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ABSTRACT

On-chip contention increases memory access latency for multi-

core processors. We identify that this additional latency has

a substantial effect on performance for an important class of

latency-critical memory operations: those that result in a cache

miss and are dependent on data from a prior cache miss. We

observe that the number of instructions between the first cache

miss and its dependent cache miss is usually small. To minimize

dependent cache miss latency, we propose adding just enough

functionality to dynamically identify these instructions at the

core and migrate them to the memory controller for execution

as soon as source data arrives from DRAM. This migration

allows memory requests issued by our new Enhanced Memory

Controller (EMC) to experience a 20% lower latency than if

issued by the core. On a set of memory intensive quad-core

workloads, the EMC results in a 13% improvement in system

performance and a 5% reduction in energy consumption over

a system with a Global History Buffer prefetcher, the highest

performing prefetcher in our evaluation.

1. Introduction

On-Chip Latency. The large latency disparity between per-

forming computation at the core and accessing data from

off-chip DRAM has been a major performance bottleneck for

decades. However, in the current multi-core era, the effective

latency of accessing memory has increased due to on-chip in-

terference. Figure 1 separates the delay incurred by a DRAM

request into (a) the average time that the request takes to

access DRAM and return data to the chip and (b) all other

on-chip delays that the request incurs after missing in the

LLC, for the SPEC CPU2006 benchmark suite. We simulate a

quad-core processor where each core has a 256-entry reorder

buffer (ROB) and 1 MB of last level cache (LLC).

In Figure 1, benchmarks are sorted in ascending memory

intensity. For the memory intensive applications to the right

of leslie, defined as having an MPKI (misses per thousand

instructions) of over 10, the actual DRAM access is less than

half of the total latency of the memory request. Most of the

effective memory latency is due to on-chip delay.

The on-chip latency overhead shown in Figure 1 is due to

shared resource contention among the multiple cores. This

contention happens in the shared on-chip interconnect, cache,

and DRAM buses, row-buffers, and banks. Others [12, 15–17,

30, 31, 41, 42] have pointed out the effect of such interference

on performance, and noted that this effect will increase as

the number of cores increases [5, 27, 35].

Figure 1: Breakdown of total memory access latency into
DRAM latency and on-chip delay.

Criticality of Dependent Cache Misses. The impact of

on-chip latency on processor performance is magnified when

a cache miss has a dependent load that also results in a cache

miss. These dependent cache misses are common in pointer

chasing applications and prevent the core from making for-

ward progress since the effective memory access latencies

of both misses are serialized. Figure 2 shows the percentage

of total LLC misses that are dependent on a prior LLC miss

for SPEC CPU2006. The application with the highest fraction

of dependent cache misses (mcf ) has an IPC of just 0.3, the

lowest performance of all benchmarks in the suite.

Figure 2: Percentage of LLCmisses dependent on a prior LLC
miss and the performance increase if the miss is a LLC hit.

Figure 2 also shows the performance increase of these

benchmarks if all of the dependent cache misses had been

LLC hits. The memory intensive benchmarks with a sig-

nificant number of dependent cache misses experience large

performance gains. For example,mcf’s performance increases

by 95%. Hence, decreasing the latency of these dependent

cache misses is critically important to performance.
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Prefetching. Several techniques have attempted to reduce

the effect of dependent cache misses on performance. The

most common is prefetching. Figure 3 shows the percent of all

dependent cache misses that are prefetched by three different

prefetchers: a global history buffer (GHB) prefetcher [43], a

stream prefetcher [57], and a Markov prefetcher [25] for the

memory intensive SPEC CPU2006 benchmarks. The average

percentage of all dependent cache misses that are prefetched

is small, under 20% on average.

Figure 3: Percentage of dependent cache misses that are
prefetched with a GHB, stream, and Markov prefetcher.

There are good reasons for this. Prefetchers have difficulty

with dependent cache misses because their addresses are

data dependent, leading to patterns that are hard to capture.

Moreover, inaccurate and untimely prefetch requests lead

to a large increase in bandwidth consumption, a significant

drawback in a bandwidth constrained multi-core system. The

GHB, stream, and Markov prefetchers increase bandwidth

consumption by 20%, 22%, and 42% respectively.

Note that pre-execution techniques such as Runahead Ex-

ecution [14, 38] and Continual Flow Pipelines [58] target

prefetching independent cache misses. Unlike dependent

cache misses, independent misses only require source data

that is available on chip. These operations can be issued and

executed by an out-of-order processor as long as the ROB

is not full. Runahead/CFP discard or defer slices of opera-

tions that are dependent on a miss (including any dependent

cache misses) to generate memory level parallelism with new

independent cache misses.

1.1. The Enhanced Memory Controller (EMC)
The observations above suggest that dependent cache misses

require a different acceleration mechanism. We have found

that the number of operations between a cache miss and its

dependent cache miss is usually small. If a dependent cache

miss is likely, we propose using a dynamic dataflow walk

to identify these operations. This dependence chain is then

migrated to an enhanced memory controller (EMC) where it

is executed immediately after the source data arrives from

DRAM. This allows the EMC to generate cache misses faster

than the core, thereby reducing the on-chip delay observed

by the memory requests.

With this mechanism, some of the operations in the ROB

are executed at the core, while others are executed remotely

at the EMC. Figure 4 provides a high level view of partitioning

a sequence of instructions between the EMC and the core.
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Figure 4: A sequence of 7 instructions. Instruction 0 is a
cache miss and is surrounded by a dashed box. Dependent
cache misses to be executed at the EMC are shaded gray.

In Figure 4, instruction 0 is the first cache miss. Instruc-

tions 1 and 2 are independent of instruction 0 and therefore

execute at the core while instruction 0 is waiting for data from

memory. Instructions 3, 4, and 5 are dependent on instruction

0. The core recognizes that instructions 3 and 5 will likely

miss in the LLC, i.e., they are dependent cache misses, and

so transmits instructions 3, 4, and 5 to execute at the EMC.

When EMC execution completes, R1 and R3 are returned to

the core so that execution can continue. To maintain the

sequential execution model, operations sent to the EMC are

not retired at the EMC, only executed. Retirement state is

maintained at the ROB of the core and physical register data

is transmitted back to the core for in-order retirement.

We make the following contributions in this paper:

• We propose the first mechanism to identify the chains of

instructions that generate dependent cache misses at run-

time and migrate their execution to a compute capable,

enhanced memory controller (EMC). The EMC is motivated

by the combination of three observations: 1) dependent

cache misses are latency critical operations that are hard to

prefetch, 2) the number of instructions between a source

cache miss and a dependent cache miss is often small, 3) on-

chip contention is a substantial portion of memory access

latency in multi-core systems.

• We show that since the EMC is located near memory, it

minimizes on-chip latency by executing dependence chains

immediately when source data arrives from DRAM and

issuing requests directly to DRAM.Memory requests issued

by the EMC observe 20% lower latency than if issued by

the core. A quad-core system with an EMC results in a 13%

performance gain over a GHB prefetcher.

• We develop the design of the EMC, which implements the

minimum functionality required to efficiently execute the

dependence chains that generate dependent cache misses.

The EMC requires 10.4% of the area of a full out-of-order

core (a 2% total quad-core area overhead). The EMC main-

tains the traditional sequential execution model along with

conventional cache coherence and virtual memory support.
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2. Related Work

To discuss related work, we separate all cache misses into two

categories. Dependent cache misses, which the EMC acceler-

ates, and independent cache misses, which the EMC does not

target. Prior work has researched two main approaches to

reduce the effective memory latency observed by these two

types of misses: prefetching (to access the address before a

demand request), and moving computation closer to memory.

Stream or stride prefetchers [6, 20, 26, 57] lock on to simple

access patterns and require a small amount of hardware over-

head. These prefetchers effectively prefetch only independent

cache misses (Figure 3). More advanced hardware prefetching

techniques such as correlation prefetching [8, 25, 29, 56] do

target dependent cache misses. These prefetchers maintain

large tables that correlate past miss addresses to future miss

addresses. The global-history buffer [43] is a form of corre-

lation prefetching that uses a two-level indexing scheme to

reduce the need for large correlation tables. Roth et al. [48]

identify stable dependence patterns between pointers, and

store this information in a correlation table. These pattern

based prefetchers are oblivious to the control flow of the main

thread of execution and are consequently bandwidth ineffi-

cient. They rely on past behavior re-occurring in the future

and therefore cannot target all dependent cache misses.

Other hardware prefetchers specifically target the point-

ers that lead to cache misses [39, 49, 62]. Content-directed

prefetching [11, 18] greedily prefetches by dereferencing val-

ues that could be memory addresses.

Another form of prefetching uses the application’s own

code to spawn speculative threads [9,10,64] or other forms of

precomputation [4,34,60] to execute ahead of the demand ac-

cess stream, generating independent cache misses. Similarly,

Runahead Execution [14,38,40] and Continual Flow Pipelines

[58] discard dependent cache misses to generate new inde-

pendent cache misses. Solihin et al. [55] combine correlation

prefetching and an extra execution context by proposing that

a user level thread executing either in a DRAM chip or at the

memory controller can leverage DRAM capacity to store the

large correlation tables required for correlation prefetching.

Prior work has also considered enhancing the memory

controller. Carter et al. [7] and Seshadri et al. [52] pro-

pose enhancements to the memory controller that include ad-

dress remapping, prefetching and gather/scatter capabilities.

Memory-side prefetching moves the hardware that prefetches

data from the chip closer to DRAM [3, 22]. More generally,

fabricating logic and memory on the same process has been

proposed [19, 21, 28, 44, 53, 59] and recently revisited with 3D-

stacked memory that incorporates a logic layer underneath

DRAM layers [32], e.g., Hybrid Memory Cube (HMC) [45].

Industry and academia are also pursuing different methods of

integrating compute andmemory controllers [13,50,51]. Prior

work has proposed performing computation inside the logic

layer of 3D-stacked DRAM [1, 2, 63], but none has targeted

automatically accelerating dependent cache misses.

To our knowledge, this is the first work that proposes

adding compute capability to the memory controller to trans-

parently accelerate chains of dependent cache misses. Our

proposal differs from prior work in that we do not prefetch

data; all of the requests sent by the EMC are demand requests.

A dependent chain of computation is automatically extracted

from the core and dynamically moved closer to memory. This

allows the EMC to reduce access latency for all dependent

cache misses, not just requests that can be easily prefetched.

3. Motivation

Figure 5 presents one example of the problem that we target.

We adapt a dynamic sequence of micro-operations (uops)

frommcf. The uops are shown on the left and the data depen-

dencies, omitting control uops, are illustrated on the right.

Core physical registers are denoted by a ‘P’. Assume a sce-

nario where Operation 0 is an outstanding cache miss. We

call this uop a source miss and denote it with a dashed box.

Operations 3 and 5 would result in cache misses when issued,

shaded gray. However, their issue is blocked as their parent

Operation 1 has a data dependence on the result of the source

miss, Operation 0. Operations 3 and 5 are delayed from exe-

cution until the data from Operation 0 returns to the chip and

flows back to the core through the interconnect and cache

hierarchy. Yet, there are a small number of relatively simple

uops between Operation 0 and Operations 3/5.
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Figure 5: Dependent cache misses: dynamic sequence of
micro-ops based on the left, the dataflow graph is shown on
the right. A, B, C represent cache line addresses.

We propose that the operations that are dependent on a

cache miss be executed as soon as the source data enters the

chip, at the memory controller. This avoids on-chip interfer-

ence and reduces the overall latency to issue the dependent

memory requests.

Figure 5 shows one instance where there are a small num-

ber of simple operations between the source and dependent

miss. We find that this trend holds over the memory inten-

sive SPEC CPU2006 applications. Figure 6 shows the average

number of operations in the dependence chain between a

source and dependent miss, if a dependent miss exists. A

small number of operations between a source and dependent

miss means that the EMC does not have to do very much

work to uncover a cache miss and that it requires a small

amount of input data to do so.
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Figure 6: Average number of dependent operations between
a source miss and dependent miss.

We therefore tailor the memory controller to execute de-

pendent chains of operations such as those listed in Figure 5.

Section 4.1 describes the required additional compute capabil-

ity in detail. Since the instructions have already been fetched

and decoded at the core and are waiting in the instruction-

window, the core can automatically determine the uops to

include in the dependence chain of a cache miss by leveraging

the existing out-of-order execution machinery. Section 4.2

describes this process. The chain of decoded uops is then

sent to the EMC. Once the data arrives from DRAM for the

original miss, the EMC executes the dependent operations.

Section 4.3 describes the details of EMC execution.

4. Mechanism

Figure 7 shows a quad-core chip that uses our proposed en-

hanced memory controller. The four cores are connected with

a bi-directional ring. The memory controller is located at a

single ring-stop, along with both memory channels, similar

to Intel’s Haswell microarchitecture [24]. Our proposal adds

two pieces of hardware to the processor: limited compute

capability at the memory controller (Section 4.1) and a de-

pendence chain-generation unit at each of the cores (Section

4.2).

Enhanced
Memory

Controller
(EMC)

Core 0 Core 1

Core 2 Core 3

LLC

LLC

LLC

LLC

  DRAM
Channel 0

  DRAM
Channel 1

Figure 7: A high level view of a quad-core processor with an
Enhanced Memory Controller. Each core has a ring stop, de-
noted by a dot, which is also connected to a slice of the shared
last level cache.

4.1. EMC Compute Microarchitecture

We design the EMC to have the minimum functionality re-

quired to execute the pointer-arithmetic that generates de-

pendent cache misses. Instead of a front-end, we utilize small

uop buffers (Section 4.1.1). For the back-end, we use 2 ALUs

and provide a minimal set of caching and virtual address

translation capabilities (Section 4.1.2). Figure 8 provides a

high level view of the EMC microarchitecture.

Physical
Register

File Live In Vector

Uop Buffer

Reservation 
Station

ALU 0

ALU 1
EMC 
Data 

Cache

Load Store
Queue

Result Data

Tag Broadcast

Decoded 
micro-ops
from core

Live-out
registers
to core

Live-in
registers
from core

Dirty 
cache

lines to 
core

Figure 8: The microarchitecture of the EMC.

4.1.1. Front-End. The front-end of the EMC consists of two

small uop buffers that can each hold a single dependence

chain of up to 16 uops. With multiple buffers, the EMC can

be shared between the cores of a multi-core processor. The

front-end of the EMC consists only of this buffer, it does

not contain any fetch, decode, or register rename hardware.

Chains of dependent operations are renamed for the EMC

using the out-of-order capabilities of the core (Section 4.2).

4.1.2. Back-End. As the EMC targets the pointer-arithmetic

that generates dependent cache misses, it is limited to execut-

ing a subset of the total uops that the core is able to execute.

Only integer operations are allowed (Table 1). Floating point

and vector operations are not allowed. This simplifies the

microarchitecture of the EMC, and enables the EMC to poten-

tially execute fewer operations to get to the dependent cache

miss. When the core creates a filtered chain of operations for

the EMC to execute, only the operations that are required

to generate the address for the dependent cache miss are

included in the uop chain.

These filtered dependence chains are issued from the uop

buffers to the 2-wide back-end. Our exploration shows that,

for maximum performance, it is important to exploit the

memory level parallelism present in the dependence chains.

Therefore, the EMC has the capability to issue non-blocking

memory accesses. This requires a small load/store queue

(LSQ) along with out-of-order issue and wakeup using a small

8-entry reservation station and a common data bus (CDB). In

Figure 8, the CDB is denoted by the result and tag broadcast

buses. We support executing stores at the EMC due to how

common register spills/fills are in the x86 ISA.

Each of the uop buffers in the front-end is allocated a pri-

vate physical register file (PRF) that is 16 registers large and

a private live-in source vector. As the out-of-order core has a

much larger physical register file than the EMC (256 vs. 16

registers), we rename operations at the core to use the smaller

physical register set of the EMC.

4.1.3. Caches. The EMC contains no instruction cache, but

it does contain a small 4kB data cache that holds the most
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Figure 9: Chain generation using the chain of micro-ops from Figure 5. Three structures are shown: the reorder buffer (ROB),
register remapping table (RRT), and live-in vector. CPR: Core Physical Register, EPR: EMC Physical Register. Processed
operations are shaded after every cycle.

recent lines that have been transmitted from DRAM to the

chip to exploit temporal locality. Cache coherence for this

cache is maintained at the inclusive last-level cache by adding

an extra bit to each directory entry for every cache line to

track the cache lines that the EMC holds.

4.1.4. Virtual Address Translation. Virtual memory trans-

lation at the EMC occurs through a small 32 entry TLB for

each core. The TLBs act as a circular buffer and cache the

page table entries (PTE) of the last pages accessed by the

EMC for each core. The PTEs of the core add a bit to each

TLB entry to track if a page translation is resident in the TLB

at the EMC. This bit is used to invalidate EMC TLB entries

during the TLB shootdown process. Before a chain is sent to

the EMC, the bit is also used to check if the PTE for the source

miss is resident at the EMC TLB. If it is not, the core sends

the source miss PTE to the EMC along with the dependence

chain. The EMC does not handle page-faults: if the PTE is not

available at the EMC, the EMC halts execution and signals

the core to re-execute the entire chain.

4.2. Generating Chains of
Dependent Micro-Operations

We leverage the out-of-order execution capability of the core

to generate the short chains of operations that the EMC ex-

ecutes. This allows the EMC to have no fetch, decode, or

rename hardware, as shown in Figure 8, significantly reduc-

ing its area and energy consumption.

The core can generate dependence chains to execute at

the EMC once there is a full-window stall due to a LLC miss

blocking retirement. If this is the case, we use a 3-bit sat-

urating counter to determine if a dependent cache miss is

likely. This counter is incremented if any LLC miss has a

dependent cache miss and decremented if any LLC miss has

no dependent cache misses. If either of the top 2-bits of the

saturating counter are set, we begin the following process of

generating a dependence chain for the EMC to accelerate.

We use the dynamic micro-op sequence from Figure 5 to

demonstrate the chain generation process, illustrated by Fig-

ure 9. This process takes a variable number of cycles based on

dynamic chain length (5 cycles for Figure 9). As the uops are

included in the chain they are stored in a buffer maintained

at the core until the entire chain has been assembled. At this

point the chain is transmitted to the EMC.

For each cycle, we show three structures in Figure 9: the

reorder buffer of the home core (ROB), the register remapping

table (RRT), and a live-in source vector. The RRT is function-

ally similar to a register alias table and maps core physical

registers to EMC physical registers. The operations in the

chain have to be remapped to a smaller set of physical reg-

isters so that the EMC can execute them. The live-in source

vector is a shift register that holds the input data necessary to

execute the chain of operations. We only show a relevant por-

tion of the ROB and omit irrelevant operations by denoting

them with stripes.

In Figure 9, the cycle 0 frame shows the source miss at the

top of the ROB. It has been allocated core physical register

number 1 (C1) to use as a destination register. This register is

remapped to an EMC register using the RRT. EMC physical

registers are assigned using a counter that starts at 0 and

saturates at the maximum number of physical registers that

the EMC contains (16). In the example, C1 is renamed to use

the first physical register of the EMC (E0) in the RRT.

Once the source miss has been remapped to EMC physical

registers, chains of decoded uops are created using a forward

dataflow walk that tracks dependencies through renamed

physical registers. The goal is to mark uops that would be

ready to execute when the source miss has completed. There-

fore, the load that has caused the cache miss is pseudo “woken

up” by broadcasting the tag of the destination physical reg-

ister onto the common data bus (CDB) of the home core. A

uop wakes up when the physical register tag of one of its

source operands matches the tag that is broadcast on the

CDB and all other source operands are ready. Pseudo waking

up the uop does not execute or commit the uop; it simply

broadcasts the uop’s destination tag on the CDB to pseudo

wake up dependent instructions.

In the example, there is only a single ready uop to broadcast

in Cycle 0. The destination register of the source load (C1) is

broadcast on the CDB. This wakes up the second operation

in the chain, which is a MOV instruction that uses C1 as a
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Algorithm 1: Dependence Chain Generation

//Process the source uop at ROB full stall;

Allocate EPR for destination CPR of uop in RRT;

Add uop to chain and broadcast destination CPR tag;

for each dependent uop do

if uop Allowed and (all source CPRs ready or in RRT) then

//Prepare the dependent uop to send to EMC;

for each source operand do

if CPR ready then

Read data from PRF into live-in vector;

else

EPR = RRT[CPR];

end

end

Allocate EPR for destination CPR in RRT;

Add uop to chain and broadcast destination CPR tag;

if Total uops in Chain == 16 then

break;

end

end

end

Send filtered chain of uops and live-in data to EMC;

Figure 10: Dependence chain generation. CPR: Core Physical
Register. EPR: EMCPhysical Register. RRT: Register Remap-
ping Table.

source register. It reads the remapped register id from the

RRT for C1, and uses E0 as its source register at the EMC.

The destination register (C9) is renamed to E1.

Operations continue to “wake up” dependent operations

until either the maximum number of operations in a chain is

reached, or there are no more operations to awaken. Thus,

in the next cycle, the core broadcasts C9 on the CDB. The

result of this operation is shown in cycle 1, when an ADD

operation is woken up. This operation has two sources, C9

and an immediate value, 0x18. The immediate is shifted into

a live-in source vector, which will be sent to the EMC along

with the chain. The destination register C12 is renamed to

E2 and written into the RRT.

In the example, the entire process takes five cycles to com-

plete. In cycle 4, once the final load is added to the chain, a

filtered portion of the execution window has been assembled

for the EMC to execute. These uops are read out of the instruc-

tion window and sent to the EMC for execution. Algorithm 1

describes our mechanism for dynamically generating a chain

of dependent uops. Note that dependence chain generation

terminates when either all dependent operations have been

identified or the maximum chain length (16 uops) is reached.

Dependence chains frequently contain multiple levels of in-

direction (dependent loads). Out-of-order issue allows the

EMC to react to dynamic hit/miss information, minimizing

request latency.

4.3. EMC Execution

To start execution, the EMC takes two inputs: the source vec-

tor of live-in registers and the executable chain of operations.

The EMC does not commit architectural state, it executes the

chain of uops speculatively and sends the destination phys-

ical registers back to the core. Two special cases arise with

respect to control operations and memory operations. First,

we discuss control operations.

The EMC does not fetch instructions and is sent the branch-

predicted stream that has been fetched in the ROB. We send

branch directions along with computation to the EMC so that

the EMC does not generate wrong path memory requests. If

the EMC determines that the dependence chain it is execut-

ing contains a mispredicted branch, it stops execution and

notifies the core of the mispredicted branch. The EMC has

the capability to detect branch mispredictions made by the

core, but it cannot restart from the correct path.

For memory operations, a load first queries the EMC data

cache: if it misses in the data cache it generates an LLC

request. However, the EMC can predict if a load is going to

result in a cache miss. This enables the EMC to directly issue

the request to memory if it is predicted to miss in the LLC,

thus saving the latency to access the on-chip cache hierarchy.

To enable this capability we keep an array of 3-bit counters

for each core, similar to [47]. The PC of the miss-causing

instruction is used to hash into the array. On a miss, the

corresponding counter is incremented; a hit decrements the

counter. If the counter is above a threshold, the load is sent

directly to memory without accessing the LLC.

A store is included in the dependence chain only if it is

a register spill. This is determined by searching the home

core LSQ for a corresponding load with the same address (fill)

during dependence chain generation. A store executed at the

EMC writes its data value into the EMC LSQ.

Load and store operations are retired in program order back

at the home core. When a memory operation is executed at

the EMC, it sends a message on the address ring back to the

core. The core snoops this request and populates the relevant

entry in the LSQ. This serves two purposes. First, if a memory

disambiguation problem arises (i.e., there is a store to the

same address as a load executed at the EMC), execution of the

chain can be canceled. Second, for consistency reasons, stores

executed at the EMC are not made globally observable until

the store has been drained from the home core store-queue

in program order.

While executing chains of instructions remotely requires

these modifications to the core, transactional memory imple-

mentations that are built into current hardware [23] provide

many similar guarantees for memory ordering.

Once a dependence chain has completed execution, the

live-outs, including the store data from the LSQ, are sent back

to the core. Physical register tags are broadcast on the home

core CDB, and execution on the home core continues. As

the home core maintains all instruction state for in-order

retirement, any exceptional event (e.g., branch misprediction,

EMC TLB-miss, EMC exception) causes the home core to re-

issue and execute the entire chain normally without shipping

it to the EMC.
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Core 4-wide issue, 256-entry ROB, 92-entry reservation station, hybrid branch predictor, 3.2 GHz clock rate

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 byte lines, 2 ports, 3 cycle latency, 8-way, write-through.

L2 Cache Distributed, shared, 1MB 8-way slice per core, 18-cycle latency, write-back. 4-Core: 4 MB. 8-Core: 8MB.

Interconnect 2 Bi-directional rings: control (8 bytes)/data (64 bytes). 1 cycle core to LLC slice bypass. 1 cycle ring links.

EMC

Compute

2-wide issue. 8-entry reservation station. 32-entry TLB per core. 4kB data cache, 4-way, 2-cycle access, 1-port.

4-Core: 2 contexts. 8-Core: 4 contexts total. Each context contains: 16-entry uop buffer, 16-entry physical

register file, 16-entry live-in vector, 8 LSQ-entries. Micro-op size: 6 bytes in addition to any live-in source data.

EMC Instructions Integer: add/subtract/move/load/store. Logical: and/or/xor/not/shift/sign-extend.

Memory Controller Batch Scheduling [42]. 4-Core: 128-entry memory queue. 8-Core: 256-entry memory queue.

Prefetchers Stream: 32 streams, distance 32. Markov: 1MB correlation table, 4 addresses per entry. GHB G/DC: 1k-entry

buffer, 12KB total size. All configurations use FDP [57]: dynamic degree 1-32, prefetch into LLC.

DRAM DDR3 [36], 1 Rank of 8 Banks/Channel, 8KB Row-Size, CAS 13.75ns, bank-conflicts & queuing delays modeled,

800 MHz bus. 4-Core: 2 Channels. 8-Core: 4 Channels.

Table 1: System configuration.

4.4. Multiple Memory Controllers

We primarily consider a common quad-core processor design,

where one memory controller has access to all memory chan-

nels from a single location on the ring (Figure 7). However,

with large core counts, multiple memory controllers can be

distributed across the interconnect. In this case, with our

mechanism, each memory controller would be compute ca-

pable. On cross-channel dependencies (where one EMC gen-

erates a request to a channel located at a different enhanced

memory controller), the EMC directly issues the request to

the other memory controller without migrating execution

of the chain. This cuts the core, a middle-man, out of the

process. We evaluate this scenario with an eight-core CMP

(Figure 11b) and compare the results to an eight-core CMP

with a single memory controller (Figure 11a) in Section 6.2.

EMC
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Core 4 Core 5

LLC

LLC

LLC

LLC
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Channel 1

Core 2 Core 3
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Channel 3
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LLC

Channel 2

Channel 3
EMC
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Figure 11: (a) Single memory controller. (b) Dual memory
controller.

5. Methodology

We simulate three systems: a quad core system (Figure 7)

and two eight-core systems (Figure 11). Table 1 lists the

details of our system configurations. The cache hierarchy

of each core contains a 32KB instruction cache and a 32KB

data cache. The LLC is divided into 1MB cache slices per core.

The interconnect is composed of two bi-directional rings, a

control ring and a data ring. Each core has a ring-stop that is

shared with the LLC slice.

We model three different prefetchers. A stream

prefetcher [57] (based on the stream prefetcher in the IBM

POWER4 [61]), a Markov prefetcher [25], and a global-

history-buffer (GHB) based global delta correlation (G/DC)

prefetcher [43]. Prior work has shown a GHB prefetcher to

outperform a large number of other prefetchers [46]. We

find that the stream prefetcher always increases performance

when used with a Markov prefetcher, and therefore employ

them together.

The baseline system uses a sophisticated memory schedul-

ing algorithm, batch scheduling [42], and Feedback Directed

Prefetching (FDP) [57] to throttle prefetchers. The parame-

ters for the EMC listed in Table 1 (TLB size, cache size, num-

ber/size of contexts) have been chosen via sensitivity analysis.

In the eight-core, dual memory controller case (Figure 11b),

each EMC contains 2 issue contexts for 4 total contexts, and

is otherwise identical to the EMC in the eight-core single

memory controller configuration.

We separate the SPEC CPU2006 benchmarks into two cate-

gories: high memory intensity and low memory intensity by

MPKI. The classification of each benchmark is listed in Table

2. As the EMC is primarily intended to accelerate memory

intensive applications, we focus on high memory intensity

workloads in our evaluation. The EMC does not result in ap-

preciable performance gains on most low memory intensity

applications. Using the high intensity benchmarks, we ran-

domly generate a set of ten quad-core workloads to evaluate

(Table 3). Each benchmark appears only once in every work-

load combination. We additionally evaluate homogeneous

quad-core workloads using four copies of each of the high

memory intensity benchmarks. Eight-core workloads are two

copies of the corresponding quad-core workload.

High Intensity
(MPKI >= 10)

omnetpp, milc, soplex, sphinx3, bwaves,
libquantum, lbm, mcf

Low Intensity
(MPKI <10)

calculix, povray, namd, gamess, perlbench,
tonto, gromacs, gobmk, dealII, sjeng, gcc, hm-
mer, h264ref, bzip2, astar, xalancbmk, zeusmp,
cactusADM, wrf, GemsFDTD, leslie3d

Table 2: SPEC CPU2006 classification by memory intensity.

We use an in-house cycle accurate x86 simulator, which

faithfully models core microarchitectural details, the cache

hierarchy, and includes a detailed non-uniform access latency

DDR3 memory system. We simulate each workload until ev-

ery application in the workload completes at least 50 million

instructions from a representative SimPoint [54].
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H1 bwaves+lbm+milc+omnetpp

H2 soplex+omnetpp+bwaves+libq

H3 sphinx3+mcf+omnetpp+milc

H4 mcf+sphinx3+soplex+libq

H5 lbm+mcf+libq+bwaves

H6 lbm+soplex+mcf+milc

H7 bwaves+libq+sphinx3+omnetpp

H8 omnetpp+soplex+mcf+bwaves

H9 lbm+mcf+libq+soplex

H10 libq+bwaves+soplex+omentpp

Table 3: Quad-Core workloads.

Wemodel chip energy usingMcPAT [33] and DRAM power

using CACTI [37]. Shared structures dissipate static power

until the completion of the entire workload. Event counters

used for dynamic power computation are updated until each

benchmark’s completion. The EMC is modeled as a stripped

down core and does not contain structures like an instruction

cache, decode stage, register renaming hardware, or a floating

point pipeline.

We model the chain generation unit by adding the follow-

ing additional energy events corresponding to the chain gen-

eration process at each home core. Each of the uops included

in the chain requires an extra CDB access (tag broadcast) due

to the pseudo wake-up process. Each of the source opera-

tions in every uop requires a Register Remapping table (RRT)

lookup, and each destination register requires an RRT write

since the chain is renamed to the set of physical registers

at the EMC. Each operation in the chain requires an addi-

tional ROB read when it is transmitted to the EMC. We model

data and instruction transfer overhead to/from the EMC via

additional messages sent on the ring.

6. Results

6.1. Quad-Core Evaluation

Figure 12 shows the performance of the quad-core system for

workloads H1-H10. Performance gain due to the EMC over

the no-prefetching baseline and each prefetching configura-

tion is illustrated as a bold/hashed bar.

Figure 12: Quad-Core performance for workloads H1-H10.

On H1-H10, the EMC improves performance on average

by 15% over a no-prefetching baseline, by 13% over a base-

line with a GHB prefetcher, 10% over a baseline with stream

prefetching, and by 11% over a baseline with both a stream

and Markov prefetcher. Workloads that include a SPEC

CPU2006 benchmark with a high rate of dependent cache

misses (Figure 2) such as mcf or omnetpp tend to perform

well, especially when paired with other highly memory inten-

sive workloads like libquantum or bwaves. Workloads with

lbm tend not to perform well. lbm contains no dependent

cache misses, leaving no room for improvement with EMC,

and has a regular access pattern that utilizes most of the

available bandwidth, particularly with prefetching enabled.

To provide insight into the performance implications of the

EMC on homogeneous workloads, Figure 13 shows a system

running four copies of each high memory intensity SPEC06

benchmark. Overall, the EMC results in a 9.5% performance

advantage over a no-prefetching baseline and roughly 8% over

each prefetcher. mcf results in the highest performance gain,

at 30% over a no-prefetching baseline. All of the benchmarks

with a high rate of dependent cache misses show performance

improvements with an EMC. These applications also gener-

ally observe performance degradations when prefetching is

employed.

Figure 13: Quad-Core performance for homogeneous work-
loads.

6.2. Eight-Core Evaluation

We demonstrate the scalability of the EMC system. Figure 14

shows the performance benefit of using the EMC in an eight-

core system. We evaluate both the single memory controller

configuration (1MC, the first four bars in each workload) and

the dual memory controller configuration (2MC, the second

four bars in each workload).

Figure 14: Eight-Core performance for workloads H1-H10.
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Overall, the performance benefit of the EMC is slightly

higher in the eight-core case than the quad-core case, due

to a more heavily contended memory system. On the sin-

gle memory controller configuration, EMC gains 17%, 13%,

14%, and 13% over the no-prefetching, GHB, stream, and

Markov+stream prefetchers respectively in Figure 14. The

dual memory controller baseline system shows a slight (-.8%)

performance degradation over the single memory controller

system, and EMC gains slightly less on average over each

baseline (16%, 14%, 11%, 12% respectively) than the single

memory controller, due to the overhead of communication

between the EMCs. We do not observe a significant perfor-

mance degradation by using two EMCs in the system.

6.3. Performance Analysis

To examine the reasons behind the performance benefit of

the EMC we contrast workload H1 (1% performance gain)

and H4 (33% performance gain). While we observe no single

indicator for the performance improvement that the EMC pro-

vides, we identify three statistics that correlate to increased

performance. First, we show the percentage of total cache

misses that the EMC generates in Figure 15. As H1 and H4

are both memory intensive workloads, the EMC generating

a larger percentage of the total cache misses indicates that

its latency reduction features result in a larger impact on

workload performance. The EMC generates about 10% of all

of the cache misses in H1 and 22% of the misses in H4.1

Figure 15: Fraction of all LLC misses generated by the EMC.

Second, we expect a reduction in DRAM contention for

requests issued by the EMC. As requests are generated and

issued to memory faster than in the baseline, a request can

reach an open DRAM row before the row can be closed by

a competing request from a different core. This results in

a reduction in row-buffer conflicts. There are two different

scenarios where this occurs. First, the EMC can issue a depen-

dent request that hits in the same row-buffer as the original

request. Second, multiple dependent requests to the same

row-buffer are issued together and can coalesce into a batch.

We observe that the first scenario occurs about 15% of the

1The Markov + Stream PF configuration generates 25% more memory
requests than any other configuration on average, diminishing the impact
of the EMC in Figure 15. This additional bandwidth consumption is also
one reason that the Markov + Stream configuration results in lower relative
performance when compared to the other prefetchers.

time while the second scenario is more common, occurring

about 85% of the time on average.

Figure 16 shows the change in row-buffer conflict rate

over the no-prefetching baseline for H1-H10. This statistic

correlates to how much latency reduction the EMC achieves,

as the latency for a row-buffer conflict is much higher than

the latency of a row-buffer hit. The reduction in H1, less than

1%, is much smaller than the 19% reduction in H4.

Figure 16: Change in row-buffer conflict rate with the EMC
over a no-prefetching baseline.

Between these two factors, the fraction of total cache

misses generated by the EMC and the reduction in row-buffer

conflicts, it is clear that the EMC has a much smaller impact

on H1 than on H4. One other factor is also important to note.

The EMC exploits temporal locality in the memory access

stream using a small data cache (Section 4.1.3). If the depen-

dence chain executing at the EMC contains a load to data

that has recently entered the chip, this will result in a very

short-latency EMC data cache hit. Otherwise, the load may

have to access the LLC (if a hit is predicted by the EMC miss

predictor). Figure 17 shows that H1 has a much smaller hit

rate in the EMC cache than H4.

Figure 17: Hit rate at the EMC data cache.

These three statistics (the fraction of total cache misses

generated by the EMC, the reduction in row-buffer conflict

rate, and the EMC data cache hit rate) demonstrate why the

performance gain in H4 is larger than the gain in H1.

The net result of the EMC is a raw latency difference for

cache misses that are generated by the EMC and cache misses

that are generated by the core. This is shown in Figure 18.

Latency is given in cycles observed by the miss before depen-

dent operations can be executed and is inclusive of accessing

the LLC, interconnect, and DRAM. We find that a cache miss

generated by the EMC observes a 20% lower average latency

than a cache miss generated by the core.
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Figure 18: Latency observed by an LLCmiss generated by the
EMC vs. an LLC miss generated by the core for H1-H10.

The critical path of executing a dependent cache miss in-

cludes three areas where the EMC saves latency. First, in the

baseline, the source cache miss is required to go through the

fill path back to the core before dependent operations are

executed. Second, the dependent cache miss must go through

the on-chip cache hierarchy and interconnect before it can

be sent to the memory controller. Third, the request must be

selected by the memory controller to be issued to DRAM. We

attribute the latency savings of EMC requests in Figure 18 to

these three sources: bypassing the interconnect back to the

core, bypassing cache accesses, and reduced contention at

the memory controller. Figure 19 shows the average number

of cycles saved by these three factors. We conclude that a

large fraction of the savings come from reduced DRAM con-

tention in many workloads, but the other two factors are also

significant and sometimes dominant.

Figure 19: Average cycles saved by the EMC on a request.

As we attribute a large fraction of the latency reduction

to decreased DRAM contention, we demonstrate that the

performance gain of the EMC cannot simply be obtained by

increasing memory banks and bandwidth. Figure 20 shows

the average sensitivity of H1-H10 to different DRAM systems,

from 1 channel with 1 rank to 4 channels with 4 ranks per

channel (scaling memory queue size commensurately).

For the 1 channel and 2 channel cases (up to 2 channels 4

ranks), the performance benefit of the EMC relative to the

no EMC baseline increases as the number of banks increases.

These configurations have highly contended DRAM systems

which gives the EMC the opportunity to reduce memory

access latency for dependent cache misses. At 2 channels 4

ranks andwith the 4 channel configurations, the large amount

of memory bandwidth causes some reduction in the benefit

of the EMC. However, as H1-H10 are very memory intensive

workloads, we observe steadily increasing performance and

Figure 20: Performance sensitivity to varying memory chan-
nels and ranks over a 1 channel 1 rank (1C1R) baseline.

high bandwidth utilization through the 4 channel/4 rank con-

figuration, particularly for the systems where prefetching is

enabled. Even at 4 channels and 4 ranks, the EMC provides

an 11% performance gain over the baseline.

6.4. Prefetching and the EMC

We analyze the interaction between the EMC and prefetching

when they are employed together. The impact of prefetching

on the EMC is shown by the fraction of EMC-generated cache

misses that are also covered by prefetching. This is illustrated

in Figure 21.

Figure 21: Percentage of cache misses generated by the EMC
without prefetching that are converted into a cache hit with
a prefetcher.

On average, the GHB/stream/Markov+stream prefetchers

cover some fraction of the cache misses that the EMC gen-

erates. However, this fraction is relatively small: 30%, 21%,

48% of the memory requests that the EMC issued in the no-

prefetching case are covered by the prefetchers, respectively.

For the majority of EMC accesses, the EMC supplements

the prefetcher by reducing the latency to access memory

addresses that the prefetcher cannot predict ahead of time.

6.5. Enhanced Memory Controller Overhead

The interconnect overhead of the EMC consists of three main

components: sending dependence chains and the source reg-

isters (live-ins) that these chains require to the EMC, and

sending destination registers (live-outs) back to the core. Fig-

ure 22 shows the average length of the dependence chains

that are executed at the EMC in uops.

The dependence chains executed at the EMC are short (un-

der 10 uops, on average). These chains require an average of

6.4 live-ins. Transmitting the uops to the EMC results in a
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Figure 22: The average number of uops in each chain.

transfer of 1-2 cache lines of data on average. The average

chain produces 8.8 live-outs, requiring a single cache line of

data transfer back to the core. This relatively small amount

of data transfer motivates why we do not see a performance

loss due to the EMC. The interconnect overhead of the EMC

for each executed chain is small and we migrate dependent

operations only if dependent misses are likely. Overall, these

messages result in a 33% average increase in data ring mes-

sages and a 7% increase in control ring requests for H1-H10.

EMC requests are 25% of all data messages and 5% of all con-

trol ring messages. Due to the EMC, we observe a slight (4%)

increase in LLC latency.

6.6. Energy and Area Evaluation

The energy results for the quad-core workloads are shown in

Figure 23 and Figure 24 respectively. Both figures present the

cumulative results for the energy consumption of the chip

and DRAM as a percentage difference in energy consumption

from the no-EMC, no-prefetching baseline.

Figure 23: Energy consumption for workloads H1-H10.

Figure 24: Energy consumption for homogeneous work-
loads.

Overall, we observe that the EMC reduces energy consump-

tion on average by 11% for heterogeneous workloads H1-H10

and by 9% for the homogeneous workloads. This is due to

two factors: a reduction in static energy consumption (as

the performance improvement caused by the EMC decreases

the total execution time of a workload), and dynamic energy

savings due to the reduced row-buffer conflict rate.

In the prefetching configurations, all three of the prefetch-

ers cause an increase in average energy consumption, par-

ticularly the Markov+stream configuration. This is due to

inaccurate prefetches, which occur despite the fact that our

baseline throttles inaccurate prefetchers [57]. In Figure 23, the

GHB, stream, Markov+stream systems increase memory traf-

fic by 18%, 20% and 52% respectively while the EMC increases

traffic by only 8%. Similarly, in Figure 24 the prefetchers

increase traffic by 12%, 8% and 45% respectively while the

EMC increases traffic by only 3%. Analogous to the perfor-

mance results, the systems with the EMC and prefetching

combined result in lower energy consumption than systems

with prefetching alone.

We estimate the entire area overhead of the EMC to be

2.2mm2 (including 5.9KB of additional storage), roughly 2%
of total chip area. Over half of this additional area is due to

the 4kB EMC cache. The small out-of-order engine consti-

tutes 8% of the additional area, while the two integer ALUs

make up 5%. McPAT estimates the area of a full out-of-order

core as 21.2mm2, so the EMC is 10.4% of a full core. We

implement the minimum functionality at the EMC to execute

dependent cache miss chains. The out-of-order functionality

is lightweight and the EMC does not contain large structures

such as a floating-point pipeline or a front-end.

7. Conclusion
This paper makes a case for compute capable memory con-

trollers. We introduce one mechanism for automatically of-

floading computation and mechanisms for communication

between main processor cores and an EMC. We identify that

dependent cache misses are latency critical operations. By

transparently executing these dependent operations at the

EMC instead of the core we observe a 20% reduction in ef-

fective memory access latency for these requests. This re-

sults in a 13% performance gain over a Global History Buffer

prefetcher, the highest performing prefetcher in our evalua-

tion. Future techniques can be built upon our framework that

can use the EMC in different ways to exploit and enhance

its capabilities. We believe that as memory continues to be

an increasingly important bottleneck in future data-intensive

workloads and systems, enhancing the memory controller

and using it as an accelerator to improve memory access

latency and efficiency will become increasingly important.
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