
Precise exceptions in relaxed architectures
Ben Simner

University of Cambridge
Cambridge, United Kingdom
Ben.Simner@cl.cam.ac.uk

Alasdair Armstrong
University of Cambridge

Cambridge, United Kingdom
Alasdair.Armstrong@cl.cam.ac.uk

Thomas Bauereiss
University of Cambridge

Cambridge, United Kingdom
Thomas.Bauereiss@cl.cam.ac.uk

Brian Campbell
University of Edinburgh

Edinburgh, United Kingdom
Brian.Campbell@ed.ac.uk

Ohad Kammar
University of Edinburgh

Edinburgh, United Kingdom
ohad.kammar@ed.ac.uk

Jean Pichon-Pharabod
Aarhus University
Aarhus, Denmark

Jean.Pichon@cs.au.dk

Peter Sewell
University of Cambridge

Cambridge, United Kingdom
Peter.Sewell@cl.cam.ac.uk

Abstract
To manage exceptions, software relies on a key architectural guar-
antee, precision: that exceptions appear to execute between instruc-
tions. However, this definition, dating back over 60 years, funda-
mentally assumes a sequential programmers model. Modern ar-
chitectures such as Arm-A with programmer-observable relaxed
behaviour make such a naive definition inadequate, and it is unclear
exactly what guarantees programmers have on exception entry and
exit.

In this paper, we clarify the concepts needed to discuss excep-
tions in the relaxed-memory setting – a key aspect of precisely
specifying the architectural interface between hardware and soft-
ware. We explore the basic relaxed behaviour across exception
boundaries, and the semantics of external aborts, using Arm-A as
a representative modern architecture. We identify an important
problem, present yet unexplored for decades: pinning down what
it means for exceptions to be precise in a relaxed setting. We de-
scribe key phenomena that any definition should account for. We
develop an axiomatic model for Arm-A precise exceptions, tooling
for axiomatic model execution, and a library of tests. Finally we
explore the relaxed semantics of software-generated interrupts, as
used in sophisticated programming patterns, and sketch how they
too could be modelled.

CCS Concepts
•Computer systems organization→Architectures;Multicore
architectures; • Theory of computation→ Axiomatic semantics.

Keywords
Computer architecture, relaxed memory, exceptions and interrupts,
exception handling, semantics

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731102

ACM Reference Format:
Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad
Kammar, Jean Pichon-Pharabod, and Peter Sewell. 2025. Precise exceptions
in relaxed architectures. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo,
Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3695053.
3731102

1 Introduction
Hardware exceptions (and their many variants: interrupts, traps,
faults, aborts, etc.) provide support for many exceptional situa-
tions that systems software has to manage. This includes explicit
privilege transitions via system calls, implicit privilege transitions
from trappable instructions, inter-processor software-generated
interrupts, external interrupts from timers or devices, recoverable
faults like address translation faults, and non-recoverable faults
like memory error correction faults.

To confidently write concurrent systems code that handles ex-
ceptions, e.g. mapping on demand at page faults, programmers
need a well-defined and well-understood semantics. The definition
given in modern architectures (e.g. in the current Arm-A documen-
tation) is basically unchanged since the IBM System/360, roughly
as Hennessy and Patterson [34] state: “An exception is imprecise if
the processor state when an exception is raised does not look exactly
as if the instructions were executed sequentially in strict program
order”. However, on pipelined, out-of-order processors with ob-
servable speculative execution, exceptions have subtle interactions
with relaxed memory behaviour which have not previously been
investigated.

1.1 Contributions
In this paper, we investigate the relaxed concurrency semantics of
exceptions on modern high-performance architectures. We focus
on the Arm-A application-profile architecture as a representative
example, although we expect that the challenges we describe also
appear in other, similarly relaxed, architectures. This work involved
detailed discussions with Arm senior staff, including the Arm Chief
Architect and an Arm Generic Interrupt Controller (GIC) expert.
Our contributions are:

211

https://orcid.org/0009-0000-8431-9577
https://orcid.org/0000-0002-2910-0764
https://orcid.org/0000-0001-9607-8942
https://orcid.org/0000-0001-6941-5034
https://orcid.org/0000-0002-2071-0929
https://orcid.org/0000-0002-4442-6543
https://orcid.org/0000-0001-9352-1013
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731102
https://doi.org/10.1145/3695053.3731102
https://doi.org/10.1145/3695053.3731102

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

• We clarify the concepts and terminology needed to discuss
exceptions in relaxed-memory executions (§2).

• We explore the relaxed behaviour of exceptions: out-of-order
and speculative execution, and forwarding across exception
entry/exit boundaries (§3). This is based on discussions with
Arm and testing of several processor implementations, us-
ing a test harness for hardware testing of exceptions, and a
library of hand-written litmus tests.

• We explore the semantics of memory errors (§4). In Arm-A,
these can generate external aborts. Some implementations,
including server designs, may exhibit synchronous external
aborts. Such implementations rule out load-buffering (LB)
relaxed behaviour, which substantially curtails how relaxed
observable behaviour is.

• Wedevelop an axiomaticmodel for Arm-A precise exceptions
(§5). We extend Isla [13] to support both ISA and relaxed-
memory concurrency aspects of exceptions, and we use it to
evaluate the axiomatic model on tests.

• We identify and discuss the substantial open problem of
what it means for exceptions to be precise in relaxed set-
ting (§6). We characterise key properties that a definition
should respect, and highlight the challenge of giving a proper
definition of precision when relaxed behaviour is allowed
across exception boundaries.

• Finally, we explore a significant use-case of exceptions that
benefits from the clarification of their interaction with re-
laxed memory: the relaxed semantics of software-generated
interrupts as used for sophisticated low-cost synchronisa-
tion, e.g. in Linux’s RCU [52] and Verona [14] (§7). We sketch
this in an axiomatic model.

This is an essential part of the necessary foundation for con-
fidently programming systems code, building on previous work
that has clarified ‘user’ relaxed concurrency [1–3, 7–9, 13, 21, 28–
32, 37, 57, 58, 60–62, 64, 68] and complementing recent work on the
systems aspects of instruction fetch [67] and virtual memory [4, 66].
It helps put processor architecture specifications such as Arm-A on
an unambiguous footing, where the allowed behaviour of systems-
code idioms can be computed from a precise and executable-as-test-
oracle definition of the architecture.

1.2 Scope and limitations
Our models cover important use cases of exceptions, but there re-
main several questions to be addressed by future work. Our testing
suite is relatively small, and a much larger corpus would give higher
confidence, and ideally could be auto-generated [5, 9, 35]. We do
not give semantics to imprecise exceptions, and it is unclear how
to do so at an architectural level. For our specific modelling of Arm:
we do not define the behaviour of ‘constrained unpredictable’, and
merely flag when it is triggered. Clarifying it will require substan-
tial extensive discussions with Arm architects, likely affecting the
wording in the architectural specifications, beyond the scope of this
paper. We do not try to precisely model the relaxed behaviour of sys-
tem registers, but merely sufficient conditions for conservative use
cases in the context of exceptions (§3.1). We do not model switching
between Arm FEAT_ExS modes (§3.5): they are supported architec-
turally, but are not commonly implemented. We rely on a specific

configuration to illustrate the use of interrupts for synchronisation
(§7), without detailed modelling of the Arm Generic Interrupt Con-
troller (GIC), or other system-on-chip (SoC) aspects. The GIC is a
complex hardware component, with a 950-page specification [11,
H.b], and modelling it in full would be a major project in itself. This
work is validated by substantial discussion and hardware testing,
but more extensive testing on more devices is always desirable; we
hope that our work will spur such additional testing on devices
not available to us. Finally, while we believe our models correctly
capture the Arm architectural intent, and that it gives a solid basis
for programmers, this paper is not an authoritative definition of
the architecture, which is in any case subject to change.

2 Arm-A architectural concepts for exceptions
We start by recalling, and then refining the architectural concepts
for exceptions in Arm.

2.1 Exception taxonomy
Arm-A defines multiple kinds of exception [10, D1.3.1, p6060]: Syn-
chronous exceptions (supervisor/hypervisor calls, traps, data/instruc-
tion, page faults, etc.) and interrupts (IRQ/FIQ from processors/pe-
ripherals/timers and system errors).

The preferred return address of synchronous exceptions has an
architecturally defined relationship with the instruction that caused
them. Such exceptions are precise. This means, roughly, that they
are observed at particular points in the instruction stream, and so
can use the preferred return address to resume executing it after
handling the exception. All interrupts are precise apart from exter-
nal system aborts (SError), for which it is implementation-defined
(per-kind) whether they are precise. Such errors may or may not
be recoverable in practice. For example, an unrecoverable impre-
cise error may be generated by late detection of an uncorrectable
memory error correction error. In §3, we discuss how the choice
of mechanism used to report external aborts affects the relaxed
behaviour.

2.2 Architectural exception machinery
In Arm-A, when an exception is taken, execution jumps to the
exception vector, an offset from the appropriate vector base ad-
dress register (VBAR) value depending on the kind of exception.
The appropriate exception syndrome register (ESR), fault address
register (FAR), and exception link register (ELR) are written with
information about the cause and the preferred return address. In
some cases, the exception level (EL) register value, ranging in in-
creasing privilege from 0 to 3, is also changed. Exception handlers
typically use ERET to return from an exception, which restores
some processor state and branches to the address in the appropriate
ELR. Most of these system registers (VBAR, ESR, etc.) are banked.

2.3 Instructions and instruction streams
One often thinks of processors as executing instructions in some
instruction sequence, and common terminology is based on those
two concepts. For example, the Armmanual has around 60 instances
of instruction stream or execution stream. However, to account for
relaxed behaviours and exceptions, we must refine these concepts.

212

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

2.3.1 From instructions to fetch-decode-execute instances. Excep-
tions can arise at multiple points within the fetch-decode-execute
cycle, including during the fetch and decode, when there is no
‘instruction’. For Armv9.4-A, much of this is captured in an Arm
top-level function written in the Arm Architecture Specification
Language (ASL).

We have then integrated this into Sail-based tooling to obtain an
executable-as-test-oracle semantics of the sequential ISA aspects
of Armv9.4-A with exceptions (§5.1). A highly simplified outline of
a single-instruction slice of the (400k line) instruction semantics is:
function __TopLevel() =

// in TakePendingInterrupts:

if IRQ then AArch64_TakePhysicalIRQException()

if SE then AArch64_TakePhysicalSErrorException(...)

// in AArch64_CheckPCAlignment:

if pc[1..0] != 0b00 then AArch64_PCAlignmentFault()

// in __FetchInstr:

opcode = AArch64_MemSingle_read(pc, 4) // read memory

// in __DecodeA64:

match opcode

[1,_,1,1,1,0,0,1,0,1,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,
,,_,_] =

// the semantics for one family of instructions,

// including loads LDR Xt,[Xn]

// execute_aarch64_instrs_memory_single_general_

// immediate_signed_post_idx(n,t,...)

let address = X_read(n, 64) // read register n

let data : bits('datasize) = // read memory

Mem_read(address, DIV(datasize,8))

// write register t

X_set(t, regsize) = ZeroExtend(data, regsize)

Executing this semantics may lead to one or more kinds of ex-
ception, calling the ASL/Sail function AArch64_TakeException().
This function writes the appropriate values to registers, e.g. com-
puting the next PC, exception level, etc. and terminates this
__TopLevel() execution. So instead of ‘instruction’ instances, we
refer to fetch-decode-execute (FDX) instances, each of which is a
single execution of __TopLevel().

2.3.2 Fetch-decode-execute trees and streams. One must relate the
out-of-order speculative execution of hardware implementations
and the architectural definition of the allowed behaviours. We will
use the following concepts, well-understood when modelling re-
laxed memory without exceptions. At any instant, each hardware
thread may be processing, out-of-order and speculatively, many
instructions (each corresponding to an architectural FDX instance).
Partially executed instances are restarted or discarded if they would
violate the intended semantics (e.g. on mispredicted branches).

One can visualise the state of a single core abstractly as a tree
of partially and completely executed instances, as in Fig. 1 (top).
Abstract-microarchitectural operational models use this abstrac-
tion [28, 29, 32, 58, 60, 61]. We depict the retired (committed) FDX
instances as solid dark green, and partially/tentatively executed
in-flight instances as light green. The arrows depict program order.
Committed instances can be program-order after in-flight instances,
and non-committed instances may need to be restarted. Eventually

1

1

Figure 1: Top. The tree of (partially) executed FDX instances
at one time, in hardware or operational model execution. Bot-
tom. The sequence of architecturally executed FDX instances
in a completed execution.

all FDX instances for this hardware thread will be either committed
or discarded, e.g. as in Fig. 1 (bottom). These are the architecturally
executed FDX instances. The architecture definition, and any formal
semantics thereof, have to define which such sequences are allowed
for each thread. This definition includes the register content; mem-
ory read values; and their relationships with other threads, as deter-
mined by the relaxed concurrency model. Architectural axiomatic
concurrency models, e.g. [1–3, 7–9, 13, 21, 30, 31, 35, 37, 62, 64, 68],
use candidate executions containing the events just from these ar-
chitecturally executed instances. Note that the events comprising
architectural FDX instances are abstract: they do not represent any
individual sequence of microarchitectural operations as one would
need for side-channel analysis [23, 24, 53] or to reason about indi-
vidual microarchitectures [48]; we give no bound on the extent of
non-architecturally-executed instances except in that they cover
what one needs to capture the architectural bound.

The Arm prose specification in Fig. 2 (top) previously attempted
to capture the relationship between implementation execution (out
of order and speculative) and the architectural definition of allowed
behaviour in terms of a notion of “simple sequential execution”.
As the prose says, simple sequential execution does not hold for
the intended relaxed-memory architecture. We propose a more
correct rephrasing that allows for exceptions and other systems
phenomena in Fig. 2 (bottom).

Fig. 3 depicts a tree of instances involving exception entry (svc)
and return (eret). Arm-A allows implementations to observe the
exception handling instances as executing before program-order
previous instances have been retired, and similarly exception return.
Exception entry and return may never be observed as starting
to execute speculatively, however, and so the three speculative
branches may not observe exception entry or return instances.
Precision must account for these allowed and prohibited relaxed
behaviours.

3 Relaxed behaviour of precise exceptions
Exceptions change the control flow and processor context, that
is, the collection of system and special registers which control
the execution of the machine, such as the current exception level
(PSTATE.EL), masking of interrupts (PSTATE.{D,A,I,F}), processor
flags, etc. However, changes to the context may not take effect imme-
diately, and so, to ensure that program-order-later instructions see

213

https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L343
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/interrupts.sail#L220
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/v8_base.sail#L34286
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L194
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/decode_end.sail#L85
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

Architecturally executed An instruction is architec-
turally executed only if it would be executed in a simple
sequential execution of the program. [...]
Simple sequential execution The behavior of an imple-
mentation that fetches, decodes and completely executes
each instruction before proceeding to the next instruction.
Such an implementation performs no speculative accesses
to memory, including to instruction memory. The imple-
mentation does not pipeline any phase of execution. In
practice, this is the theoretical execution model that the ar-
chitecture is based on, and Arm does not expect this model
to correspond to a realistic implementation of the architec-
ture.

Architecturally executed A candidate execution can be
architecturally executed if it is composed of a sequence
of FDX instances for each thread that together satisfy the
Arm concurrency model [extended to cover exceptions, as
described here, and other systems phenomena], starting
from the machine initial state.

1

Figure 2: Arm prose specification [10, Glossary, p14749] (top)
and our suggested rephrasing (bottom).

svc eret

1

Figure 3: The tree of partially and completely executed FDX
instances with exceptions, in hardware or operational model
execution. Instructions may execute out-of-order across ex-
ception boundaries, requiring a modern definition for preci-
sion.

such changes, exceptions usually come with context synchronisa-
tion. It is this context synchronisation which imposes ordering, and
we show how, without such context synchronisation, we observe
reordering across exception boundaries. For this reason, exceptions
are usually context-synchronising on Arm.

There are many things that can trigger exceptions. While excep-
tions like interrupts and page faults are likely the most common,
theymay comewith extra synchronisation and/or non-determinism.
The simplest way to explore the relaxed behaviours is therefore to
use ‘exception-generating instructions’, such as system calls (us-
ing the Arm SVC instruction), which unconditionally generate an
exception at a particular program point. These provide a baseline
for precision, and therefore we use them in our exploration of the
behaviour of exceptions in the remainder of this section; we return
to discuss other exceptions later on.

In this section, we explain relaxed behaviour of precise excep-
tions through litmus tests, the usual standard for succinctly cata-
loguing the relaxed behaviours allowed by an architecture [8, 9, 13].

Litmus tests are small programs capturing specific software pat-
terns or hardware mechanisms, whose outcome depends on some
kind of out-of-order execution. Precise exceptions do not change
the memory model between exception boundaries, and so the inter-
esting questions concern out-of-order execution across exception
boundaries.

We will talk about context synchronisation in detail (§3.1), ex-
plore the baseline out-of-order execution across exception bound-
aries (§3.2), then the stronger behaviour of specific types of excep-
tions (§3.3), touch on how the instruction semantics needs to be
adapted (§3.4), and finally discuss a corner case disabling context
synchronisation (§3.5).

3.1 Context-synchronisation
Updates to the context, such as writes to system registers, need
synchronisation to be guaranteed to have an effect. We do not
model the behaviour of such context-changing operations when
such synchronisation is not performed. Instead, we merely identify
when and how exceptions are context-synchronising, and note that
this has a knock-on effect on memory accesses.

Architecturally, a context synchronisation event guarantees that
no instruction program-order-after the event is observably fetched,
decoded, or executed until the context-synchronising event has
happened. A simple microarchitectural implementation for context
synchronisation is to flush the pipeline: restarting all program-
order-later instances once the context-synchronising effect occurs.
More complex implementations may be more clever, as long as they
preserve the semantics. Software can explicitly generate context
synchronisation events by issuing an Instruction Synchronisation
Barrier (ISB). Context synchronisation can also happen implicitly,
for example on exception entry and exit. This is the case in Arm,
except in a rare use case we return to in §3.5.

The effect of context synchronisation events in exception bound-
aries is that any instance after the boundary has an ISB-equivalent
dependency on the instances before the boundary. This mechanism
implies the following fundamental invariant: context synchronising
exceptions are never taken speculatively, and it limits speculation
to the same well-understood extent as ISB limits speculation. This
invariant has interesting interactions with external aborts, which
we discuss in §4.

3.2 Relaxed behaviours
In this section, we explore the relaxed behaviour of exceptions, with
a selection of litmus tests from our larger suite of 61 hand-written
tests. For each test, we include whether the behaviour is allowed
in our understanding of the architectural intent; and a candidate
execution graph. We mark behaviours as allowed/disallowed based
on discussions with Arm architects.

3.2.1 Out-of-order execution across exception boundaries. Excep-
tion boundaries do not act as memory barriers, so loads and stores
may be executed out-of-order over an exception entry or an excep-
tion exit or the composition of both.

Figure 4 contains an illustrative sample of three such shapes.
Each test contains the code listing with the pertinent (relaxed) final
state and architectural intent, the graph of architecturally-executed
FDX instances comprising the candidate execution.

214

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

MOV X0,#2
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
SVC #0

Thread 1
MOV X2,#1
STR X2,[X3]

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

S+dmb.sy+svc AArch64

Allowed: 1:X0=1, *x=2

1

W x=2a:

W y=1b:

Thread 0
R y=1c:

W x=1d:

Thread 1

dmb svcrf
co

1

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0
SVC #0
LDR X2,[X3]

Thread 1
MOV X0,#1
STR X0,[X1]
ERET

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

SB+dmb.sy+eret AArch64

Allowed: 0:X2=0, 1:X2=0

1

W x=1a:

R y=0b:

Thread 0
W y=1c:

R x=0d:

Thread 1

dmb eretfrfr

1

MOV X0,#1
STR X0,[X1]
SVC #0
MOV X2,#1
STR X2,[X3]

Thread 0
ERET
T0 Handler

LDR X0,[X1]
EOR X4,X0,X0
LDR X2,[X3,X4]

Thread 1

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+svceret+addr AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

svceret addrrffr

1
Figure 4: Reads and writes may be executed out-of-order across exception entry, exit, or even both.

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
SVC #0

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

1

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb ctrlsvcrffr

1
Figure 5: Context synchronising exceptions are not executed
speculatively.

3.2.2 Speculative exception entry or return. The invariant ‘context
synchronising exceptions cannot be taken speculatively’ imposes
the same kind of barrier as a ctrlisb dependency would impose
between program-order-previous instances and the instances in
the handler. The control dependency is due to the branching to
the handling code, and the ISB dependency is due to context syn-
chronisation. As a consequence, the two behaviours in Figure 5
are forbidden. On architectures that allow the FEAT_ExS extension,
they would be allowed when the exception entry/exit is not context
synchronising, i.e., when the corresponding EIS/EOS bit is cleared.
This mechanism also explains why we do not observe load-load
reordering on the Raspberry Pi devices, but we do observe them
on the ODROID-N2+ (exhibited by the test MP+dmb+svc which can
be found in the extended version [65]). These machines exhibit the
same behaviour as they would for the corresponding MP+dmb+isb

behaviour from previous work.

3.2.3 Privilege level. The privilege level (PSTATE.EL) has little to no
additional effect on the behaviours we present: their allowed/forbid-
den status remains the same whether the privilege goes up/down in
entry/exit or remains the same. The one exception to this principle
is the effect a privilege change has on non-faulting translation table
walks. A non-faulting translation walk for an instance program-
order-before a privilege-changing exception entry from ELnmay be
reordered with the entry, but would then also be reordered with ev-
ery subsequent exception boundary until the privilege level returns
to ELn. Explaining this case in full detail would require substantial
details of Arm’s virtual memory architecture [66], and we leave it
to future work.

3.2.4 Forwarding writes. It is permitted for writes to be forwarded
from a store to a read across exception entry and return
(SB+dmb+rfisvc-addr in Figure 6).

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0
MOV X0,#1
STR X0,[X1]
SVC #0

Thread 1
LDR X2,[X3]
EOR X6,X2,X2
LDR X4,[X5,X6]

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=y, 1:X5=x

SB+dmb.sy+rfisvc-addr AArch64

Allowed: 1:X0=1, 1:X2=0

1

W x=1a:

R y=0b:

Thread 0
W y=1c:

SVCd:

R y=1e:

R x=0f:

Thread 1

dmb po

po

addr

fr

rf

fr

1
Figure 6: Forwarding into a non-speculative handler.

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
MRS X4,ESR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ESR_EL1,X5
SVC #0

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:PSTATE.EL=0b1, 1:X1=y,

1:X3=x

MP.EL1+dmb.sy+dataesrsvc AArch64

Forbidden: 1:X0=1, 1:X2=0
1

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb dataesrsvcrffr

1

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
SVC #0
LDR X2,[X3]

Thread 1
LDR X0,[X1]
MRS X4,ELR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ELR_EL1,X4
ERET

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlelr AArch64

Forbidden: 1:X0=1, 1:X2=0

1

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb ctrlelrrffr

1

Figure 7: System registers and context synchronisation

3.2.5 Dependency through system registers. Where exceptions are
taken to and returned to are part of the context, and must be read
by exception taking and returning, and so they can be involved
in register dependency chains. Here, we do not characterise the
general effect of such dependencies, but focus on the effect ex-
ceptions have on them. Dependencies on system register accesses
compose with ordering from context synchronisation events to
program-order-later instructions. Test MP.EL1+dmb+dataesrsvc in
Fig. 7 demonstrates that a write to the system register ESR that
depends on a read forbids reordering this read across the boundary,
even though resolving the dependency does not affect the excep-
tion.

The ELR register is a special-purpose register, and is therefore
‘self-synchronising’. Therefore, writes into the ELR do not need
context synchronisation to guarantee that they are seen by program-
order-later instructions, and this means that dependencies into the
ELR are preserved (see Fig. 7).

This has two related subtleties, and is currently under investiga-
tion by Arm. The Software Thread ID Register (TPIDR) is a system
register in which the operating system can store thread identifying
information, but has no relevant indirect effects. Further testing

215

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
MOV X5,#0
/ segfault
LDR X4,[X5]

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+fault AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

Pagefaultd:

R x=0e:

Thread 1

dmb po

po

rf

fr

1

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
L:
NOP

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

interrupt at=L

MP+dmb.sy+int AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

TakeInterruptd:

R x=0e:

Thread 1

dmb po

po

rf

fr

1

Figure 8: Different exception kinds can have different be-
haviour.

and discussions may clarify whether it forbids reordering. While
dependencies through special-purpose registers are preserved, con-
text synchronisation does not necessarily need to wait for those
writes, and so these dependencies do not necessarily pass to instruc-
tions after context synchronisation (in contrast to system register
writes).

3.2.6 Ordering from asynchronous exceptions. Asynchronous ex-
ceptions cannot be taken speculatively. Therefore, all instructions
program-order-after an asynchronous exception happen after that
exception.

3.3 Exception-specific mechanisms
Not all exception kinds are equal. For example, when an implemen-
tation supports the Enhanced Translation Synchronisation feature
(FEAT_ETS2), the translation-table-walks which generate translation
faults (pagefaults) gain additional ordering from program-order-
previous instances. Figure 8 compares the MP test involving a
page-fault (MP+dmb.sy+fault, forbidden under ETS) and the same
shape involving an asynchronous interrupt (MP+dmb.sy+int, al-
lowed). As such, combining the exceptions model here with any of
the existing models (for virtual memory, cache maintenance, mem-
ory tagging, transactional memory, etc.) would require clarification
around the domain-specific exceptions associated with those fea-
tures. We are aware that the specification of additional mechanisms
per exception-kind is an active area of interest for Arm.

3.4 Intra-instruction exceptions
Wherever possible, we want to interpret the intra-instruction ASL
ordering as preserved, both for conceptual simplicity, memory-
model tool execution, and reasoning. This has previously been
possible except in a few specific cases that are inherently concurrent,
e.g. instructions that do multiple accesses. Exceptions introduce a
new interesting case for instructions that do a register writeback
concurrently with a memory access. For example, STR (immediate)
has a “Post-index” and a “Pre-index” versions [10, C6.2.365, p2442].
The post-index STR Xt, [Xn], #8, for example, stores the value
in Xt to the address initially in register Xn and adds 8 to Xn. The
Arm ARM ASL for STR puts that register write at the end, after
the memory access has completed. The architectural intent is that
program-order-later instances that depend on Xn can go ahead
early, e.g. before the data in register Xt is available to be written to
memory, and this has been observed in practice [36].

Name m6g m7g m8g odroid m2 pi3 pi4 pi5
MP+dmb+ctrl-svc 0⁄16M

0⁄24M
0⁄12M

0⁄329M
0⁄360M

0⁄10M
0⁄230M

0⁄136M

MP+dmb+ctrlelr 0⁄16M
0⁄24M

0⁄12M
0⁄329M

0⁄360M
0⁄30M

0⁄318M
0⁄130M

MP+svc-eret+addr U0⁄16M
U0⁄24M

U0⁄12M
149K⁄328M

U0⁄360M
376⁄9M

U0⁄228M
12⁄136M

MP.EL1+dmb+dataesrsvc 0⁄16M
0⁄24M

0⁄12M
0⁄16M

0⁄0
0⁄4M

0⁄14M
0⁄27M

S+dmb+svc U0⁄16M
U0⁄24M

U0⁄12M
U0⁄328M

U0⁄360M
U0⁄41M

U0⁄222M
U0⁄101M

SB+dmb+eret 60⁄16M
120⁄24M

213⁄12M
262⁄328M

12K⁄360M
203K⁄41M

946K⁄222M
4K⁄100M

SB+dmb+rfisvc-addr 4⁄16M
235⁄24M

1K⁄12M
305K⁄328M

12⁄360M
1M⁄30M

7K⁄316M
197K⁄128M

MP+dmb+fault 0⁄16M
0⁄24M

0⁄12M
0⁄74M

0⁄0
0⁄2M

0⁄46M
0⁄80M

Figure 9: Experimental results.

Previous work captured this allowed by having the register write-
back before the memory access in the instruction semantics. How-
ever, exceptions require more care: when the memory access gener-
ates an exception, the writeback register should appear unchanged
to instances after the exception boundary.

3.5 Disabling context synchronisation
On Arm, the optional FEAT_ExS feature provides two new fields in
the system control register to disable context synchronisation on
exception entry or return, respectively: EIS and EOS. While the
semantics is clear for these systems, the programming model is un-
predictable and hard to program correctly, and so this configuration
is rarely encountered in practice.

3.6 Hardware results
We extend the testing harness of Simner et al. [66] to collect pre-
liminary results from hardware, on the following implementations:
AWS M6/7/8G instances (with Neoverse N1/V1/V2), an ODROID
N2+ (on the big Arm Cortex-A73 cores), an Apple M2, and Rasp-
berry Pi 3B+/4B/5 (with Arm Cortex-A53/A72/A76). Results can be
found in Fig. 9, given as observations over the total number of runs.
Results marked with U are allowed, but not observed on that device.
For the complete hardware results, see the extended version [65].

4 Synchronous external aborts
The memory system may detect errors such as data corruption
independently of the MMU or Debug hardware, e.g., using parity
bits or error correcting code. In those cases, it will signal the error
by a class of exceptions called external aborts. The architecture does
not define at which granularity implementations may report such
aborts synchronously, which we refer to as synchronous external
aborts (SEAs). Instances program-order-after a potential cause for
synchronous external aborts are considered speculative until this
external abort can be ruled out, resulting in stronger behaviour
(§4.1). In an implementation that always reports external aborts
asynchronously, the later instances become non-speculative earlier,
allowing them to exhibit weaker behaviours. When external aborts
are reported asynchronously, the simplest recovery is to wind down
the aborting process. To allow programmers more reliable recov-
ery, implementations can support the Reliability, Availability, and
Serviceability (RAS) extension. This extension is a substantial com-
ponent of the architecture, far beyond the scope of this work. Here,
we are merely taking the first steps, describing a baseline of be-
haviours in a very constrained setting, that further work may be
able to extend to account for the RAS.

216

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

Whether any external abort could be reported synchronously is
implementation-defined, with no architected way of identifying the
choice. Nevertheless, the choice impacts the permissible relaxed
behaviours.

4.1 Behaviour resulting from synchronous
external aborts

There is an asymmetry between reads and writes with respect to
speculation: writes cannot be propagated speculatively, whereas
reads can be satisfied speculatively. We will therefore consider the
store and load cases separately.

If a store may generate an SEA, then program-order-later in-
stances are speculative until the store has (at least) propagated to
memory. In that case, write-write re-ordering (MP+po+addr) is for-
bidden. Reads program-order-after writes are permitted to execute
speculatively anyway, and so the presence of these SEAs does not
restrict their ability to execute early.

More interestingly, if a load may generate an SEA, then program-
order-later instances are speculative until the load has completed all
its reads, and is non-restartable. This forbids interesting tests which
would otherwise be allowed, namely context-synchronisation after
reads (e.g. MP+dmb.sy+isb), whichmust wait for that control flow to
be resolved [63]; andwrites program-order-after reads (e.g. LB+pos),
since writes must not be propagated speculatively [63].

4.2 Load buffering and the out-of-thin-air
problem

This has an important and hitherto not well-understood impact on
programming-language concurrency models. Ruling out LB enables
substantially simpler design of programming language concurrency
models: they can execute instructions in-order and merely keep a
history of the writes seen so far, e.g. [46], and thereby avoid the
notorious out-of-thin-air problem [15]. These simpler semantics
support a line of model checkers for C/C++ and LLVM [42–44]. In
contrast, the presence of LB seems to require significant sophistica-
tion [3, 15, 16, 19, 38, 39, 55, 56].

5 An axiomatic model of exceptions
We now give a formal semantics that describes the concurrent
behaviour of precise exceptions on Arm-A. We give it as an ex-
tension of the previous model of Pulte et al. [58], a predecessor of
the current Arm model [25], in the standard ‘cat’ format [9, 13], in
Figure 10.

While the model captures the architectural intent as we under-
stand it, the architecture remains the sole responsibility of Arm;
the intent may change over time and the model presented here is
not officially endorsed by Arm.

The model is parameterised along two axes:
• FEAT_ExS corresponds to the feature of the same name be-
ing implemented; we do not support runtime changes of
the related SCTLR_ELx.{EIS,EOS} fields, and so fix them as
variants.

• SEA_R and SEA_W correspond to the ImplementationDe-
fined choice of whether loads or stores may generate syn-
chronous external aborts.

"Arm-A exceptions"

include "cos.cat"

include "arm-common.cat"

(* might-be speculatively

executed *)

let speculative =

ctrl

| addr; po

| if "SEA_R" then [R]; po

else 0

| if "SEA_W" then [W]; po

else 0

(* context-sync-events *)

let CSE =

ISB

| if "FEAT_ExS" & ∼"EIS"
then 0 else TE

| if "FEAT_ExS" & ∼"EOS"
then 0 else ERET

let ASYNC =

TakeInterrupt

(* observed by *)

let obs = rfe | fr | co

(* dependency-ordered-

before *)

let dob =

addr | data

| speculative ; [W]

| speculative ; [ISB]

| (addr | data); rfi

(* atomic-ordered-before *)

let aob =

rmw

| [range(rmw)]; rfi; [A|Q]

(* barrier-ordered-before

*)

let bob =

[R] ; po ; [dmbld]

| [W] ; po ; [dmbst]

| [dmbst]; po; [W]

| [dmbld]; po; [R|W]

| [L]; po; [A]

| [A | Q]; po; [R | W]

| [R | W]; po; [L]

| [dsb]; po

(* contextually-ordered-

before *)

let ctxob =

speculative; [MSR|CSE]

| [MSR]; po; [CSE]

| [CSE]; po

(* async-ordered-before *)

let asyncob =

speculative; [ASYNC]

| [ASYNC]; po

(* Ordered-before *)

let ob = (obs | dob | aob |

bob | ctxob | asyncob)+

(* Internal visibility

requirement *)

acyclic po-loc | fr | co |

rf as internal

(* External visibility

requirement *)

irreflexive ob as external

(* Atomic: Basic LDXR/STXR

constraint to forbid

intervening writes. *)

empty rmw & (fre; coe) as

atomic

Figure 10: Arm-A exceptional model (greyed out parts are
unchanged from the original model).

Most current hardware does not support FEAT_ExS, and more-
over, we expect that most software would not use it. However,
its semantics is relatively straight-forward as we understand it,
and so we include it in our model, although without the hardware
validation we have for the non-ExS fragment.

We add new events to the candidate execution: TE (take excep-
tion) and ERET, which correspond to the synchronisation points

217

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

(whether they are synchronising) of taking or returning from an
exception; and MRS and MSR events, for reading and writing system
registers, corresponding to the Arm MRS and MSR instructions which
change the context.

Exceptions and program order. We include all the new events in
program-order. This includes the events from instructions directly
before and after taking or returning from an exception.

Interrupts. While this cat model does not support inter-processor
interrupts and the generic interrupt controller (see §7 for a draft
extension to support them), it does support other precise asynchro-
nous exceptions (e.g. timers).

Ordered-before. We expand ordered-before:
• Wherever ctrl|(addr;po)was used before, we also include
instructions program-order-after reads or writes when in the
relevant SEA variant. With those variants, the instructions
program-order-after those events are speculative up until
the memory access has completed.

• The previous model’s use of ISB was purely for its context
synchronisation effect. Accordingly, wherever [ISB] was
used before, we include exception entry (TE) and exit (ERET),
unless we are in the variant where context synchronisation
on those events is disabled.

• We extend barrier-ordered-before with the DSB barriers. The
barrier event classes are upwards-closed, so that DSB.SY is
included in all the dmb events.

• We add a context-ordered-before (ctxob) sub-clause to the
ordered-before relation, which captures the ordering of context-
changing operations and context-synchronisation: namely,
that context-changes and context-synchronisation cannot
happen speculatively; that all context-changes are ordered
before any context-synchronisation; and that no instruc-
tion program-order-after context-synchronisation can be
executed until the synchronisation is complete.

• We add an async-ordered-before (asyncob) clause to ordered-
before, capturing that asynchronous events (such as inter-
rupts) cannot be done speculatively, and instructions program-
order-after them may not happen before the asynchronous
event which precipitated them.

5.1 Executable-as-a-test-oracle implementation
We implement the model in Isla [13], an SMT-based executable
oracle for axiomatic concurrency models (and ISA semantics). Isla
takes as input a memory model in herdtools-like cat format, and
a litmus tests. To support tests with asynchronous exceptions, we
added a construct to specify a label where the exception will occur,
so that Isla then pends an interrupt at that program point.

The instruction semantics we use is a translation into the Sail
language of the Armv9.4-A ASL specification, including the top-
level function provided by Arm [17]. The translation process [12]
is mostly automatic, requiring select manual interventions mostly
due to differences in the type systems of ASL and Sail. We also
added patches to support the integration with Isla, in particular
adding hooks to expose information about exceptions being taken
in a form that can be readily consumed by Isla. In doing so, we
encountered and fixed some bugs in the ASL model related to uses

of uninitialised fields in data structures, as well as missing checks
for implemented processor features that led to spurious system
register accesses.

For all the (non-IPI) tests, Isla, the architectural intent as we
understand it, and the results of hardware testing from §3.2 are
consistent.

6 Challenges in defining precision
The phenomena we describe in §3 highlight that the historical,
naive definition of precision does not account for relaxed memory.
The open problem is then how to adequately define precision in a
relaxed-memory setting. This challenge is hinted at in the way the
Arm reference manual [10, D1.3.1.4, p6060] defines precision as:

An exception is precise if on taking the exception, the hard-
ware thread (aka processing element, PE) state and the
memory system state is consistent with the PE having ex-
ecuted all of the instructions up to but not including the
point in the instruction stream where the exception was
taken from, and none afterwards. [except that in certain
specific cases some registers and memory values may be
UNKNOWN]

1
This definition explicitly allows various side effects of an instruc-

tion executing when an exception is taken to be visible. The details
are intricate, but in outline: registers that would be written by the
instruction but which are not used by it (to compute memory access
addresses) can become UNKNOWN, and for instructions that in-
volve multiple single-copy-atomic memory writes (e.g. misaligned
writes and store-pair instructions), where each write might gen-
erate an exception (e.g. a translation fault), the memory locations
of the writes that do not generate exceptions become UNKNOWN.
These side effects could be observed by the exception handler, and
the memory write side effects could be observed by other threads
doing racy reads. Hardware updates to page-table access flags and
dirty bits, and to performance counters, could also be observable.
This means that the abstraction of a stream of instructions exe-
cuted up to a given point does not account for the relaxed-memory
behaviour.

Arm classify particular kinds of exceptions as precise or not, but
all the above makes it hard to define in general what it means for
an exception to be precise in a relaxed setting.

The ultimate architectural intent of precision is that it is suffi-
cient to meaningfully resume execution after the exception. For
example, for software that does mapping on demand, when an
instruction causes a fault by accessing an address which is not
currently mapped, the exception handler will map that address and
return. This means that re-executing the original instruction will
overwrite these UNKNOWNs, and will have ordering properties
much like the original instruction would have had if the mapping
had already been in place.

Our models are complete enough to reason about such cases
in concrete examples. However, a general definition of precision,
and the accompanying reasoning principle, would have to cap-
ture assumptions about the exception handler and its concurrent
context to ensure that they do not observe the above side effects.

218

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

More straightforwardly, the above definition of what becomes UN-
KNOWN would have to be codified, as that is not currently in the
ASL architectural pseudocode. Without a clear definition of pre-
cision architectures must independently enumerate the possible
relaxations across exception boundaries (as we do in §3 for Arm).

Exceptions may also be imprecise, in which case the behaviour is
very loosely constrained. The current architectural intent does not
give well-defined guarantees in the presence of imprecise excep-
tions, and models that account for imprecision likely need to expose
more of the microarchitectural state than we capture here [33]. All
exceptions in Arm are precise except for those external memory
errors which are not reported synchronously (§4), which we do not
cover.

7 Software-generated interrupts
Inter-processor interrupts (IPIs), known as software-generated in-
terrupts (SGIs) on Arm, are an important synchronisation mech-
anism available to software. They are used throughout systems
software to signal other threads, including within the Linux kernel
(in its RCU synchronisation mechanism), in software (via Linux’s
sys_membarrier), e.g. in JITs [67], and in programming language
runtimes (e.g. in Microsoft’sVerona [14, 20]). Such use of SGIs crit-
ically depends on a detailed understanding of the interaction of
exceptions with relaxed-memory behaviour.

To manage the sending, routing, prioritisation, and delivery of
interrupts, Arm define an optional generic interrupt controller (GIC).
The GIC provides a uniform API for sending and routing interrupts
from peripherals to threads, and comes in several versions. We
focus on GICv3 and its CPU interface, but expect the behaviour we
describe should apply to GICv4.

There are many interesting questions about SGIs. We cover just
a simple baseline: enough to reason about the synchronisation used
by software, but ignoring much of the complexity of the GIC. We fix
a relatively simple configuration, and focus on the relaxed-memory
aspects of the interaction between SGIs and the rest of the memory
and processor state.

7.1 The Generic Interrupt Controller – basic
machinery

We begin by introducing the context of the basic Arm GIC ma-
chinery, before addressing its relaxed ordering in later subsections.
An interrupt is generated on its source (a hardware thread or some
peripheral) for a particular event (e.g. an SGI). This interrupt is then
sent to the interrupt controller, which is split into a distributor, the
global machinery in charge of routing interrupts to cores, and the
per-thread redistributors, each of which maintains a thread-local
state for each interrupt (which we describe in more detail later).
Interrupts are identified in the GIC by its ‘interrupt ID number’ (IN-
TID). Each instance of an interrupt sent to the interrupt controller
is associated with an INTID, either by software or a peripheral,
and is provided to the receiving core in a register it can read (via
acknowledgement, described later).

Each hardware thread (PE) has an interrupt status register (the
ISR), which has a single pending status bit for each interrupt class
(IRQ, FIQ, SError, etc). For each fetch-decode-execute cycle of the
top-level loop (see §2.3.1), the processor checks these status bits

to determine whether an interrupt is pending; if an interrupt is
pending and is not masked on that PE, the PE takes that interrupt.
It is the interrupt controller’s responsibility to set and clear the
pending bit in that register, notifying the thread of a pending in-
terrupt. To determine when to deliver (set the bit in the interrupt
status register) interrupts to the core, the redistributor maintains
three key pieces of state (this is for an ‘edge-triggered’ interrupt,
such as for SGIs; we do not discuss ‘level-sensitive’ interrupts):

• A priority to assign to each interrupt source, and the current
‘working’ priority of the interrupt(s) being handled.

• A priority mask, which prevents interrupts with too low a
priority from being delivered to the core.

• A per-INTID state, which is one of:
– Inactive: there is no current interrupt;
– Pending: the GIC has received an interrupt, and maybe
delivered it, but the core has not begun handling it; or

– Active: the core has signalled it is handling the interrupt,
but not yet signalled it is done.

Lifecycle of an interrupt. Interrupts start out Inactive. When an
interrupt is asserted by the source, the GIC sets the state for this in-
terrupt’s INTID to Pending. Within some unspecified, finite amount
of time, the GIC will set the pending bit in the interrupt status reg-
ister for the core, enabling the core to take an exception on the next
fetch-decode-execute loop.

The core should then acknowledge the interrupt, by reading the
appropriate interrupt-acknowledge-register (IAR); this returns the
INTID for use by the core, and sends a request to the redistributor to
mark the INTID as Active. Transitioning to the active state sets the
working priority to the priority of that INTID’s source, preventing
lower-priority interrupts from pre-empting the core, and clears the
pending bit in the interrupt-status-register on the core. If another
interrupt with the same INTID is asserted while the interrupt is
active, that instance will be buffered (only a single extra instance
may be buffered) and taken later, and the INTID is said to be ‘Active
and Pending’.While the interrupt is active, it will not be re-delivered
to the core, so even if the interrupt service routine performs an
ERET, it will not re-take the exception.

At some later time, the core may finish handling the interrupt
and be ready to receive further instances of that INTID. There are
two ways to do this, depending on whether one wants to separate
priority drop from deactivation, which is controlled by the EOImode.
With EOImode=0, by writing the INTID to the end-of-interrupt
register (EOIR), the interrupt is deactivated simultaneously with
the the priority drop. With EOImode=1, writes to the EOIR only
perform priority drop, requiring separate deactivation through a
write to the deactivate-interrupt-register (DIR). Additionally, the
GIC interface provides registers which can manually set the current
priority, or mask, or explicitly set the state of an interrupt. Figure 11
shows the typical transitions between states.

Intended software usage. Typically, software use of interrupts
falls into one of two categories:

• Nested interrupt servicing, where software readily uses pri-
orities and handles the interrupt directly in the interrupt
service routine, as it typical in real-time OSs.

219

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

Inactive Pending

Active &

pending

Active
source asserts interrupt

(eg by writing ICC_SGI1R_EL1);

GIC delivers interrupt

by setting pending bit in ISR

software changes pending state

software deactivates interrupt

re-pend

INTID

software changes

pending state

target acks interrupt

by reading IAR;

GIC unsets pending bit in ISR

target deactivates interrupt

by writing to EOIR/DIR

(depending on EIOmode)

1

Figure 11: GIC automaton, for each PE and each INTID, based
on Figure 4-3 “Interrupt handling state machine” from Arm
[11, §4.1.2], specialised to edge-triggered behaviour.

• Deferred interrupt handling, where software acknowledges
the interrupt directly, but handles it later.

Linux falls into the second category, utilising only a single inter-
rupt priority. This ‘split’ approach to handling interrupts, where the
interrupt service routine merely acknowledges, and the actual han-
dling of the interrupt comes later, leads Linux to adopt EOImode=1.
When the interrupt is taken by the core, it is acknowledged, the
INTID is checked against special cases, priority is quickly dropped,
and interrupts are unmasked. The actual interrupt may then be han-
dled, concurrently with new interrupts being signalled to the core,
although duplicates of the incident INTID will still be masked as it
is not yet deactivated. Eventually, the core completes the work for
that interrupt and then deactivates it, advancing the state machine.

7.2 Ordering of the propagation of SGIs
An SGI is generated by a write to the appropriate register (e.g.
ICC_SGI1R_EL1), and is received on one or several thread(s). This
gives rise to questions of three kinds:

• What is required to order the generation of the SGI after
earlier accesses?

• Does routing of the SGI imply ordering? e.g. is the interrupt
controller an observer wrt. multi-copy-atomicity?

• What is required to ensure that the sequence of acknowl-
edgement and deactivation happens correctly?

There are few guarantees about the order of propagation of SGIs,
or interrupts generally. Interrupts may be delivered to the core at
any time, and multiple pending interrupts may be delivered in any
order (priorities allowing). There are no guarantees analogous to
the coherence or atomicity of memory, and generated interrupts
may be re-ordered, or delivered to different cores in different orders.
However, as discussed earlier, interrupts may not be speculated,
and so the interrupt cannot be delivered to the target PE before it
is generated.

SGI litmus testing. We extract the fundamental Message-Pass-via-
SGI shape underlying Linux’s implementation of RCU on Armv8 as
a litmus test, MPviaSGIEIOmode1sequence, in Figure 12. Passing a
message through an SGI requires some synchronisation between
the write of the data and the generation of the SGI (here a DSB ST

on Thread 0), and requires observation of the data in the exception

MOV X0,#1
STR X0,[X1] // write data
DSB ST
MOV X2, #1, LSL #40
//generate SGI
MSR ICC_SGI1R_EL1, X2
ISB

Thread 0
NOP
Thread 1

MRS X3, IAR // ack interrupt
AND X3, X3, #0xFFFFFF
DSB SY
MSR EOIR, X3 // drop priority
ISB
MOV X0, #1
LDR X1,[X2] // read data
DSB SY
MSR DIR, X3 // deactivate
ERET

T1 Handler

Initial state: *x=0;

0:PSTATE.EL=1; 1:EOIMode=1

0:X1=x; 1:X0=0, 1:X1=0, 1:X2=x

MPviaSGIEIOmode1sequence AArch64

Forbidden: 1:X0=1, 1:X1=0
1

Figure 12: MPviaSGIEIOmode1sequence: Synchronisation-
via-SGI with the full acknowledge-drop-deactivate sequence
appropriate for EOImode=1.

MOV X0, #1
STR X0, [X1]
MOV X2, #1, LSL #40
MSR ICC_SGI1R_EL1, X2

Thread 0
NOP
Thread 1

MOV X0, #1
LDR X1, [X2]
ERET

T1 Handler

Initial state: *x=0;

0:PSTATE.EL = 1

0:X1=x; 1:X0=0, 1:X1=0, 1:X2=x

MPviaSGI AArch64

Allowed: 1:X0=1, 1:X1=0
1

W x=1a:

GenerateInterruptb:

Thread 0
TakeInterruptc:

R x=0d:

Thread 1

po pointerrupt

fr

1

Figure 13: MPviaSGI: message passing via SGI, illustrating
two potential phenomena: (1) On the writer side: a po-earlier
write gets reorderedwith a po-later GenerateInterrupt. (2) On
the reader side: a po-earlier TakeInterrupt gets reordered
with a po-later read (from the interrupt handler).

handler; the SGI also needs to be is properly acknowledged and
deactivated, with the appropriate barriers.

This test is composed of two interacting parts: the part that
imposes the ordering between the write and the read of the data,
and the part that interacts with the GIC to manage the interrupt.
Figure 13 asks the most basic question of this shape: if we try pass
a message via an SGI, without any further synchronisation, can
we still read an old value? The answer is yes, because the genera-
tion and subsequent delivery of the SGI could happen before the
propagation of the store. On the other hand, the extensive synchro-
nisation on the receiving thread imposed by GIC management is
accidental for the read, which is already strongly ordered after the
taking of the exception.

7.3 Software usage of SGIs
Synchronisation mechanisms like those discussed above rely on
this link between memory accesses and interrupts to achieve low-
overhead synchronisation. More specifically, they push the cost

220

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

away from normal memory accesses and onto a “system-wide mem-
ory barrier” implemented using interrupts. This is a fork-join bar-
rier, not a fence. Interestingly, RCU and the Verona asymmetric
lock rely on two different aspects of this system-wide memory
barrier: RCU relies on masking of interrupts to implement cheap
read critical sections, whereas the Verona asymmetric lock relies
on precision of interrupts (§6).

System-wide memory barrier. This system-wide memory barrier
is a two-way barrier: the issuing PE notifies all other PEs, and waits
for a reply from all of them. The notification is implemented using
interrupts, relying on the ordering described above, which is guar-
anteed by Arm-A. In Kernel RCU (where this barrier forms the core
of synchronize_rcu, exposed to userland as the sys_membarrier
syscall), the wait for a reply is implemented using memory opera-
tions, namely a lock-protected counter that threads increment to
acknowledge receipt of the interrupt. We simplify this (to a write
to a flag) in our litmus tests to reduce complexity.

RCU. The key concept of RCU is that of a grace period [51][50,
§9], as captured by Alglave et al. [6] in the RCU-MP litmus test
(Figure 14).

We focus on the use of interrupts in Kernel RCU. For perfor-
mance, RCU also relies on address dependencies to implement
cheap ordering in read sections, but that is already explained in the
‘user’ model of Arm-A [28, 58] by MP+dmbst+addr.

At the level of Arm assembly, the synchronize_rcu system-
wide memory barrier is decomposed into a DSB ST followed by
an MSR to SGI1R, and a wait for the acknowledgement (in our cut-
down tests, a read acquire of the ack flag); entering the read critical
section via rcu_read_lock and leaving it via rcu_read_unlock

decompose to writes to the DAIF (pseudo)register that mask and
unmask interrupts.

The crux of this litmus test is that interrupts are masked between
the two reads, and that the handler is therefore either before both
reads, or after both reads, but not in between (as in, no event of
the handler is in between the two reads in program order). At the
Linux C level, this masking ensures that the interrupt generated by
the synchronize_rcu system-wide memory barrier is taken either
before or after the read section, but not during, providing the basis
for mutual exclusion. In the litmus tests, this is captured by the fact
that if the read of the flag y sees the flag, the read of the data x sees
the new data.

Verona asymmetric lock. We capture the key scenario of the asym-
metric lock of Verona [54] (and of ‘biased locking’ and ‘asymmetric
Dekker synchronisation’ [18, 22, 26, 27, 40, 41, 49, 59] as used in the
JVM). It occurs when an ‘internal acquire’ from the (unique) owner
thread contends with an ‘external acquire’ from another thread.
The internal acquire is meant to be cheap, and only involves writ-
ing to an ‘external’ flag to express interest, and then, in program
order, reading from an ‘internal’ flag to ensure that other threads
have not expressed interest (falling onto the slow path if they have).
Crucially, in C++, there is a Barrier::compiler() that prevents
reordering of two instructions by the compiler, but does not appear
in the generated assembly. The external acquire does the symmetric
thing, writing on the ‘internal’ flag to express interest, and then

//*x = 1;
MOV X0, #1
STR X0, [X1]
//sync_rcu();
MOV X2, #1, LSL #40
MSR ICC_SGI1R_EL1, X2
LDAR X5, [X6]
//*y = 1;
MOV X3, #1
STR X3, [X4]

Thread 0
//read_lock();
MSR DAIFSet,
#0xf
//... = *y;
LDR X0, [X1]
//... = *x;
LDR X2, [X3]
//read_unlock();
MSR DAIFClr, #0xf

Thread 1
ACK-DEACT(X6)
MOV X2, #1
STLR X2,[X5]
ERET

T1 Handler

Initial state: *x=0, *y=0, *z=0;

0:X1=x, 0:X4=y, 0:X6=z;

1:X0=0, 1:X1=y, 1:X2=0, 1:X3=x, 0:X5=z

RCU-MP AArch64

Allowed: 0:X5=1, 1:X0=1, 1:X2=0
1

W x=1a:

GenerateInterruptb:

Racq z=1c:

W y=1d:

Thread 0
MSR DAIFSete:

R y=1f:

R x=0g:

MSR DAIFClrh:

Thread 1
TakeInterrupti:

ACK-DEACTj:

Wrel z=1k:

ERETl:

T1 Handler

po

po

po

po

po

po

po

po

po

interrupt

rf

fr

rf

1

Figure 14: RCU-MP: the key test of RCU: are two writes sepa-
rated by the generation of an SGI ordered with respect to a
read critical section implemented via interrupts masking?
With a DSB ST between a and b, this is forbidden.

reading from the ‘external’ flag to ensure that the owner has not ex-
pressed interest. To order this, it uses a Barrier::memory(), which
involves a FlushProcessWriteBuffers(), which on Linux is im-
plemented using a sys_membarrier, which essentially boils down
to a synchronize_rcu.

The key guarantee that is relied in the ‘cheap’ thread is that the
interrupt must be taken precisely, and that it is therefore taken,
in program order, either entirely before the read of the internal
flag, entirely between the read of the internal flag and the write
to the external flag, or entirely after the write to the external flag.
In all three cases, the system-wide memory barrier ensures that
at least one of the two threads must see that the other thread has
expressed interest (must read the recent write), and therefore backs
off, ensuring mutual exclusion.

7.4 Ordering of GIC register writes
The Arm GIC Architecture Specification text (IHI 0069H.b) is rea-
sonably clear about the relaxed ordering of GIC events induced by
accesses to GIC registers with program-order later events (12.1.6
“Observability of the effects of accesses to theGIC registers”), though
there are still subtle requirements for barriers. A DSB.SY enforces
ordering of GIC events (generate, acknowledge, drop priority, and
deactivate) induced by accesses to GIC registers (SGI1R, IAR, EOIR,
DIR) with program-order-later events, as they are such effects. DSBs
are not needed to merely order the register accesses themselves.

221

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

An ISB ensures that any pending interrupts are taken before
executing the program-order later instructions.

If there was an interrupt in the Active and Pending state at deac-
tivation, then it is immediately re-pended on the PE (and so delivery
can immediately happen again). But, if there is no DSB between
the write of the deactivation and the context synchronisation, it
might be that the assertion and delivery did not yet occur, causing
the interrupt to be taken later.

7.5 A draft axiomatic extension
Wegive a draft extension to the previous axiomaticmodel to support
inter-processor interrupts, noting the challenges.

GIC candidates. Unlike with most of the instruction semantics,
there is very little public ASL from Arm which describes the pri-
ority and INTID state machine system. While much of the GIC’s
machinery, routing, virtualisation and so on, is not required to dis-
cuss the usage of interrupts here, a large quantity of the base GIC
architecture would need to be turned into ASL and incorporated
into the machinery. The rest of this extension assumes one has such
machinery in place.

First, we must extend the thread semantics: reads and writes of
the registers of the CPU interface to the GIC, and interrupt status
register, must be treated differently than other registers, lifting
them to the memory model with a relation constraining the values
they could read, analogous to ‘reads-from’. This allows us to tie the
thread’s events interacting with the GIC, with those events coming
from the GIC ASL.

We add the following new events, grouped as GICEvents:
• GenerateInterrupt, for the GIC action from writing the
SGI1R register, which sends an IPI to other cores. It is asso-
ciated with a target set of CPUs.

• Acknowledge, for the relevant effect in the GIC, i.e. the state
machine change and related updates to registers. Here, we
assume the GIC update is atomic, which ought to be true for
simple physical SGIs.

• DropPriority and Deactivate, for the relevant effects on
the GIC state machine and priority masking.

These new events are placed iio-after (intra-instruction-ordered)
the respective register events. Such events could instead be in-
serted into po, with suitable modification of the previous relations,
although for simplicity here we do not.

Interrupt witness. We add a new existentially-quantified rela-
tion to the witness: interrupt. This associates the TakeInterrupt
with the GenerateInterrupt which caused it, constraining any
program-order-later Acknowledge and corresponding MRS event
INTID values. This effectively assigns the INTID at the point the
interrupt is taken, and makes interrupt behave like rf for INTIDs;
if the INTID is never read, one must consider all possible interrupt
sources.

Update to relations and axioms. The update to the relations is
then fairly straightforward: insert interrupt into ob, and make
DSB instructions order GIC events in program-order. We do not put
GICEvents in program order to express that they may execute out-
of-order with respect to other events in the same thread, including
context-synchronisation, unless explicitly ordered (e.g. by DSBs).

8 Conclusion
We identify an open problem in giving a definition of precision
on relaxed architectures, and describe the challenge in doing so.
We characterise some basic guarantees of precision, which should
make it possible to apply some of the abstraction techniques used
to reason about nesting of interrupts [45, 47].

We extend the Arm-A memory model to cover exceptions, an
important aspect of defining the architectural interface, clarifying
the behaviour at that interface, and giving an executable-as-a-test-
oracle implementation of an axiomatic model usable as an explo-
ration tool to investigate the effect of synchronisation on hardware
exceptions and interrupts. We describe the interaction of hardware
exceptions with memory errors, and the consequences on the user
model.

We begin building a model for software-generated interrupts and
the required parts of the interrupt machinery relied upon by the
common computing base, giving the key shapes and litmus tests,
some baseline behaviours of the Arm GIC, and a draft extension
that covers key use cases.

Although there is much work still to do on exceptions, interrupts,
and their interaction with other features, this work creates a robust
foundation that future work can build on.

Acknowledgments
We thank Richard Grisenthwaite (Arm EVP, Chief Architect, and
Fellow), Martin Weidmann (Director of Product Management, Arm
Architecture and Technology Group), and Will Deacon (Google) for
detailed discussions about the Arm architecture. We thank Ben Lau-
rie and Sarah de Haas (Google) for their support. We thank Jonathan
Woodruff and others at the CL for their insightful discussions.

This workwas funded in part byGoogle. This workwas funded in
part by Arm. This work was funded in part by an AUFF starter grant
(Pichon-Pharabod). This work was funded in part by two Amazon
Research Awards (Pichon-Pharabod; Sewell and Simner). This work
was funded in part by UK Research and Innovation (UKRI) under
the UK government’s Horizon Europe funding guarantee for ERC-
AdG-2022, EP/Y035976/1 SAFER. This project has received funding
from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement No 789108, ERC-AdG-2017 ELVER). This work is sup-
ported by ERC-2024-POC grant ELVER-CHECK, 101189371. Funded
by the European Union. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of
the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority
can be held responsible for them. This work was supported in part
by the Innovate UK project Digital Security by Design (DSbD) Tech-
nology Platform Prototype, 105694. The authors would like to thank
the Isaac Newton Institute for Mathematical Sciences, Cambridge,
for support and hospitality during the programme Big Specifica-
tion, where work on this paper was undertaken. This work was
supported by EPSRC grant EP/Z000580/1. This work was funded in
part by a Royal Society University Research Fellowship. One of the
authors has received funding from the UK Advanced Research and
Innovation Agency (ARIA) as part of the project Qbs4Safety: Core
Representation Underlying Safeguarded AI.

222

Precise exceptions in relaxed architectures ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] A. Adir, H. Attiya, and G. Shurek. 2003. Information-Flow Models for Shared

Memory with an Application to the PowerPC Architecture. IEEE Trans. Parallel
Distrib. Syst. 14, 5 (2003), 502–515. doi:10.1109/TPDS.2003.1199067

[2] Jade Alglave. 2010. A Shared Memory Poetics. Ph. D. Dissertation. Université
Paris 7 – Denis Diderot.

[3] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM
Trans. Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. doi:10.1145/3458926

[4] Jade Alglave, Richard Grisenthwaite, Artem Khyzha, Luc Maranget, and Nikos
Nikoleris. 2024. Puss In Boots: on formalising Arm’s Virtual Memory System Ar-
chitecture (extended version). (May 2024). https://inria.hal.science/hal-04567296
working paper or preprint.

[5] Jade Alglave and Luc Maranget. [n. d.]. The herdtools7 tool suite. diy.inria.fr,
https://github.com/herd/herdtools7/. Accessed 2023-08-30.

[6] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern.
2018. Frightening Small Children and Disconcerting Grown-ups: Concurrency in
the Linux Kernel. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James Tuck, Ricardo
Bianchini, and Vivek Sarkar (Eds.). ACM, 405–418. doi:10.1145/3173162.3177156

[7] Jade Alglave, LucMaranget, Susmit Sarkar, and Peter Sewell. 2010. Fences inWeak
Memory Models. In Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes in Computer
Science, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson (Eds.). Springer,
258–272. doi:10.1007/978-3-642-14295-6_25

[8] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. 2011. Litmus: Running Tests
Against Hardware. In Proc. TACAS. doi:10.1007/978-3-642-19835-9_5

[9] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. doi:10.1145/2627752

[10] Arm. 2024. Arm Architecture Reference Manual: for A-profile architecture.
https://developer.arm.com/documentation/ddi0487/latest. Accessed 2024-05-11.
Issue K.a. 14777 pages..

[11] Arm. 2024. Arm Generic Interrupt Controller Architecture Specification, GIC archi-
tecture version 3 and version 4. Technical Report. Arm. IHI 0069H.b (ID041224).

[12] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.
ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proceedings of
the 46th ACM SIGPLAN Symposium on Principles of Programming Languages.
doi:10.1145/3290384 Proc. ACM Program. Lang. 3, POPL, Article 71.

[13] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter
Sewell. 2021. Isla: Integrating full-scale ISA semantics and axiomatic concurrency
models. In Proc. 33rd International Conference on Computer-Aided Verification
(Lecture Notes in Computer Science, Vol. 12759). Springer, 303–316. doi:10.1007/978-
3-030-81685-8_14

[14] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James
Noble, Matthew J. Parkinson, and Tobias Wrigstad. 2023. Reference Capabilities
for Flexible Memory Management. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
1363–1393. doi:10.1145/3622846

[15] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and
Peter Sewell. 2015. The Problem of Programming Language Concurrency Se-
mantics. In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 283–307.
doi:10.1007/978-3-662-46669-8_12

[16] Mark John Batty. 2015. The C11 and C++11 concurrency model. Ph. D. Dissertation.
University of Cambridge, UK. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
ethos.708458

[17] Thomas Bauereiss, Brian Campbell, Alasdair Armstrong, Alastair Reid, Kathryn E.
Gray, Anthony Fox, Peter Sewell, and Arm Limited. 2024. Sail Armv9.4-A
instruction-set architecture (ISA) model. https://github.com/rems-project/sail-
arm. Accessed 2024-05-11..

[18] Mike Burrows. 2004. How to Implement Unnecessary Mutexes. Springer New York,
New York, NY, 51–57. doi:10.1007/0-387-21821-1_7

[19] Soham Chakraborty. 2019. Correct Compilation of Relaxed Memory Concurrency.
Ph. D. Dissertation. Kaiserslautern University of Technology, Germany. https:
//kluedo.ub.rptu.de/frontdoor/index/index/docId/5697

[20] Luke Cheeseman, Matthew J. Parkinson, Sylvan Clebsch, Marios Kogias, Sophia
Drossopoulou, David Chisnall, Tobias Wrigstad, and Paul Liétar. 2023. When
Concurrency Matters: Behaviour-Oriented Concurrency. Proc. ACM Program.
Lang. 7, OOPSLA2 (October 2023). https://www.microsoft.com/en-us/research/
publication/when-concurrency-matters-behaviour-oriented-concurrency/

[21] William W. Collier. 1992. Reasoning about parallel architectures. Prentice Hall.

[22] Mingyao Yang Dave Dice, Hui Huang. 2001. Asymmetric Dekker Synchroniza-
tion. http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/
resource/Asymmetric-Dekker-Synchronization.txt

[23] Hernán Ponce de León and Johannes Kinder. 2021. Cats vs. Spectre: An Axiomatic
Approach to Modeling Speculative Execution Attacks. CoRR abs/2108.13818
(2021). arXiv:2108.13818 https://arxiv.org/abs/2108.13818

[24] Hernán Ponce de León and Johannes Kinder. 2022. Cats vs. Spectre: An Axiomatic
Approach to Modeling Speculative Execution Attacks. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE,
235–248. doi:10.1109/SP46214.2022.9833774

[25] Will Deacon, Jade Alglave, Nikos Nikoleris, and Artem Khyzha. 2023. The
ARMv8 Application Level Memory Model. https://github.com/herd/herdtools7/
blob/master/herd/libdir/aarch64.cat (accessed 2019-07-01). Accessed 2024-11-19.

[26] Dave Dice. 2006. Biased Locking in Hotspot. Oracle Blog, Wayback Ma-
chine. http://web.archive.org/web/20150320095550/https://blogs.oracle.com/
dave/entry/biased_locking_in_hotspot

[27] David Dice, Mark S. Moir, and William N. Scherer III. 2010. United States Patent
US 7814488B1 Quickly Reacquirable Locks. United Statess Patent Office.

[28] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8 archi-
tecture, operationally: concurrency and ISA. In Proceedings of the 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Peters-
burg, FL, USA). 608–621. doi:10.1145/2837614.2837615

[29] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,
Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size
concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).
ACM, 429–442. doi:10.1145/3009837.3009839

[30] Kourosh Gharachorloo. 1995. Memory Consistency Models for Shared-Memory
Multiprocessors. Ph. D. Dissertation. Stanford University.

[31] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop
Gupta, and John L. Hennessy. 1990. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, Seattle, WA, USA, June 1990,
Jean-Loup Baer, Larry Snyder, and James R. Goodman (Eds.). ACM, 15–26. doi:10.
1145/325164.325102

[32] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit
Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA architec-
tural envelope definition, and test oracle, for IBM POWER multiprocessors. In
Proceedings of the 48th International Symposium on Microarchitecture (Waikiki).
635–646. doi:10.1145/2830772.2830775

[33] Siddharth Gupta, Yuanlong Li, Qingxuan Kang, Abhishek Bhattacharjee, Babak
Falsafi, Yunho Oh, and Mathias Payer. 2023. Imprecise Store Exceptions. In
Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA 2023, Orlando, FL, USA, June 17-21, 2023, Yan Solihin and Mark A. Heinrich
(Eds.). ACM, 52:1–52:15. doi:10.1145/3579371.3589087

[34] John L. Hennessy and David A. Patterson. 2012. Computer Architecture: A Quan-
titative Approach (5 ed.). Morgan Kaufmann, Amsterdam.

[35] Naorin Hossain, Caroline Trippel, and Margaret Martonosi. 2020. TransForm:
Formally Specifying Transistency Models and Synthesizing Enhanced Litmus
Tests. CoRR abs/2008.03578 (2020). arXiv:2008.03578 https://arxiv.org/abs/2008.
03578

[36] Luc Maranget. 2024. Personal communication.
[37] Intel. 2002. A Formal Specification of Intel Itanium Processor Family Memory

Ordering. developer.intel.com/design/itanium/downloads/251429.htm.
[38] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with precondi-

tions: a simple model of relaxed memory. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 194:1–194:30. doi:10.1145/3428262

[39] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A promising semantics for relaxed-memory concurrency. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY,
USA, 175–189. doi:10.1145/3009837.3009850

[40] Kiyokuni Kawachiya. 2005. Java Locks: Analysis and Acceleration. Ph. D. Disser-
tation. Keio University.

[41] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. 2002. Lock reservation:
Java locks can mostly do without atomic operations. In Proceedings of the 17th
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Seattle, Washington, USA) (OOPSLA ’02). Association for Com-
puting Machinery, New York, NY, USA, 130–141. doi:10.1145/582419.582433

[42] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
2017. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang. 2, POPL, Article 17 (dec 2017), 32 pages. doi:10.1145/3158105

[43] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model check-
ing for weakly consistent libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,

223

https://doi.org/10.1109/TPDS.2003.1199067
https://doi.org/10.1145/3458926
https://inria.hal.science/hal-04567296
diy.inria.fr
https://github.com/herd/herdtools7/
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/latest
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1145/3622846
https://doi.org/10.1007/978-3-662-46669-8_12
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://github.com/rems-project/sail-arm
https://github.com/rems-project/sail-arm
https://doi.org/10.1007/0-387-21821-1_7
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5697
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5697
https://www.microsoft.com/en-us/research/publication/when-concurrency-matters-behaviour-oriented-concurrency/
https://www.microsoft.com/en-us/research/publication/when-concurrency-matters-behaviour-oriented-concurrency/
http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://arxiv.org/abs/2108.13818
https://arxiv.org/abs/2108.13818
https://doi.org/10.1109/SP46214.2022.9833774
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
http://web.archive.org/web/20150320095550/https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
http://web.archive.org/web/20150320095550/https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/3579371.3589087
https://arxiv.org/abs/2008.03578
https://arxiv.org/abs/2008.03578
https://arxiv.org/abs/2008.03578
developer.intel.com/design/itanium/downloads/251429.htm
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/582419.582433
https://doi.org/10.1145/3158105

ISCA ’25, June 21–25, 2025, Tokyo, Japan Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

96–110. doi:10.1145/3314221.3314609
[44] Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker

for Weak Memory Models. In Computer Aided Verification, Alexandra Silva and
K. Rustan M. Leino (Eds.). Springer International Publishing, Cham, 427–440.
doi:10.1007/978-3-030-81685-8_20

[45] Daniel Kroening, Lihao Liang, Tom Melham, Peter Schrammel, and Michael
Tautschnig. 2015. Effective Verification of Low-Level Software with Nested Inter-
rupts. In Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015, Wolfgang Nebel and
David Atienza (Eds.). EDA Consortium, 229–234. http://www.cs.ox.ac.uk/tom.
melham/pub/Kroening-2015-EVL.pdf

[46] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
2017. Repairing sequential consistency in C/C++11. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 618–632. doi:10.1145/3062341.3062352

[47] Lihao Liang, Tom Melham, Daniel Kroening, Peter Schrammel, and Michael
Tautschnig. 2017. Effective Verification for Low-Level Software with Competing
Interrupts. ACM Transactions on Embedded Computing Systems 17, 2 (December
2017), 36:1–36:26. doi:10.1145/3147432

[48] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee.
2016. COATCheck: Verifying Memory Ordering at the Hardware-OS Interface. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2016, Atlanta, GA,
USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou (Eds.). ACM, 233–247.
doi:10.1145/2872362.2872399

[49] Patricio Chilano Mateo. 2021. JEP 374: Deprecate and Disable Biased Locking.
JDK Enhancement Proposal. https://openjdk.org/jeps/374

[50] Paul E. McKenney. 2023. Is Parallel Programming Hard, And, If So, What Can You
Do About It? https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/
perfbook/perfbook.html

[51] Paul E. McKenney. 2024. RCU Concepts. https://www.kernel.org/doc/
Documentation/RCU/rcu.txt Accessed 2024-11-19.

[52] Paul EMcKenney and JohnD Slingwine. 1998. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, Vol. 509518. 509–518.

[53] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. 2022.
Axiomatic hardware-software contracts for security. In ISCA ’22: The 49th Annual
International Symposium on Computer Architecture, New York, New York, USA,
June 18 - 22, 2022, Valentina Salapura, Mohamed Zahran, Fred Chong, and Lingjia
Tang (Eds.). ACM, 72–86. doi:10.1145/3470496.3527412

[54] Matthew J. Parkinson. 2024. Some things I wish I hadn’t seen. presented at The
Future of Weak Memory 2024.

[55] Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for
relaxed atomics that permits optimisation and avoids thin-air executions. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 622–633. doi:10.1145/
2837614.2837616

[56] William W. Pugh. 1999. Fixing the Java Memory Model. In Proceedings of the
ACM 1999 Conference on Java Grande, JAVA ’99, San Francisco, CA, USA, June
12-14, 1999, Geoffrey C. Fox, Klaus E. Schauser, and Marc Snir (Eds.). ACM, 89–98.
doi:10.1145/304065.304106

[57] Christopher Pulte. 2018. The Semantics of Multicopy Atomic ARMv8 and RISC-V.
Ph. D. Dissertation. University of Cambridge. https://www.repository.cam.ac.uk/
handle/1810/292229.

[58] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic
and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018),
19:1–19:29. doi:10.1145/3158107

[59] Kenneth Russell and David Detlefs. 2006. Eliminating synchronization-related
atomic operations with biased locking and bulk rebiasing. In Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, Oregon, USA) (OOPSLA ’06). Association
for Computing Machinery, New York, NY, USA, 263–272. doi:10.1145/1167473.
1167496

[60] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams. 2012. Synchronising C/C++ and
POWER. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,
and Frank Tip (Eds.). ACM, 311–322. doi:10.1145/2254064.2254102

[61] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
2011. Understanding POWER multiprocessors. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.).
ACM, 175–186. doi:10.1145/1993498.1993520

[62] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The semantics of

x86-CC multiprocessor machine code. In Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savan-
nah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.).
ACM, 379–391. doi:10.1145/1480881.1480929

[63] Peter Sewell, Christopher Pulte, Shaked Flur, Mark Batty, Luc Maranget, and Alas-
dair Armstrong. 2022. Multicore Semantics: Making Sense of Relaxed Memory
(MPhil slides). https://www.cl.cam.ac.uk/~pes20/slides-acs-2022.pdf

[64] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, andM. O. Myreen. 2010. x86-TSO:
A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. Commun.
ACM 53, 7 (July 2010), 89–97. doi:10.1145/1785414.1785443

[65] Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad
Kammar, Jean Pichon-Pharabod, and Peter Sewell. 2024. Relaxed exception
semantics for Arm-A (extended version). CoRR abs/2412.15140 (2024). doi:10.
48550/ARXIV.2412.15140 arXiv:2412.15140

[66] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte,
Richard Grisenthwaite, and Peter Sewell. 2022. Relaxed virtual memory in
Armv8-A. In Proceedings of the 31st European Symposium on Programming (Lec-
ture Notes in Computer Science, Vol. 13240). Springer, 143–173. doi:10.1007/978-3-
030-99336-8_6

[67] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-
Pharabod, Luc Maranget, and Peter Sewell. 2020. ARMv8-A System Semantics: In-
struction Fetch in Relaxed Architectures. In Programming Languages and Systems
- 29th European Symposium on Programming, ESOP 2020, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ire-
land, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),
Peter Müller (Ed.). Springer, 626–655. doi:10.1007/978-3-030-44914-8_23

[68] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. 1991. Formal Specification of
Memory Models. In Scalable Shared Memory Multiprocessors. Kluwer, 25–42.
doi:10.1007/978-1-4615-3604-8_2

224

https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
http://www.cs.ox.ac.uk/tom.melham/pub/Kroening-2015-EVL.pdf
http://www.cs.ox.ac.uk/tom.melham/pub/Kroening-2015-EVL.pdf
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3147432
https://doi.org/10.1145/2872362.2872399
https://openjdk.org/jeps/374
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/doc/Documentation/RCU/rcu.txt
https://www.kernel.org/doc/Documentation/RCU/rcu.txt
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/304065.304106
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1167473.1167496
https://doi.org/10.1145/1167473.1167496
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1480881.1480929
https://www.cl.cam.ac.uk/~pes20/slides-acs-2022.pdf
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.48550/ARXIV.2412.15140
https://doi.org/10.48550/ARXIV.2412.15140
https://arxiv.org/abs/2412.15140
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-1-4615-3604-8_2

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Scope and limitations

	2 Arm-A architectural concepts for exceptions
	2.1 Exception taxonomy
	2.2 Architectural exception machinery
	2.3 Instructions and instruction streams

	3 Relaxed behaviour of precise exceptions
	3.1 Context-synchronisation
	3.2 Relaxed behaviours
	3.3 Exception-specific mechanisms
	3.4 Intra-instruction exceptions
	3.5 Disabling context synchronisation
	3.6 Hardware results

	4 Synchronous external aborts
	4.1 Behaviour resulting from synchronous external aborts
	4.2 Load buffering and the out-of-thin-air problem

	5 An axiomatic model of exceptions
	5.1 Executable-as-a-test-oracle implementation

	6 Challenges in defining precision
	7 Software-generated interrupts
	7.1 The Generic Interrupt Controller – basic machinery
	7.2 Ordering of the propagation of SGIs
	7.3 Software usage of SGIs
	7.4 Ordering of GIC register writes
	7.5 A draft axiomatic extension

	8 Conclusion
	Acknowledgments
	References

