchmark set [3], [9], [17].

Unfortunately, achieving these per-core speed-ups is in-
creasingly challenging in today’s age of limited technology
scaling [54]. For example, consecutive Intel VM generations
on Amazon AWS (M6i and M7i) achieve X=15% higher
performance per core at almost the same price per core [28].
However, achieving this higher performance forces AWS to
use 48-core Intel Xeon CPUs [8], [28], which maximize power,
cache, and memory bandwidth per core. Intel also offers 60-core
Xeon CPUs in the same generation [2], which have significantly
lower carbon emissions per core, due to their lower Thermal
Design Power (TDP) per core (i.e., 5.83 Watts vs. 6.25 Watts).
However, 60-core Xeon CPUs would not have achieved the
required 15% per-core speedup. In this paper, we denote SKUs
constructed within the FSP model as baseline SKUs. Typically,
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there is one baseline SKU for every CPU generation.

Cloud customers underutilize cloud servers. There is
significant evidence that cloud users frequently do not utilize
high per-core performance, thereby exacerbating emissions.
First, prior work has extensively documented that cloud CPUs
are severely underutilized [37], [50], [63], [88], [116], [121],
[128]. For example, 75% of Azure VMs exhibit less than
25% CPU utilization [50]. Of note, this low CPU utilization
persists despite significant advances in cluster scheduling,
which allocate up to 85% of cores to VMs [39], [66], [116],
[121]. However, VMs frequently do not use these allocated
cores, which causes underutilization [50].

Other cloud server resources are similarly underutilized. For
example, average memory bandwidth utilization in Azure is
only ~15% [41]. We find similar underutilization of SSD IOPS
and bandwidth. While underutilization occurs on most servers,
some customers’ VMs utilize all available performance. Thus,
the demand for higher per-core performance exists and is likely
to continue to exist on some servers.

Second, we find that customers continue to use old VM
generations even when higher-performing generations are
available. We even see new deployments of VMs that are
multiple generations behind the latest. Thus, the core-hours
of old VM generations continue to grow, which can require
running old VM generations on new servers, where components
like the CPU may be under-clocked to match old servers’
performance. Maintainability and compatibility in large code
bases may take precedence over new VMs’ higher performance.

Design goals and constraints for low-carbon servers. Our
goal is to reduce net cloud emissions by designing low-carbon
GreenSKUs. To this end, we must address three design goals.

(D1) Account for tradeoffs between operational vs. embodied
emissions. Operational and embodied emissions have complex
tradeoffs [88]. For example, reusing components reduces
embodied [64], but may increase operational emissions due to
worse energy efficiency. Thus, a GreenSKU that reduces cloud
emissions must balance operational and embodied emissions.

(D2) Account for data center impacts and side effects from
introducing GreenSKUs. Adding server SKUs to a data center
fleet can have side effects that may increase emissions. For
example, cloud providers deploy extra servers as a buffer to
absorb spikes in demand growth, to account for the time it takes
to deploy additional servers. Offering numerous server options
can reduce demand multiplexing among applications, which
may increase the variance in demand growth for each option.
Thus, adding many server options may require larger buffers,
increasing emissions. We detail this challenge in §IV-D.

(D3) Model performance and adoption impacts for user
applications. We must design a server that will be widely
adopted and in a way that reduces net emissions. This design
is challenging as many low-carbon components’ performance
is lower than the servers built under the FSP model (see §III).

III. OUR GREENSKU PROTOTYPES

The design space for GreenSKUs is large. We show the
practicality and effectiveness of building GreenSKUs that target
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CPU Characteristic Bergamo | Rome(Gen 1) Milan (Gen 2) | Genoa (Gen 3)

Cores per socket [ 128 64 [ 64 80

Max core freq. (GHz) 3.0 3.0 3.7 3.7

LLC size per socket (MiB) ‘ 256 256 ‘ 256 384

TDP (W) 350 240 280 300-350
TABLE 1

COMPARING BASELINE AMD CPUS TO THE EFFICIENT BERGAMO CPU.

Normalized Failure
at
o
2

0 20 40 60 80
Months Deployed

Fig. 2. Moving average (black) of raw (gray) normalized failure rates vs.
DDR4 DIMMs’ deployment time in production. Failure rates tend to stay
constant over a 7-year period.

the top three carbon contributors in compute servers: CPUs,
DRAM, and SSDs (Fig. 1), which cause 67% of a server’s
net emissions. We build GreenSKUs with efficient CPUs and
reduce embodied emissions by reusing DRAM and SSDs from
decommissioned servers. These designs are deployable today.
Other GreenSKU designs that reuse NICs or use low-power
DRAM may be feasible, but, yield low returns today. These
designs can help target residual emissions for a potential second-
generation GreenSKU. Future GreenSKU designs may also
include optimizations that are at a research stage today (e.g.,
leaner processor microarchitectures [65]). We design GSF' to
flexibly consider various such GreenSKU designs.
Low-carbon components. We use three low-carbon compo-
nents in our prototype. First, we use efficient CPUs. Power-
efficient cores, which enable very high thread and core counts
for scale-out applications, are now widely available [102].
They include Ampere’s 192-core ARM CPUs [7], AMD’s 128-
core/256-thread x86 Bergamo CPUs [4], and Intel’s 288-core
x86 Sierra Forest CPUs [22]. Since these CPUs have 40%—-60%
more cores at comparable power consumption to mainstream
CPUs, they significantly reduce operational emissions per core.
We specifically choose AMD Bergamo in our GreenSKU
prototype, as it provides the highest thread-count option on
the market today and has full support for Type 3 CXL devices
(CXL.mem), making it practically deployable in our cloud.

Old DDR4 DIMMs (~2015)

CXL 1.1
Controller

Old DDR4 DIMMs (~2015)

Fig. 3. Old DDR4, deployed starting in 2015, can be attached in new servers
with a CXL controller card that attaches to PCle5.

Next, we consider reused DRAM. We find that it is practical
to reuse old DRAM in new servers. In a review of old server
life cycles at Azure, we find that numerous old DDR4 DIMMs
can be reused due to their host servers reaching the end of
their deployment. Critically, these old DIMMs show no sign
of increasing failure rates. Prior work notes that DRAM shows

no signs of aging within five years [106]. Fig. 2 shows failure
rates for DDR4 DIMMs in Azure over a 7-year deployment
period. After an initial period of higher Annual Failure Rates
(AFRs), they tend to stay constant [111]. While we do not
yet have at-scale data for beyond 7 years, internal accelerated
aging studies show that AFRs remain flat beyond 12 years.
Historically, reusing old DRAM was challenging as DDR
generations are not backward compatible, i.e., it was infeasible
to attach DDR4 in currently-deployed DDRS servers. However,
with the wide availability of CXL [103], old DDR4 can be
attached to CXL controllers, which, in turn, are attached to
the modern PCle5 interface. Fig. 3 shows an exemplary CXL
card that can hold DDR4 DIMMs. Reusing old DRAM can
significantly reduce embodied emissions at the cost of higher
operational emissions, due to more power consumed by CXL
and the old DIMMs’ lower density compared to new DIMMs.
We use off-the-shelf CXL controllers that support DDR4
(e.g., SMC [32], MXC [12]). We decommission a rack of
Azure servers that was deployed in 2018. These servers have
two sockets, each with six low-capacity and six high-capacity
DDR4 DIMMs. We reuse the high-capacity DDR4 DIMMs in
our prototype, attaching four DIMMs to each CXL controller.

m.2
Interface

el.s
Interface

Fig. 4. Old m.2 SSDs from 2015 can be attached in new servers with a
passive adapter card in the modern el.s format.

Finally, we consider reused SSDs, as it is also practical to
reuse old SSDs in new servers. Similar to DRAM, the SSD
interface standard has moved from m.2 PCle3 to E1.S PCle5
drives. Fortunately, PCle is backward compatible.

SSDs have enough lifetime left for reuse. Typically, modern
SSDs fail due to exhausting flash erasure cycles [91], [101].
After seven years, most SSDs offer more than half of the
guaranteed erasure cycles. Reusing SSDs can reduce embodied
emissions at the cost of higher operational emissions.

We use m.2 SSD drives from decommissioned Azure servers.
They are attached via an off-the-shelf passive PCB-adapter (e.g.,
2008M2 [24]), as shown in Fig. 4. Further, we 3D print cases,
so that the PCB fits into existing El.s rails and cages.

Reused ici
DDRS5 efficient pprs
Reused
DDR4

Fig. 5. Our GreenSKU-Full design with AMD’s efficient CPU, reused DDR4
DRAM (via CXL), and reused m.2 SSDs (via el.s and PCle adapters).

Prototype SKUs. In Fig. 5, we show a logical diagram of our
GreenSKU and an image of our GreenSKU prototype. We build
three GreenSKUs by incrementally adding each component.

1) GreenSKU-Efficient: a GreenSKU with AMD’s efficient

Bergamo CPU
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2) GreenSKU-CXL: GreenSKU-Efficient with reused DDR4
memory attached through CXL
3) GreenSKU-Full: GreenSKU-CXL with reused SSDs

The GreenSKU-Full design reuses 8 DDR4 DIMMs attached
via two CXL cards (2DPC). We also reused 12 old m.2 SSDs in
addition to two new El.s drives. In aggregate, our components
use all 128 PCle lanes on the AMD Bergamo server.

Performance characteristics. Low-carbon components may
have lower performance than baseline SKUs’ components. We
briefly describe these performance properties, which motivates
key components in GSF.

AMD Bergamo has a lower frequency and less LLC capacity
compared to three AMD generations deployed at Azure (see
Table I). Thus, Bergamo incurs 10% and 6% per-core slowdown
in Sysbench [77], relative to Genoa and Milan, respectively.

Reusing DDR4 memory via CXL incurs higher latency [81]
of about 280ns at medium load, compared to 140ns for local
DDRS accesses. While CXL. adds memory bandwidth on top
of DDRS, bandwidth per core may be lower than in baseline
SKUs. For example, 32 CXL/PClIe5 lanes offer about 100 GB/s
using CXL’s 256-byte interleaving [103]. AMD Genoa, with 80
cores and 460 GB/s, offers 5.8 GB/s per core. AMD Bergamo,
with 128 cores and 460 + 100 GB/s, offers 4.4 GB/s per core.

Our internal analyses show some deployed applications for
which memory bandwidth usage is growing, as well as many
important applications that exhibit low memory bandwidth
usage. We expect low-bandwidth applications to continuously
provide opportunities for memory reuse via CXL.

To reduce CXL-induced slowdowns, we use Pond’s ap-
proach [81]. We use hardware counters to identify which
applications can run entirely using CXL memory without facing
a slowdown. For other applications, we provision memory
across DDRS5 and DDR4 and use Pond’s prediction model [81]
to identify untouched memory regions that can be located on
DDR4. On average, untouched memory is almost half of a
VM'’s memory capacity [81]. When this untouched memory is
exposed as a virtual compute-less NUMA node, the VM leaves
it untouched and does not incur a slowdown [81]. This approach
ensures that 98% of applications incur <5% slowdown with
CXL, compared to running entirely with DDRS. In future CPUs,
hardware tiering can further improve CXL performance [136].

Reused SSDs also provide lower bandwidth and lower
random IO per second. In our measurements for random write
speeds, old SSDs offer 1GB/s and 250 IOPS, whereas new
SSDs offer 2.3 GB/s and 600 IOPS. We mitigate lower SSD
performance using multiple striped RAID sets that each offer
more bandwidth and IOPS than the FSP configurations. Due
to this mitigation, old SSDs have no adoption side effects.

Although we build our GreenSKUs using low-carbon com-
ponents, they may not be deployable due to the challenges
outlined in §II. Thus, we need a systematic way of accounting
for these challenges, to evaluate GreenSKUs’ benefits at scale.

IV. GSF: THE GREENSKU FRAMEWORK

To evaluate a GreenSKU, GSF estimates a data center’s
emissions from deploying a GreenSKU at scale. Thus, GSF
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enables a cloud provider to evaluate different GreenSKU
designs. GSF systematically considers seven major factors that
influence a GreenSKU’s carbon savings at scale. GSF' considers
each factor using distinct components in its framework, as
shown in Fig. 6. We believe GSF can be flexibly used by other
cloud providers, as it abstracts components’ relationships from
cloud-provider-specific component implementation details.

Assumptions. GSF estimates operational and embodied
emissions and excludes negligible direct emissions (§II). It
assumes that cloud users make SKU adoption decisions
based on application performance. However, GSF can also
accommodate other decision factors with minimal changes.
GSF considers key first-order effects of GreenSKU design
and assumes that other effects stay constant. For example,
it assumes that the total workload (e.g., application’s load),
networking emissions, and storage emissions remain the same.
While we have limited experience with using GSF within
automatic design space exploration tools, we recommend
humans in the SKU design process.

High-level overview. GSF’s initial inputs are highlighted in
yellow in Fig. 6. They are: (1) a target data center workload,
represented as a record of VM deployments over a time
period, (2) data used to calculate data center emissions, which
includes carbon data (e.g., a component’s power and embodied
emissions) and data center parameters (e.g., a component’s
lifetime), (3) component annual failure rates (AFRs), (4) a
GreenSKU design, (5) a set of currently-deployed baseline
SKU designs, and (6) a set of representative applications that
report their performance and can run on the GreenSKU. We
believe this framework specification is generic and can apply
to evaluate carbon optimizations beyond the ones we explore.

GSF’s final output is the data center emissions from deploy-
ing a GreenSKU. To estimate this final output, GSF calculates
the following intermediate outputs for both the GreenSKU
and baseline SKUs (shown in blue boxes in Fig. 6): (1) the
number of servers that must be deployed to serve a given data
center workload, (2) the cores per server, and (3) the carbon-
per-core emitted over the server’s lifetime. Multiplying these
intermediate outputs per SKU and adding all SKUSs’ results
yields compute clusters’ carbon emissions. Then, adding in
other carbon sources (e.g., storage servers’ emissions) estimates
the overall data center emissions. Note that while we use cores
as the main server resource unit, other units can be substituted.

GSF formalizes relationships between components with
explicit definitions of inputs and outputs that connect each
component. These definitions account for dependencies between
components while allowing a cloud provider to implement a
component based on their unique cloud constraints. In §V, we
describe how we implement each GSF component at Azure.

We organize GSF’s components into three levels, i.e., the
server-, rack-, and data center-level, based on which physical
level of the data center the component models. We first detail
GSF’s carbon model (§1V-A) which spans all levels. We then
discuss each component in each level (§IV-B - §IV-D) by
specifying (1) which factor the component considers, (2) the
component’s inputs, and (3) the component’s outputs.
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Fig. 6. Overview of the GreenSKU Framework (GSF). Components are solid-
line boxes. GSF’s inputs are highlighted in yellow. Inputs and outputs between
components are in gray boxes. Each component contributes to producing the
necessary outputs, as shown in blue, to calculate data center emissions.

A. Carbon Model Component

GSF’s carbon model component must calculate a given
SKU’s emissions as a carbon dioxide equivalent (COze), which
is a common metric to measure global warming potential [94].
To calculate carbon, the model must estimate embodied emis-
sions and power consumption at the server, rack, and data center
level. The model’s inputs include server lifetime and the carbon
intensity of the energy consumed (CO2e/MWh). By accounting
for the operational emissions over the server’s lifetime, the
model can aggregate operational and embodied emissions.
Finally, the model must account for power consumed by onsite
non-IT equipment, e.g., cooling and power distribution devices,
to determine the Power Usage Effectiveness (PUE) factor.

The model must also amortize emissions across levels in the
data center. For example, a rack’s emissions can be divided
across the rack’s servers to amortize it. Thus, the model
must consider constraints on the number of servers-per-rack
and racks-per-data center, which depend on space and power.
Moreover, as components can have different lifetimes, each
component’s embodied emissions must be normalized.

To model emissions at the application level, the carbon
model must output emissions amortized at a hardware resource
granularity that allows attributing emissions to VMs. For
example, we chose to use COqe-per-core as a common metric
and output of this model.

B. Server-Level Components

We identify server performance and maintenance as the main
considerations that directly influence a GreenSKU’s emissions.
Performance. Since an application running on a GreenSKU
may face a lower performance-per-core, it may scale up/out

457

to suitably serve the target workload. GSF’s performance
component must quantify such performance effects.

As shown in the bottom table in Fig. 6, the performance
component profiles a GreenSKU’s relative performance. To
this end, it takes as input (1) the GreenSKU and baseline SKU
designs to compare against and (2) representative applications
that each report a metric to define the application’s performance
(e.g., tail latency, peak throughput, low-load latency).

This component outputs a scaling factor for each application.
This factor defines how many GreenSKU cores per baseline
SKU core are needed for a VM to achieve the applica-
tion’s performance goals. To maintain accurate application
characterization over time, GSF can work in tandem with
existing capacity planning approaches, such as Flux [53], which
maintains an active view of the major services in a data center.

Maintenance. When server failures occur, a fraction of
servers are out of service, waiting to be repaired [89]. These
failures result in the need for additional servers, i.e., an out-of-
service overhead. Since GreenSKUs can influence the rate
of server failures, this overhead must be calculated (e.g.,
using server components’ AFRs). The maintenance component
outputs out-of-service overheads for all SKUs.

C. Cluster-Level Components

A GreenSKU’s adoption and VM allocation can impact the
entire compute cluster’s design and efficiency.

Adoption. GSF’s adoption component helps decide which
applications in the target workload can run on a GreenSKU
while meeting deployment goals (e.g., performance goals).

As performance is often a first-order goal for applications,
this component’s inputs are (1) each application’s scaling factor
as outputted by the performance component and (2) the COqe-
per-resource value for the baseline SKUs and GreenSKU from
the carbon model. The carbon information enables the adoption
component to balance a GreenSKU’s carbon savings against
the carbon cost of additional server resources required to
scale on the GreenSKU. If applications have other deployment
constraints (e.g., an application requiring a full baseline server
to run on), they must be annotated with such constraints.

The adoption component outputs whether each application
should adopt the GreenSKU, i.e., whether the GreenSKU meets
applications’ goals and reduces carbon emissions.

VM allocation and packing. Server design impacts how well
VMs can be packed into a cluster: a logical unit of hundreds of
servers to which a VM deployment is routed. Packing density,
which is the ratio of allocated to allocatable resources, such as
CPU cores and memory, on non-empty servers [66], directly
affects the required number of servers. Packing density is
influenced by a GreenSKU’s resource capacities and the number
of servers in a cluster. The VM deployment also defines the
workload demand over time that the cluster must serve.

This component takes as input (1) a VM workload, which
defines a trace of server resource requests, (2) the adoption
and scaling factor for each application to account for which
VMs can run and then must scale on GreenSKUs, and (3)
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the cluster configuration, i.e., the number of GreenSKUs and
baseline SKUs, that is being used to support the VM workload.
This component leverages packing efficiency information to
output whether the given cluster configuration can support the
workload without rejecting any VM’s resource requests.

D. Data Center-Level Components

We identify two factors, cluster sizing and growth buffers,
that influence the total number of servers required across all
compute clusters in a data center.

Cluster sizing. The cluster sizing component’s goal is
to determine how many baseline SKUs and GreenSKUs
are required to service a data center’s VM workload. This
component must determine the maximum portion of the cluster
that can run GreenSKUs while still servicing the demand from
applications that cannot adopt the GreenSKU.

To this end, this component takes as input (1) the VM
allocation component’s output, i.e., whether a given cluster of
GreenSKUs and baseline SKUs can support a workload and
(2) the maintenance component’s output, i.e., the servers’ out-
of-service overhead, which influences how clusters are sized
to manage out-of-service GreenSKUs and baseline SKUs.

This component tunes the cluster size using the VM alloca-
tion component to check if a cluster can host the workload trace,
via simulation. The final output is the number of GreenSKUs
and baseline SKUs in a right-sized cluster configuration.

Growth buffer. Following standard inventory management
practices, a cloud provider maintains a growth buffer, i.e.,
extra server capacity to absorb spikes in VM deployment
growth rates, thus mitigating delays in acquiring and deploying
additional servers. This buffer is sized to trade off the cost
of deploying unused capacity with the risk and subsequent
opportunity cost of not having enough capacity.

To determine the growth buffer size, this component’s input
is the cluster sizing component’s final output, which provides
a cluster configuration that is properly sized for a certain VM
workload demand while not considering future growth.

This component’s output is the total number of GreenSKUs
and baseline SKUs required in a cluster deployment to both
service the current demand and also handle VM deployment
growth using the growth buffer.

V. GSF IMPLEMENTATION FOR AZURE

To evaluate the carbon savings of the three GreenSKUs we
built (see §III), we implement each GSF component under
Azure’s production constraints.

Implementing GSF’s carbon model component. Our
carbon model implementation aggregates embodied and opera-
tional emissions from server, rack, and data center components.
We build on prior carbon models [64], [115] to model server
emissions in the cloud. Similar to the ACT model [64],
we calculate server-level emissions by aggregating server
components’ embodied and operational emissions.

First, to model operational emissions, we calculate average
server power (F;), which includes the power consumed by
each server component, including CPUs, DIMMs, SSDs, NICs,
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CXL controllers, fans, and secure control management boards.
Typically, a server’s average power consumption is lower
than the sum of its components’ TDP [79]. Thus, we scale
components’ TDP using a derating factor, d. We model
inefficiencies in power electronics (e.g., voltage regulators)
using a loss factor, [. Thus,

PS:< 3 TDPi*di>(1+l)

comp. %

()]

To model rack-level power (F;), we estimate each rack-level
component’s power and the number of servers per rack (/Vy):

> P @)

rack comp. j

Pr:NS*P§+

To calculate N, if P c,p is the rack’s power capacity and
Nj cap is the number of servers that can fit in the rack: Ny =
min( LPr,cap/PsJ s Ns,cap)'

Then, to model the data center’s power (FPpc), we use the
number of racks (/V;), the power dedicated to networking and
storage (X), and PUE: Ppc = (N; x P, + X) « PUE. We
calculate N; similarly to how we calculate N, except using
data center space/power limitations for compute racks. Since a
data center’s operational emissions depend on server lifetime
(L) and the energy source’s carbon intensity (CI), its operational
emissions are: Eq, pc = Ppc * L * C'I, which includes server-
(Eop,s) and rack-level (E,p ) operational emissions.

Next, we model embodied emissions by aggregating a data
center components’ embodied emissions. To model a server’s
embodied emissions (Femb,s), We use carbon data derived
using a model similar to those in the literature [64]. To
model the carbon embodied in silicon chips, circuit boards,
auxiliary electronics, server chassis, and power supplies, we use
component tear downs, COse/cm? data, and COgqe/kg values
from public and private data sources [21], [25]. Similar to prior
work [115], we consider reused server components to be in
their “second life,” with zero embodied emissions.

To model rack-level embodied emissions (Femp ), we add
embodied emissions from servers, rack structures, and other
rack-level hardware (e.g., power bus, rack controller):

Eemb,r = N% * Eemb,s + Z C02€j

rack comp. j

3

To model data center-level embodied emissions (Eemp,pC),
we add the embodied emissions from compute racks, net-
working/storage (Y'), and the non-IT equipment/building (2):
Eemb,DC = Nr * Eemb,r +Y +Z.

Finally, we determine the final COqe-per-core value by first
calculating the number of cores in the data center: N.pc =
Nc s * Ng* N;, where N, is the number of cores per server.
Then, the COgze-per-core is: (FEop.pc + Eemb,nc)/Ne,pe-

We now show an example of how we calculate emissions at
the server- and rack-level using our above model. For brevity,
we omit data center-level carbon calculations, which are similar
to rack-level carbon calculations. In our carbon model, we use
proprietary carbon values. As we are unable to open-source
this data, in this example, we use values from public datasets
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of components’ carbon, as well as best-effort estimates when

data is unavailable. From these datasets, we source embodied

emissions and power data for key GreenSKU-CXL components—
CPU, DRAM, SSD, and CXL controller. We provide this data

in Table V in Appendix A. We describe key carbon calculations

for brevityz, round intermediate calculations’ outputs, and show

how to calculate amortized emissions across CPU cores.

To calculate GreenSKU-CXL’s embodied emissions, Eemp s,
we multiply each server component’s capacity by its embodied
emissions-per-capacity. GreenSKU-CXL has an AMD Bergamo
CPU, 768GB of DDR5 DRAM, 256GB of reused DDR4
DRAM, 20TB of SSD, and a CXL controller. Thus, for example,
to calculate the DDR5 DRAM’s embodied emissions, we
multiply its capacity (768GB) with its embodied emissions-
per-capacity (1.65 kgCOqe). We then add these components’
embodied emissions to calculate a total Eenp s of 1644 kgCOqe.

To estimate GreenSKU-CXL’s operational emissions, we
use Eq. 1 to calculate server-level power as the product of
each component’s capacity, TDP-per-capacity, and derating
factor, while considering losses from power electronics. As an
example of power loss, we model that the CPU faces a 5%
power overhead from its voltage regulator losses. We derive
the derating factor as a fraction of TDP utilization at a given
percentage of max SPEC rate [122]; at 40% SPEC rate, the
corresponding derating factor is 0.44. Applying this derating
factor to every component, Eq. 1 results in Py = 403W.

Next, we calculate rack-level emissions. Since there is a
lack of public data on an empty rack’s emissions, we use the
estimates for a rack’s TDP and embodied emissions in Table V.
To calculate rack-level emissions, we consider the number
of servers in a rack; a rack with 32U of space available for
servers can fit 16 GreenSKU-CXL servers with a form factor
of 2U. We calculate rack power constraints by subtracting the
rack’s power (500W) from the rack’s power capacity limit
(15,000W) and dividing by the server-level power, P, i.e.,
[ (15,000 — 500)/403] = 35. As this value is greater than 16,
the rack is space-constrained to Ny = 16 servers.

To calculate rack-level embodied emissions, we use Eq. 3 to
multiply the number of GreenSKU-CXLs and the server-level
embodied emissions. We then add an empty rack’s embodied
emissions, i.e., Fempr = 16 * 1644 + 500 = 26, 804 kgCOqe.

To calculate rack-level operational emissions, we apply Eq. 2
to calculate rack-level power, F,. An empty rack’s power
consumption is 500W. Thus, P, = 16 * 403 + 500 = 6953 W.
The lifetime of our servers, L, is 6 years (52,560 hours).
We calculate that C'I = 0.1 kgCO2e/kWh by averaging the
estimated carbon intensity across Azure’s large data center
regions. Thus, Ey, = L * CI x P, = 36, 547 kgCOqe.

The net rack-level emissions, F,, is the sum of a rack’s
operational and embodied emissions, i.e., B = Eqp + Eemp,r =
26,804 + 36, 547 kgCOge = 63, 351 kgCOqe.

Finally, we calculate the rack-level COqe-per-core by di-
viding E; by number of cores in a rack, N ;. To calculate

The complete set of calculations using our open-source carbon model [18]
is in Appendix A.
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N.;, we multiply the number of servers in a rack by the
number of cores per server, i.e., N, = 16 * 128 = 2048.
GreenSKU-CXL’s rack-level COqe-per-core is then E; /N, =
63,351/2,048 kgCOze = 31 kgCOqe.

Implementing GSF’s performance component. Prior work
identifies that six application classes run in the majority of VMs
in Azure [95]. They include: (1) big data (e.g., in-memory data
stores), (2) web applications (e.g., information retrieval), (3)
real-time communication or RTC (e.g., speech recognition), (4)
Machine Learning (ML) inference (e.g., image recognition), (5)
web proxy (e.g., front-end web server), and (6) DevOps (e.g.,
code compilation). The reported share of production core-hours
for each application class [95] is shown in Table III.

Across these six classes, we benchmark 20 open-source
and closed-source applications’ performance. For big data,
we study Redis [43]: an in-memory key—value store,
Masstree [74], [90]: a key-value database, Silo [74],
[108]: an Online Transaction Processing (OLTP) database, and
Shore [68], [74]: an OLTP database. For web applications,
we study Xapian [33], [74] and four Microsoft production
services—WebF-Dynamic, WebF-Hot, WebF-Cold, and
WebF-Mix. For RTC, we study Moses: a speech translation
service [74], [130] and Sphinx [74], [80]: a speech recognition
service. For ML inference, we study Img—-DNN [74]—an
image recognition service. For web proxy, we study front-
end web servers like Nginx [109], Caddy [58], Envoy [16],
HAProxy [19], and Traefik [104]. For DevOps, we evaluate
Build-Python, Build-Wasmer, and Build—-PHP.

We measure a GreenSKU’s performance by setting a Service
Level Objective (SLO) based on a baseline SKU’s performance.
Our baseline SKUs are three deployed server generations, Gen
1, 2, 3 (see Table I). Successive baseline SKUs use newer
hardware and have better performance. To achieve comparable
performance as the high-performance baseline SKU, we scale
up the number of VM cores on the GreenSKU to 8, 10, and
12 cores and compare the resulting performance against an
8-core VM running on the baseline SKU. Using these results,
we calculate the scaling factors relative to each baseline SKU.

Implementing GSF’s maintenance component. We use
Little’s law [107] to estimate that the fraction of out-of-service
servers is the product of average repair time and server AFR.
From observations at Azure, we find that our GreenSKUs’
design choices do not significantly affect repair time. Our
GreenSKUs’ components like reused DIMMs and SSDs are
easily accessible, and diagnosing them is a well-established
process due to their previous deployment at Azure.

To estimate our GreenSKU-Full’s AFR, we must consider
failures from reusing older DIMMs and SSDs. These compo-
nents typically increase server AFR, as they often fail even in
baseline SKUs>. We approximate the average failure rate by
adding these components’ AFRs*. For example, a baseline SKU
with 12 DIMMs and 6 SSDs has an AFR of 4.8. Our GreenSKU-

3DIMMs and SSDs constitute half of a server’s AFR [89], with AFRs of
approximately 0.1 and 0.2, respectively.

4Concurrent failures largely occur due to class failures, e.g., recalls for
production days of a component, and occur rarely for old reused components.
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Full has 20 DIMMs and 14 SSDs (Table 1V), causing an AFR
of 7.2. We use the same AFRs for new and reused components,
as we empirically observe that reused DIMMs and SSDs have
lower or equal AFRs than new components (§1I).

To reduce repair rates, we use Fail-In-Place (FIP) [89] at
Azure. FIP is highly effective for GreenSKU-Full, due to its
large number of DIMMs and SSDs. Using a conservative FIP
effectiveness rate of 75% for DRAM and SSD [89], the repair
rate per 100 servers for the baseline SKU and GreenSKU-Full
reduces to 3 and 3.6 (from AFRs of 4.8 and 7.2), respectively.

We now estimate the higher maintenance emissions, Coos,
due to GreenSKU-Full’s higher repair rate. Coos is the product
of a SKU’s per-server repair rate, the number of servers (V)
needed to run our applications, and the per-server emissions
(Es). On average, we need 0.66 GreenSKU-Fulls per baseline
SKU, when we factor in a GreenSKU-Full’s increased resources
while scaling VM cores to match baseline SKU performance.
However, we must also account for our GreenSKU-Full’s per-
server carbon being 26.2% higher than the Gen3 baseline
SKU, as GreenSKU-Full has more resources. On multiplying
the calculated repair rate, N, and Eg normalized to the baseline
SKU’s Eg, we get: Copos = 3x1x1 = 3 for the baseline SKU
and Cpps = 3.6 x 0.66 x 1.262 = 2.98 for GreenSKU-Full.
Thus, GreenSKU-Full’s maintenance overheads are negligible.

Implementing GSF’s adoption component. Our adoption
component assumes that cloud users aim to reduce their
applications’ emissions while meeting performance goals. Thus,
to decide whether an application can adopt a GreenSKU, we
calculate the carbon required to service the application on a
GreenSKU. To this end, we multiply the number of GreenSKU
cores needed to achieve the baseline SKU’s performance
(determined from GSF’s performance component) by the COqe-
per-core determined from the carbon model. We also calculate
this value for the baseline SKU, using 8 cores and the baseline
SKU’s COqe-per-core. We model that an application will adopt
a GreenSKU if the calculated carbon value to run the application
on the GreenSKU is lower than the baseline’s, i.e., running on
the GreenSKU saves carbon while meeting performance goals.
We repeat this step for each representative application.

Implementing GSF’s VM allocation component. To
evaluate how effectively varied-sized VMs can be packed within
GreenSKU servers, we use a VM allocation simulator that
captures Azure’s production scheduler’s key VM placement
rules. These rules include (1) using best-fit placement heuristics
that reduce resource fragmentation, (2) preferring to place
VMs on non-empty nodes, and (3) enforcing VM placement
constraints. Our simulations use real VM arrival/departure
traces and VM configurations from multiple Azure data centers.

Since the applications running in VMs are opaque in
production traces, we assign each VM in our trace to one of
our representative benchmark applications. We determine the
application class by sampling from the core hour percentages
in Table III. We then uniformly sample from that application
class to assign an application to the VM.

The VM'’s server generation (i.e., Gen 1, 2, or 3) is pre-
defined in our traces. We determine whether a VM can run its

application on a GreenSKU instead, i.e., adopt it, using our
adoption model and the VM’s application assignment. If a VM
can adopt the GreenSKU, we multiply the VM'’s core count
and memory allocation size by the scaling factor required to
run its application on the GreenSKU. We use the scaling factor
that corresponds to the VM’s pre-defined server generation.

Apart from VMs that do not adopt the GreenSKU, we have
long-living “full-node VMs” that require a dedicated server.
We strictly assign these VMs to baseline SKUs, as they have
fewer resources, i.e., dedicating a GreenSKU’s increased cores
and memory to such a VM would cause wasted resources.

Implementing GSF’s cluster sizing component. We use
the VM arrival/departure trace and each VM’s GreenSKU
adoption decision to determine how many baseline SKUs and
GreenSKUs are required to serve the cluster’s VM workload.
We find the number of such servers using our VM allocation
simulator. To this end, we first right-size a baseline SKU-
only cluster by increasing the number of simulated servers
until no VM is rejected, i.e., identify the minimum number
of servers in a baseline SKU-only cluster that can host all
VMs. Next, we incrementally replace each baseline SKU with
enough GreenSKU servers until no VM is rejected. We repeat
this process until we can no longer replace baseline SKUs,
to identify the right number of baseline SKUs required to
run the VMs that cannot adopt the GreenSKU. This search
identifies the cluster size of GreenSKUs and baseline SKUs
that minimizes emissions while supporting our VM workload.

Implementing GSF’s growth buffer component. Typically,
the growth buffer size is calculated using models that require
historical workload trends [49]. As we do not have such trends
for a new GreenSKU, we use a workaround that enables a
VM to fungibly run on a GreenSKU while there is enough
GreenSKU capacity available. If there is no such capacity, the
VM may also run on a baseline SKU. This approach maintains
the growth buffer using only baseline SKUs, whose historical
workload trends are available. It also overcomes the need for
multiple buffers, simplifying GreenSKU deployment. However,
this approach marginally increases emissions, as the entire
buffer has carbon-inefficient baseline SKUs. We consider these
emissions in our savings estimate.

V1. EVALUATING OUR GREENSKUS USING GSF

We use our GSF implementation at Azure to evaluate our
GreenSKUs from §III. We compare each of our GreenSKUs,
i.e., GreenSKU-Efficient, GreenSKU-CXL, and GreenSKU-Full,
against baseline SKUs from three generations. Since we noted
the quantitative carbon contributions of some GSF components
(e.g., maintenance) earlier, in §V, we omit those components.

Evaluating GreenSKUs’ performance and adoption. To
evaluate our GreenSKUs performance, we measure the 95" %
tail latency across different Queries Per Second (QPS) loads for
one representative applications in each application class. Similar
to prior work [46], [85], [137], we set applications’ SLO as the
95"% (tail) latency achieved at 90% of the compared baseline
SKU’s peak saturation throughput. Across all experiments with
these applications, we conduct three trials and report our data
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Fig. 7. 95'"% tail latency vs. load (QPS) for applications spanning five of our
six application categories. Tail latency is shown for 8-core configurations for
the Gen3 baseline SKU (in orange). Results for GreenSKU-Efficient are shown
up to the scaling required to achieve comparable performance, if possible, to
Gen3. The dotted orange line indicates an SLO set using Gen3’s latency at
90% of peak load. For some applications (e.g., Xapian and Nginx), our
GreenSKU-Efficient can achieve the SLO with scaling; for other applications
(e.g., Masstree), the scaling required outweighs carbon savings.

GreenSKU-
DevOps App. Genl Gen2 Gen3 Efficient GreenSKU-CXL
Build-PHP 1.27 1.11 1.00 [ .17 1.38
Build-Python | 1.28 1.13 1.00 1.15 1.21
Build-Wasmer 1.34 1.19 1.00 ‘ 1.15 1.28
TABLE 1T

GREENSKU-EFFICIENT’S NORMALIZED SLOWDOWN COMPARED TO
BASELINE SKUS WHEN COMPILING THREE DEVOPS PROGRAMS.

with 99% confidence intervals. We also measure 99*"% latency
and notice similar behaviors.

We first evaluate GreenSKU-Efficient’s performance and
adoption. We study 20 applications running on GreenSKU-
Efficient and compare its performance against the baseline
Gen 1, 2, 3 servers. For brevity, in Fig. 7, we show the
95t"% (tail) latency across different loads for one representative
application in each application class. To compare performance
and determine the scaling factors, we scale the number of VM
cores on GreenSKU-Efficient to 8, 10, and 12 and compare the
resulting tail latency against an 8-core VM running on Gen 1,
2, 3 servers. We show results up to the minimum number of
cores on GreenSKU-Efficient that achieves a peak saturation
throughput closest to our Gen3 server. We omit results for Genl
and Gen2, as they consistently perform worse than Gen3.

We observe that for applications such as Masstree, even
with 12 cores, GreenSKU-Efficient cannot match Gen3’s peak
throughput, and violates SLOs beyond 6000 QPS. However,
for other applications, such as Xapian, Moses, and Nginx,
GreenSKU-Efficient achieves SLOs with 10-12 cores. Thus,
GreenSKU-Efficient effectively meets the performance goals
of several latency-critical applications, albeit with scaling.

Next, we show our DevOps applications’ results in Table II
separately, as they only report throughput. We report average

GreenSKU Performance
Scaling Factor

% of Fleet

Application Category Core Hours

Application Genl  Gen2  Gen3

Redis | 1 1 1

Masstree 1 1
Silo

Shore

Big Data 32

Xapian
WebF-Dynamic *
WebF-Hot *
WebF-Cold *
WebF-Mix *

Web App 27

Moses

Real-Time Communication 24 X
Sphinx

Machine Learning Inference 11

Nginx

Caddy

Web Proxy 4 Envoy
HAProxy

Traefik

Build-Python
Build-Wasmer
Build-PHP

TABLE IIT
GREENSKU-EFFICIENT’S PERFORMANCE SCALING FACTOR COMPARED TO
GEN 1, 2, 3 FOR EACH APPLICATION. “*” IS A PRODUCTION APPLICATION.

1

1

1

1

1

1

1

1

Img-DNN | 1
1

1

1

1

1

1

DevOps 1 1
1

slowdowns normalized to the Gen3 server, when using 8 cores.
GreenSKU-Efficient outperforms Genl for all applications,
while facing only 1.15x-1.17x slowdown compared to Gen3.

We repeat these experiments for all 20 applications, calcu-
lating the scaling factors required relative to the three baseline
SKUs. We report these scaling factors in Table III.

For seven applications, GreenSKU-Efficient meets Gen3’s
SLO without any scaling. For another nine applications,
scaling by 25% is required to achieve Gen3’s SLO. Some
applications, such as Silo, have a significant scaling factor.
Our GSF adoption component’s implementation notes that
these applications cannot be run on GreenSKU-Efficient, as
they offset GreenSKU-Efficient’s carbon savings. These results
show that GSF can help determine scaling factors to identify
when an application can be deployed on a GreenSKU to achieve
carbon savings while meeting performance goals.

As with prior work [46], [119], we define 30% of peak
throughput as “low” load to measure GreenSKU-Efficient’s
impact on low-load latency, which is a key metric for some
latency-critical applications. We compare the low-load latency
of each application running on GreenSKU-Efficient when
scaled with the scaling factor relative to our baseline SKUs.
Running on GreenSKU-Efficient results in a median low-load
latency (across applications) that is 8.3% and 2% lower than
Genl and Gen2, respectively, and 16% higher than Gen3. As
applications often express SLOs in terms of tail latency and
peak throughput [95], this 16% increase in low-load latency is
unlikely to significantly impact the GreenSKU’s adoption.

Next, we study GreenSKU-CXL’s performance by evaluating
the performance impact of reusing older memory via CXL. In
Fig. 8, we show the 95!"% latency vs. load for two represen-
tative applications, Moses and HAProxy, that, respectively,
exhibit a high and low latency penalty with CXL compared to
GreenSKU-Efficient’s performance.

We find that running on GreenSKU-CXL greatly affects
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Fig. 8. 95!"% tail latency vs. load for an application that is more (Moses)
and less (HAProxy) impacted by reusing memory via CXL. The number of
cores is equivalent in both GreenSKU configurations and is the number of
cores required to achieve that application’s SLO relative to Gen3.

Moses’s performance. Moses saturates early, at 1700 QPS,
and fails to meet the SLO from 1200 QPS. Since Moses uses
speech language models that have a large memory footprint, it
is significantly memory bound. Thus, its performance is heavily
impacted by the increased memory latency with CXL.

In contrast, HAProxy meets the SLO across most high load
conditions and only faces an 11% reduction in peak throughput
compared to GreenSKU-Efficient. Since HAProxy is a load
balancer that is compute- and network-bound, its performance
is minimally affected when running on GreenSKU-CXL.

We note that 20.2% of our applications, weighted by pro-
portion of fleet core-hours, do not face significant performance
penalties when running on GreenSKU-CXL. These applications
can run in VMs whose entire memory is backed by CXL. Other
VMs can benefit from running on a GreenSKU that uses a mix
of DDRS5 and CXL-attached DDR4 memory (§III).

Evaluating GreenSKUs’ impact on VM packing. We now
evaluate how well we can pack VMs on our GreenSKUs. We
run VM packing simulations on 35 production VM traces. For
each trace, we select the minimum size of the baseline SKU
and GreenSKU clusters that avoid VM rejection.

Fig. 9 shows the mean VM packing densities’ distribution
across production traces, comparing right-sized clusters of
baseline SKUs and GreenSKU-Fulls. We find different VM
packing densities across the baseline SKU and GreenSKU-
Full due to differing core counts, i.e., 80 vs. 128 cores, and
memory:core ratios, i.e., 9.6 vs. 8, respectively. The baseline
SKU’s higher memory:core ratio causes higher core-packing
density at the expense of memory wastage. Thus, we show how
GSF’s VM allocation and cluster sizing components can help
study VM packing on GreenSKUs and its impact on emissions.

The packing density also helps understand server compo-
nents’ utilization. Using the packing density, we validate if we
can back untouched memory with reused DRAM via CXL, thus
reducing CXL-induced performance loss. To this end, we note
that in our VM traces, each VM reports the maximum amount
of its allocated memory that it uses over its lifetime. We replay
each trace and periodically take snapshots of the servers, to
aggregate the maximum memory usage across all VMs on
each server. We then average across servers and snapshots to
identify a trace’s average maximum memory utilization.

We show a CDF of the mean per-server maximum memory
utilization in Fig. 10 for clusters with both baseline-only
SKUs and GreenSKU-CXLs. The shaded portion is the 25% of
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Fig. 9. CDF of the mean packing density for core (solid) and memory
(dashed) across servers for each trace. We show the packing density for the
all-baseline cluster (in orange) and the GreenSKU-Fulls in the final simulated
cluster (in green). Our GreenSKU-Full design makes a carbon tradeoff, as it
shows better memory packing density with worse core packing density.
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Fig. 10. CDF of the mean per-server maximum memory utilization across
all servers for a cluster of baseline SKUs and GreenSKU-CXL. The shaded
region indicates memory accessed through CXL on the GreenSKU. Almost all
servers can service their VMs’ memory demand with local DDRS memory.

memory reused via CXL. In most traces, we see a maximum
memory utilization below 60%, which can be accommodated
by GreenSKU-CXL’s local memory. Only 3% of traces have a
memory utilization that would require using CXL.

Moreover, we can leverage our observation that CXL does
not cause a performance loss for 20% of our applications, to
schedule these applications to use CXL-backed memory. Thus,
using the VM allocator, we show that reusing DRAM via CXL
does not significantly impact GreenSKU-CXL’s adoption.

Evaluating GreenSKUs’ carbon savings. We now evaluate
our GreenSKUs’ carbon savings using the average grid carbon
intensity across major Azure data center regions. Table IV
shows our GreenSKUs’ per-core operational and embodied
emissions savings over the Gen3 baseline SKU. “Baseline-
Resized” is the baseline SKU when its memory:core ratio is
reduced from 9.6 to 8. This ratio is carbon-optimal for our
workload traces, based on GSF’s estimates. Thus, “Baseline-
Resized” saves 4% carbon compared to the baseline SKU (3%
operational and 6% embodied carbon savings).

GreenSKU-Efficient uses the carbon-optimal memory:core
ratio of 8 with its efficient CPU. Due to its efficient CPU’s lower
power consumption per core, GreenSKU-Efficient saves 29%
in operational emissions. Furthermore, as GreenSKU-Efficient
leads to more cores per server and rack, it better amortizes the
rack- and data-center-level embodied emissions per core. Thus,
GreenSKU-Efficient saves 14% embodied emissions per core,
resulting in 23% net per-core carbon savings.

GreenSKU-CXL replaces 30% of GreenSKU-Efficient’s mem-
ory with 32GB DDR4 DIMMs connected via CXL. Since these
CXL controllers consume additional power, GreenSKU-CXL
achieves 6% lower per-core operational emission savings com-
pared to GreenSKU-Efficient. However, due to DDR4 memory
reuse, GreenSKU-CXL saves 11% more per-core embodied
emissions compared to GreenSKU-Efficient, improving the net
per-core savings by 1% compared to GreenSKU-Efficient.

Finally, GreenSKU-Full replaces 60% of GreenSKU-CXL’s
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SKU # # x DIMM # x SSD Operational | Embodied | Total
Config. Cores (GB) (TB) Savings Savings Savings
Baseline 80 12 x 64 6 x2
Baseline- | ¢ 10 x 64 6x2 3% 6% 4%
Resized 1l
GreenSKU- | g 12 % 96 5% 4 29% 14% 23%
Efficient
GreenSKU- 12 x 64

‘ XL 128 8 % 32 CXL ‘ 5x4 23% 25% 24%
GreenSKU- 12 x 64 2 x4
Full 12 8 x 32 CXL 12 x 1 Reuse W 4EH 2k

TABLE IV

PER-CORE OPERATIONAL, EMBODIED, AND TOTAL CARBON SAVINGS
(CALCULATED BASED ON THE AVERAGE CARBON INTENSITY FOR MAJOR
AZURE REGIONS) RELATIVE TO OUR GEN3 BASELINE SKU FOR FOUR
INCREMENTAL GREENSKU CONFIGURATIONS.

GreenSKU-Efficient ~ === GreenSKU-CXL === GreenSKU-Full

Cluster carbon
savings (%)

Azure
us-east
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Carbon intensity (kgCO,e/kWh)
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Fig. 11. End-to-end cluster-level carbon savings relative to clusters of all
baseline SKUs across a range of carbon intensities evaluated for our three
GreenSKU configurations. The vertical lines mark estimated carbon intensities
for the energy used by three Azure data center regions [26]. The best GreenSKU
design depends on the data center’s operating conditions.

storage with reused SSDs. As reused SSDs are less energy
efficient, GreenSKU-Full saves 6% lesser per-core operational
emissions compared to GreenSKU-CXL. However, due to SSD
reuse, GreenSKU-Full saves 18% more embodied emissions
compared to GreenSKU-CXL. Thus, GreenSKU-Full achieves
a 28% per-core carbon savings compared to the baseline SKU.

We now evaluate our GreenSKUs’ cluster-level carbon
savings. We compare the carbon savings achieved by a cluster
of GreenSKUs and baseline SKUs against a cluster of all
baseline SKUs. In Fig. 11, we show the cluster-level carbon
savings achieved by GreenSKU-Efficient, GreenSKU-CXL, and
GreenSKU-Full. We evaluate across a spectrum of carbon
intensity values. We annotate the carbon intensities for the
energy used by three Azure data center regions.

The cluster with GreenSKUs saves 6%—25% carbon com-
pared to the baseline SKUs’ cluster. The lower-carbon Green-
SKU configuration depends on the carbon intensity of the data
center’s grid, which affects operational emissions. At higher
carbon intensity, as with the Azure—-europe-north data
center region, GreenSKU-Efficient saves more carbon as it
does not have inefficient reused components. At lower carbon
intensity, as with the Azure-us-south region, saving
embodied emissions matters more. Thus, GreenSKU-Full saves
more carbon as it saves more embodied emissions from reuse.

VII. WHY DESIGN GREENSKUS?

We detail why reducing emissions by deploying GreenSKUs
(1) also reduces cost and (2) is more practical compared to other
cloud emission reduction approaches. We use the flexibility of
our GSF’s carbon model to perform such comparisons.
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A. GreenSKU Cost Analysis

GSF can be adapted to analyze GreenSKUs’ effect on Total
Cost of Ownership (TCO) by replacing the carbon model with
a TCO model. Since TCO data is sensitive, we share high-level
insights from our TCO analysis.

Our TCO analysis reveals that a cost-efficient server SKU is
only 5% less costly compared to our carbon-efficient GreenSKU.
This relatively small TCO loss may be tolerable to a cloud
provider seeking to meet aggressive decarbonization targets.
Moreover, cloud providers can use GSF to evaluate other SKUs
that achieve the required carbon vs. cost tradeoft.

B. GreenSKU vs. Other Carbon Reduction Strategies

To reduce emissions, prior work has proposed (1) in-
creasing renewables use [10], (2) improving servers’ energy
efficiency [93], and (3) increasing server lifetimes [115], [126].
We comment on how designing GreenSKUs can be a more
practical and complementary approach to reduce emissions.

Increasing renewable generation. Cloud providers reduce
emissions by increasing renewable energy use [1], [10]. We
calculate that an increase of 2.6% in the percentage of energy
coming from renewables for the average Azure data center is
required to match our GreenSKU-Full’s data center-wide carbon
savings. While this increase appears small, there are major
challenges in realizing it. First, in many parts of the world,
including the United States, grid decarbonization has been
slow due to infrastructural and political challenges, with the
renewable percentage increasing by 1.2% annually on average
in the last five years [15]. Second, it is challenging for a data
center to fully utilize an increase in renewables; prior work
suggests that increasing renewable energy coverage from 95%
to 99.9% requires investing 5x the cost required to go from
0% to 95%, due to the long tail in generation variance [35].

Improving server energy efficiency. Improving energy effi-
ciency reduces operational emissions [64], [131]. We analyze
how much servers’ energy efficiency must increase to achieve
our GreenSKU-Full’s data center-wide carbon savings. We
optimistically assume that improvements in energy efficiency
(1) do not increase embodied emissions and (2) occur uniformly
across server components. We use the current average grid
intensity of some of Azure’s largest regions for our analysis.

We estimate that all server components must become 28%
more energy efficient. Achieving such improvements can take
years. For example, upgrading from AMD’s Zen 3 to Zen 4
(separated by two years) improves energy-efficiency by 25% [6].
Note that upgrading every cloud server every two years would
cause high embodied emissions, decreasing carbon savings.

Increasing server lifetime. To reduce emissions, prior
works extend server lifetime via scheduling [126], better
maintenance [88], and reuse of discarded devices [115]. We
analyze how much server lifetimes must increase by, to achieve
our GreenSKU-Full’s carbon savings, with a simplifying as-
sumption that extending lifetimes does not increase operational
emissions. Using Azure’s renewables mix, we estimate the
required lifetime extension to be 6 — 13 years.
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Extending lifetimes to 13 years requires a radical data center
stack redesign. For example, maintenance can become cost
prohibitive over this time frame [88], [89]. Older servers also
tend to have higher per-core operational emissions relative
to newer hardware [64], [75]. GSF can evaluate server
lifetime extension by considering such extension’s impact on
maintenance, performance, and emissions.

Summary. Thus, strategies like increasing renewable energy
use, improving energy efficiency, and increasing lifetimes
require significant investment and navigation of deployment
challenges, to achieve our GreenSKUs’ carbon savings. The
latter two approaches trade off operational vs. embodied
emissions in a way that can hurt net carbon savings in some
deployment scenarios. Our evaluation with GSF shows that
our GreenSKU designs navigate this tradeoff to save carbon
across diverse carbon intensities, as summarized in Fig. 11.

VIII. DISCUSSION

We briefly discuss open questions and limitations.
Scheduling real-time applications. We show how to eval-
uate GreenSKU deployment. Run-time systems that leverage
GreenSKUs, post-deployment, are an opportunity for future
work. For example, auto-scalers [98], [100] can improve
GreenSKUs’ performance during load changes. Tuning CPU
configurations (e.g., frequency) [70], [112] can also help a
GreenSKU adapt to application changes post-deployment.
Navigating component search space. While our GreenSKU
achieves significant carbon savings, it may not be the optimal
configuration. When designing our GreenSKUs, we used parts
of GSF to iterate through hundreds of configurations. To
identify optimal configurations, we must consider components’
dynamic interactions in terms of performance (e.g., memory and
core frequency) and compatibility (e.g., CXL-compatibility).
We expect that a future search framework could consider such
interactions and repeatedly run GSF to evaluate emissions.
Heterogeneous compute on GreenSKUs. GSF focuses
on general-purpose compute servers. Extending GSF to study
GreenSKUs with heterogeneous accelerators, e.g., for ML, may
require adjustments. For example, the adoption model’s “scaling
factor” may need to reflect scaling out across CPUs and/or
accelerators. Such extensions can help study accelerator-reuse
for less compute-intensive ML models and reusing offload
engines for less IO-intensive tasks [55], [82], [83].
Assumptions. GSF pessimistically assumes that scaling out
requires a proportional increase in core count, memory, and
disk capacity. While this assumption may be true for some
applications, it was rarely true in our experiments. Thus, it may
be possible to further reduce DRAM and SSD provisioning.
Limitations. While our carbon model considers key carbon
contributors, it may not cover all factors. The underlying carbon
data is also changing as emissions-tracking processes mature.

IX. RELATED WORK

To the best of our knowledge, GSF is the first framework
to help cloud providers systematically evaluate server designs’
emissions at data center scale. We now discuss related work.
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Designing server SKUs. Prior work on server SKU de-
sign [44], [69] primarily improves performance and cost, rather
than carbon. SoftSKU [112] considers the performance impact
of running services on efficient cores, but does not consider
carbon. Other works [56], [67], [93], [114], [133] redesign
servers to improve energy efficiency. In contrast, we show
how to systematically evaluate a carbon-efficient server SKU’s
potential to reduce emissions.

Reducing carbon emissions. Many works build systems
to improve cloud resource utilization [46], [57], [59], [60],
[72], [86], [87], [92], [97], [113], [135], energy efficiency [45],
[51], [52], [62], [105], and power management [71], [79], [96],
[118], [132], [134]. While these systems might indirectly lower
carbon emissions, they do not explicitly consider the tradeoffs
between operational and embodied emissions. Moreover, these
works can augment GreenSKUs to improve resource utilization.

Prior work reduces operational emissions by shifting a
data center’s workload spatially (i.e., across data centers) and
temporally (i.e., batching workloads during certain periods) to
leverage renewables’ availability [20], [35], [40], [99], [110],
[129]. These solutions can apply on top of GreenSKUs.

Switzer et al., [115] run some services on discarded smart-
phones, as they find that it offers more carbon savings compared
to old laptops and servers. Prior works [89], [117], [124]-[126]
also extend server lifetimes to reduce embodied emissions,
which adds a dimension to the GreenSKU design space. Gupta
et al. [64] motivate saving carbon from reducing and reusing
hardware. GSF enables evaluating such carbon-efficient server
optimizations’ benefits at data center scale.

Planning cloud capacity. Prior works on capacity planning
determine the resource capacity required to support a data
center’s workload [42], [61], [84], [120], [127]. We build on
these approaches by introducing emissions as a key metric to
consider in capacity planning decisions. Flux [53] distributes
service capacity across geo-distributed servers. Such capacity
management solutions can help intelligently distribute services
across data centers with different GreenSKU capacities.

X. CONCLUSION

To reduce cloud emissions, designing carbon-efficient Green-
SKUs is a promising solution. Thus, we designed three
GreenSKUs with low-carbon server components. However, it
is challenging to determine our GreenSKUs’ carbon savings at
scale. To this end, we developed a novel framework, GSF, to
help cloud providers to systematically evaluate a GreenSKU’s
benefits. We applied GSF within Azure’s production constraints
to evaluate our GreenSKUs. We found that our GreenSKUs
reduce emissions by 28% compared to the currently-deployed
cloud servers. They also reduce Azure’s net emissions by 8%.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

The artifact provides the carbon model that we use to evaluate
our GreenSKU designs’ carbon emissions (as described in §V).
The artifact includes Python source code that implements the
carbon and maintenance models. As input to the carbon model,
it includes a set of open-source embodied emissions and power
numbers for (1) the components we use to evaluate and design
our GreenSKUs and (2) the Gen3 baseline SKU. The artifact
also provides source code to reproduce the open-source carbon
savings results reported in §A-F.

In summary, this artifact contributes (1) a reusable carbon
model to calculate the carbon emissions of SKU designs, (2)
open-source data that can be used as input to the carbon model,
and (3) code to reproduce our paper’s open-source results.

B. Artifact Check-List (meta-information)

o Program: Python3 scripts and Jupyter Notebook.

Data set: We provide all required data sets in our artifact
repository [18]. This repository includes open-source data sets
for (1) carbon numbers for components used in our servers,
(2) compute cluster information, and (3) data center carbon
intensities.

Run-time environment: Any standard Python environment.
Hardware: No special hardware is required.

Output: The Jupyter notebook will output the exact numbers,
tables, and figures that can be directly compared against expected
results.

Experiments: We provide a Jupyter Notebook that uses the
model and the inputs we provide to replicate the carbon savings
calculations and analysis shown in the paper.

How much disk space is required (approximately)? About
500MB (mainly for the Python environment).

How much time is needed to prepare the workflow (approx-
imately)? Less than an hour.

How much time is needed to complete the experiments
(approximately)? A few minutes.

Is the artifact publicly available? The artifact is available on
Zenodo: https://doi.org/10.5281/zenodo.10896255 and GitHub:
https://github.com/Azure/AzurePublicDataset.

Code licenses (if publicly available)? See GitHub: https://
github.com/Azure/AzurePublicDataset.

C. Artifact Description

Access. The live repository [18], which contains all the
information about performing the artifact evaluation and
reproducing the desired results, is available on GitHub:
https://github.com/Azure/AzurePublicDataset. The artifact is
also archived and available on Zenodo with the DOI:
https://doi.org/10.5281/zenodo.10896255.

Hardware dependencies. Any machine with a Python
environment can execute our scripts.

Software dependencies. The carbon model requires a
working Python environment. We suggest an Anaconda environ-
ment [11], installed through Miniconda (see the live repository
for details on installation and setup). All Python dependencies
are provided and are installed when performing the evaluation.

Data sets. In §VI, we use closed-source, internal carbon
data to calculate our GreenSKUs’ carbon savings. While this
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data is useful within Azure, we cannot use it to describe
our GreenSKU’s carbon savings. Thus, we collect open-
source carbon data from public sources to both explain our
carbon model in §V and to provide a reproducible version
of our results (§A-F). For brevity, in this appendix, we only
include the data that is used in §V. However, the full data
set and explanations for how we source each data value
is available in the artifact’s GitHub repository [18] within
analysis/GreenSKU-Framework. Note that all paths in
this artifact are relative to this subdirectory.

The open-source carbon data we use reasonably aligns with
our internal carbon data, with inevitable differences, due to the
specifics of Azure’s supply chain and hardware sourcing. Thus,
we do not officially endorse these data sources and we do
not claim that this open-source data represents internal carbon
values. Rather, we collect this open-source data to show an
example of how to calculate a GreenSKU’s carbon savings.

In Table V, we show the TDP and embodied emissions
values used in Sec. V’s operational and embodied emissions
example calculations. We require some additional parameters to
convert these raw carbon numbers into data center-level carbon
estimates. We detail these parameters in Table VI. The complete
data set and derivations for the data we provide is available in
data/README .md in our GitHub repository [18].

Component TDP (W) zill(rggood;:)d carbon
AMD Bergamo CPU | 400 [5] 28.3 [4], [64]

DRAM (DDR5) 0.37 per GB [23] 1.65 per GB [14], [64]
DRAM (DDR4) 0.37 per GB [23] 0 (reused)

SSD 5.6 per TB [29] 17.3 per TB [29]
CXL Controller 5.8 [30] 2.5 [32], [64]
Rack misc. 500 500

TABLE V

OPEN-SOURCE TDP AND EMBODIED CARBON VALUES FOR COMPONENTS
USED IN THE CARBON MODEL’S EXAMPLE CALCULATION.

Parameter Value

Carbon intensity 0.1 kgCO2e/kWh [1]
Lifetime 6 years [88]

Derate factor at 40% SPEC throughput | 0.44 [122]

Rack space capacity 42U (—10U overhead) [31]
Rack power capacity 15kW [13]

CPU voltage regulator loss 1.05 [34]

TABLE VI
OPEN-SOURCE MODEL PARAMETERS USED FOR THE CARBON MODEL’S
EXAMPLE CALCULATION.

D. Artifact Installation

We now detail our artifact’s installation instructions. The
same instructions are available in our GitHub repository [18],
which we suggest using to more easily copy commands. The
installation should take less than half an hour.

First, install Anaconda [11]. Once installed, create the
conda environment:

$ conda create ——name carbon_model \
python=3.9

To activate the virtual environment, run the following command:
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Result in paper to reproduce Run time Output file(s)
Last three columns of Table VIII <1 minute | figures/generated_figures/Table VIII.csv
Appendix A-F claims: “We re-calculate the
savings we report to find an average cluster- <1 minute figures/generated_figures/cluster_savings.txt
level savings of 14%, leading to an overall data figures/generated_figures/dc_savings.txt
center-level savings of 7%.”
Figure 12 1 minute figures/generated_figures/Figure_12.png

TABLE VII

RESULTS TO REPRODUCE AND THEIR RESPECTIVE RUN TIMES AND OUTPUT FILES.

$ conda activate carbon_model

Next, clone our GitHub repository [18] into your working direc-
tory. Then, run the following commands with the environment
activated to install the required dependencies.

$ ed AzurePublicDataset

$ ed analysis/GreenSKU-Framework
$ pip install —-r requirements. txt
$ conda install jupyterlab

Once this is done, installation is complete.

E. Experiment Workflow

Once installed, the workflow to validate
the model results is fully contained  within
notebooks/carbon_savings.ipynb. This notebook
uses the carbon model source code, the details of which are
in src/README . md.

The notebook performs the following tasks in order:

o Imports required packages, including the carbon model

and maintenance model Python modules.

o Configures the required model parameters and steps

through how parameters are calculated/derived.

o Performs the carbon savings calculations using the carbon

model to reproduce the results detailed in the next section.

F. Evaluation and Expected Results

This artifact only reproduces results that can be obtained
from the carbon model alone. All results will be generated
from running notebooks/carbon_savings.ipynb. Ta-
ble VII describes the results to reproduce, their run time, and
where the results are outputted. The output exactly matches
Fig. 12, as the model is fully deterministic for the same inputs.

We now show the main results of the paper reproduced using
the open-source data we provide.

Per-core carbon savings. We use the open-source compo-
nent carbon numbers outlined in §A-C to reproduce Table IV
using our open-source data, which we show in Table VIII.
We find that the relative savings in Table IV are similar to
Table VIII. The net carbon savings of GreenSKU-Full in
Table VIII is similar to the reported savings using internal
numbers: 26% vs 28%.

Cluster carbon savings across carbon intensities We
also use the open-source data to recreate Fig. 11, one of our
main results, containing the cluster-level carbon savings across
carbon intensities. The reproduced results using open-source

Operational

SKU # # x DIMM # x SSD Embodied | Total

Config. Core (GB) (TB) Savings Savings Savings

Baseline 80 12 x 64 6 X 2

Baseline- ¢, 10 x 64 6x2 6% 10% 8%

Resized

GreenSKU-

Efficient 128 12 x 96 5x4 16% 14% 15%

GreenSKU- 12 x 64

CXL ‘ 128 8 % 32 CXL 5x4 15% 32% 24%

GreenSKU- 12 x 64 2 x4

Full 128 | §x320xL | 12 x 1 Reuse || 4% e o
TABLE VIII

OPEN-SOURCE PER-CORE OPERATIONAL, EMBODIED, AND TOTAL CARBON

SAVINGS (CALCULATED BASED ON THE AVERAGE CARBON INTENSITY FOR

MAJOR AZURE REGIONS) RELATIVE TO OUR GEN3 BASELINE SERVER FOR
FOUR INCREMENTAL GREENSKU CONFIGURATIONS.

GreenSKU-Efficient = = GreenSKU-CXL = GreenSKU-Full

§=20
2 ~d
§ é’; e P —_———
S £
AT PR TSTReN AOP s ey prrrrry
o @ Azure Azure

us-south us-east
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Carbon intensity (kgCO,e/kWh)

Fig. 12. End-to-end cluster-level carbon savings relative to baseline clusters
across a range of carbon intensities evaluated for our three GreenSKUs. Vertical
lines are estimated carbon intensities for the energy used by three Azure data
center regions [26]. Calculated using open-source data.

data are shown in Fig. 12. While there are differences in terms
of the achieved carbon savings for each design, we still see that
reuse is especially effective at lower carbon intensities, where
embodied emissions dominates. We re-calculate the savings we
report to determine an average cluster-level savings of 14%,
leading to an overall data center-level savings of 7%.

G. Experiment Customization

No changes to the original scripts/notebook are necessary to
reproduce the results. The model, however, is generalizeable
to evaluate other server designs, and the original parameters
and inputs can be changed.

H. Methodology
Submission, reviewing, and badging methodology:
o https://www.acm.org/publications/policies/artifact-
review-and-badging-current
o http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

470

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 08,2026 at 01:55:35 UTC from |IEEE Xplore. Restrictions apply.



