2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) | 979-8-3503-2658-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISCA59077.2024.00047

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

Tartan: Microarchitecting a Robotic Processor

Mohammad Bakhshalipour
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
bakhshalipour@cmu.edu

Abstract—This paper presents Tartan, a CPU architecture
designed for a wide range of robotic applications. Tartan provides
architectural support for common robotic kernels, ensuring its
broad utility across different robotic tasks. The architecture ef-
fectively addresses both computational and memory bottlenecks,
marking a significant advancement over previous works. Key
features of Tartan include architectural support for oriented vec-
torization, approximate acceleration with accurate outcome, robot-
semantic prefetching, and intra-application cache partitioning.

On the six end-to-end robots in the RoWild Suite, Tartan
boosts the performance of legacy robotic software by 1.2x (up
to 1.4x), non-approximable software optimized for Tartan by
1.61x (up to 3.54x), and approximable software optimized for
Tartan by 2.11x (up to 3.87x).

Index Terms—Robotics, Domain-Specific Processors, Approxi-
mate Computing, Specialization.

[. INTRODUCTION

Robots are rapidly permeating our society, transforming
various aspects of life, from economy [56] and healthcare [64]
to agriculture [65] and military [63]. Market reports predict
over 20 million robots in operation by 2030, with over $210
billion robotics market capitalization [74], [155]. To reach
this potential, robots must seamlessly integrate into real-world
environments, demanding autonomous capabilities and real-
time execution of complex artificial intelligence tasks [118].

Computer architecture plays a critical role in enabling real-
time robotics [86], [129], [130], [132]. The recent surge
in research has introduced numerous hardware accelerators,
developed in both academia [89], [101], [143], [149] and
industry [91], [111], [120], aiming to expedite specific robotic
tasks like motion planning and scene understanding.

Nevertheless, robotics is in a state of constant evolution.
With a plethora of algorithms and ideas emerging constantly,
the state of the art shifts rapidly, rendering rigid hardware
accelerators obsolete. Moreover, these accelerators struggle to
adapt beyond their specifically targeted applications. However,
the field of robotics encompasses a vast range of applications,
spanning from industrial robots to atmospheric robots. It is
unlikely that hardware vendors will implement specialized
hardware for each of these diverse robot types individually.

To address these challenges, we propose Tartan, a CPU
architecture tailored for robotics. We undertake a thorough
evaluation of robotic workloads to pinpoint software bottle-
necks and mismatches between workload demands and archi-
tecture’s capabilities (§11I). Based on the insights gained from
this analysis, we develop Tartan with a focus on mitigating

Phillip B. Gibbons
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
gibbons @cs.cmu.edu

bottlenecks in common robotic kernels (e.g., pathfinding),

providing architectural support to enhance their performance.

The focus on common bottlenecks ensures that Tartan is

versatile and more future-proof, capable of supporting various

robots and (future) algorithms that utilize these kernels.

A distinctive feature of Tartan is its improvements to the
memory subsystem. Tartan introduces enhancements to the
cache hierarchy, targeting and mitigating memory bottlenecks
that impede robotic applications [81]. This emphasis on
enhancing memory-bound performance distinguishes Tartan
from previous efforts in “hardware acceleration of robotics,”
which mainly concentrated on computational acceleration.

Key architectural features of Tartan include:

o Oriented Vectorization: Tartan introduces a novel ap-
proach for vectorizing non-contiguous memory accesses that
display oriented patterns, frequently encountered in robotic
tasks like ray-casting and collision detection. Tartan im-
plements an explicit, in-hardware address generator to effi-
ciently capture these patterns, departing from the implicitly-
contiguous or software-based gather address generation
methods used in existing processors.

o Approximate Execution Accurate Results: Tartan offers
support for the approximate acceleration of robotics appli-
cations. Specifically, Tartan introduces a novel computa-
tional paradigm termed AXAR: by leveraging guarantees
from specific algorithms, it allows for the approximation of
certain computations without affecting the final result.

+ Robot-Semantic Prefetching: Tartan aims to leverage se-
mantic features in robotics for its novel hardware data
prefetchers. Specifically, Tartan introduces an Adaptive
Next-Line Prefetcher (ANL) that utilizes the application’s
semantic information to adapt the prefetching degree. The
semantic information used by Tartan (e.g., sparse versus
dense environmental areas) is relevant across a wide range
of robotic applications. This work represents the first effort
in the robotics field to leverage application semantic infor-
mation for hardware prefetching.

o Intra-Application Cache Partitioning: Tartan introduces
a cache management scheme to address intra-application
contentions in complex robotic scenarios (e.g., pathfinding
in unpredictable terrains). It seeks to implement a (soft)
partitioning of the cache space among semantic units (e.g.,
paths) to optimize cache performance. This work is the
first to explore cache partitioning for a singularly running
application to enhance its performance. It also represents

979-8-3503-2658-1/24/$31.00 ©2024 IEEE 548
DOI 10.1109/ISCA59077.2024.00047
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

the first exploration into partitioning private caches.
Engineering Optimizations: Tartan incorporates engineer-
ing optimizations tailored for robotics, including adjust-
ments to cacheline size and selective caching policies to
enhance the performance of robotic workloads.

In addition to architectural enhancements, we propose
software-only techniques that leverage the features of modern
processors. Specifically, we introduce an aggressively vector-
ized implementation of the nearest neighbor search kernel
using locality-sensitive hashing.

Our evaluation of Tartan using six end-to-end robotic appli-
cations from RoWild [81], which are modeled after real-world
robots, shows substantial performance enhancements in all
tested scenarios. The observed performance gains span from
1.31x to 3.87x. Tartan’s area overhead is merely 0.001%.

II. MOTIVATION
A. The Need for Efficient Robotics CPUs

Tartan is a CPU architecture tailored for robotics. While
DSPs, GPUs, FPGAs, and ASICs are increasingly popular
in robotics [3], [19], [39], [72], CPUs continue to be an
indispensable element of every robot manufactured to date.
We believe CPUs will remain a critical component in robotics
for the foreseeable future, owing to the following attributes:

o General-Purpose Processing: Robotics encompasses a
broad array of algorithms, each exhibiting varied compu-
tational behaviors. While programmable accelerators like
DSPs, GPUs, and FPGAs excel in specific computation
models (e.g., SIMD), not all robotics tasks align with these
models. Conversely, CPUs are designed to manage a wide
spectrum of computation types, adeptly accommodating the
expanding computational diversity of robotics algorithms.

« Single-Thread Performance: Due to their aggressive archi-
tecture and high clock frequencies, CPUs deliver superior
single-thread performance compared to a GPU’s single core
or an FPGA’s individual logic block. This capability is
essential for providing real-time /atency in robots, not only
for hard-to-parallelize algorithms, but also for gather-scatter
parallel algorithms where a main thread initiates multi-
ple worker threads and aggregates their results—both these
computation models are prevalent in robotics [81], [123].
For instance, RoWild [81] demonstrates that CPUs out-
perform GPUs in robotic workloads characterized by high
instruction-level but low thread-level parallelism. Along
with quick execution of sequential tasks, the CPU’s ability
for fast context switching renders it crucial for robots
requiring real-time decision-making and control.

Reliability: CPUs, as a mature technology, undergo ex-

tensive testing at hardware and software levels, resulting

in robust error-handling capabilities and well-documented
failure modes. The extensive use of ECC memory and parity
checks further bolsters CPU fault-tolerance [87], [102]. This
reliability is critical for robots operating in inaccessible
or demanding settings, like space, where other platforms
like FPGAs struggle to offer as high reliability [160]. For

549

instance, Valkyrie, NASA’s robot for space exploration,
performs all its operations on three Intel Core-i7 CPUs [26],
with only error-tolerant sensor interpretation algorithms on
an NVIDIA Quadro 1000M GPU [23], and no FPGA [140].
Price: Achieving widespread adoption of robots across
various applications hinges on their cost-effectiveness. The
inclusion of hardware accelerators like GPUs and FPGAs
can substantially elevate production costs; even applications
requiring real-time performance may not always justify the
heightened price [106]. As such, CPU may be the sole
computing platform in some robots, running the entire
robotics software, as is the case in real-world robots like
(21, [171, [46], [60], [68], [69].

Due to the extensive use of CPUs in various robotic appli-
cations and their pivotal role in robot performance, robotics
CPUs have undergone significant evolution over the past
decade, becoming markedly more powerful (e.g., increased
transistor count, higher clock frequencies, deeper pipelines,
larger caches). This evolution is illustrated by microcontroller-
based robots using Raspberry Pi, transitioning from a single-
core ARM11 CPU in the Raspberry Pi 1 [52] to a 4-core ARM
Cortex-A76 CPU in the Raspberry Pi 5 [53]; Qualcomm’s
robotics platform evolving from a Kryo 385 CPU in the
RB3 [51] to a Kryo 585 CPU with double the last-level cache
size in the RB5 [50]; NVIDIA robotics boards upgrading from
a quad-core ARM Cortex-A57 CPU with 2MB of total cache
in the Jetson TX1 [35] to a 12-core Arm Cortex-A78AE
CPU with 9MB of total cache capacity in the Jetson AGX
Orin [34]; and Intel’s NUC, which is extensively utilized in a
variety of robots such as [30], [38], [48], transitioning from a
Celeron 847 processor [25] with a maximum clock frequency
of 1.1GHz in its first generation [29] to a Core i9-12900
processor [27] with a maximum clock frequency of 5.1GHz
in its twelfth generation [28].

Nevertheless, as we show in this paper, substantial potential
for enhancement remains even beyond the capabilities of
state-of-the-art processors. We extensively explore the archi-
tectural implications for robotics and suggest architectural
improvements to a cutting-edge robotics CPU, aiming to boost
performance across a diverse range of robotic applications.

B. The Need for Efficient Memory Systems

Robotics are becoming increasingly data-intensive [1], [77],
[81], [153], fueled by the need to process large volumes of
data produced by more precise sensors (e.g., high-resolution
cameras and LiDARs, highly sensitive force sensors) and the
large number of model parameters necessary for robots to
function accurately in the wild. This trend underscores the role
of memory systems in processors for efficiently managing data
delivery to the processors [95], [142].

Unlike prior work that focused only on computational
acceleration, Tartan also provides enhancements to the mem-
ory subsystem, specifically improving the cache hierarchy to
alleviate memory bottlenecks in robotics [81].

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

III. PERFORMANCE STUDY

In this section, we perform a performance analysis to
identify bottlenecks within robotic workloads, aiming to tar-
get these areas for optimization. We begin by outlining our
methodology, then proceed to discuss the results of the study.

A. Methodology

System: Our methodology involves initially establishing a
baseline processor model, followed by the integration of our
proposed architectural enhancements. We model the baseline
processor after Intel Core i7-10610U Processor [26], which is
integrated into NASA’s Valkyrie [41]. The processor features
four Q0O cores fabricated in 14nm. It includes L1-D, L2, and
a shared L3 cache with sizes of 32KB, 256KB, and 8MB,
respectively. The latencies for these caches are 4, 14, and
45 clock cycles. The chip includes two DDR4-2666 channels,
which offer a bandwidth of up to 45.8GB/s.

Upgraded Baseline: We apply engineering optimizations to
benchmark Tartan against an upgraded baseline.

o We upgrade the processor’s vector ISA and hardware from
AVX2 to the current leading standard, AVX-512.
Recognizing that robotic workloads are adversely affected
by excessive unnecessary data movements (UDM) [81], we
shrink the cacheline size from 64B to 32B. This adjustment
leads to a 1.56x reduction in UDM and yields a slight
average performance enhancement.

Data structures facilitating producer-consumer communica-
tions across stages of the robotics software pipeline are allo-
cated to memory regions managed by write-through policies,
through manipulation of memory type range registers [24].
This results in a 9%—43% reduction in L3 cache traffic and
a 2%—4% improvement in overall performance.

Framework: We use ZSim [146] to evaluate our proposal. We
run all applications until their completion and report execution
time for performance analysis.

Workloads: We evaluate all six robots from the RoWild
suite [81]. The workloads model the end-to-end functional-
ity of real-world robotics applications, containing the com-
putation of all software pipeline stages: perception (sens-
ing and interpreting environment), planning (decision-making
process), and control (executing planned actions). Table I
details the workloads with the algorithms used in their soft-
ware and the number of threads used in each stage of the
perception— planning— control pipeline of the robots.

TABLE I: Application parameters. Bold algorithms are time-dominant.

Robot Resembling Major Algorithms Pipeline Threads
DeliBot Spot [12] MCL [167], Greedy [139] 811
PatrolBot Pioneer 3-DX [47] MobileNet [164], EKF [157], PP [133] 11— 1| 4F
MoveBot LoCoBot [73] RRT [117], CCCD [161], PID [162] 1-8~1
HomeBot Roomba i7+ [57] Point-Based Fusion [151], BT [105] 8—>1—1

FlyBot Pelican [7] LT [126], WA* [139], MPC [100] 1-4—4
CarriBot Boxbot [13] POM [103], A* [139], DMP [115] 1-4—1

1 Four threads run network inference in parallel with the robot’s software pipeline.

We tune software for the evaluated processor, leading
to a slightly different thread count compared to original
RoWild’s [81] evaluations on ARM Cortex A57 of NVIDIA

550

Nano board [33]. Although threads outnumber the cores,
empirical findings indicate these settings as optimal. This can
be largely attributed to the uneven distribution of work among
threads and the benefits of latency hiding [138].

B. Bottleneck Analysis

We conduct a thorough evaluation of RoWild’s robots on our
framework to identify bottlenecks and mismatches between
the demands of the workloads and the capabilities of the
architecture. The insights gained from this analysis are utilized
in designing Tartan. Fig. 1 summarizes the results.

Baseline presents the execution time breakdown for the
upgraded baseline processor, while Tartan illustrates how
Tartan, employing the techniques explained later, focuses on
and accelerates bottleneck operations. Below, we detail the
execution statistics of applications on the baseline processor.

100%

o | [OBottleneck Operation [| O Other | |

£ 0

= 75% T

g 50% g £ = = s &

il o S 2 ® 5 2

2 2 B e LA LR R

0% =1, L= =1, Pl L L= JO, y

B { T B { B { T B { B { T B { T
DeliBot PatrolBot | MoveBot | HomeBot FlyBot CarriBot

Fig. 1: Execution time breakdown and bottleneck analysis.

DeliBot utilizes MCL for localization [167], heavily relying on
“ray-casting” operations that consume 74% of the end-to-end
time. Ray-casting matches laser data with the robot’s location
hypotheses by checking occupancy in the environment map
cell-by-cell. Despite proximity of memory checks, vectoriza-
tion is unfeasible on current processors due to misalignment
with vector loads (see §IV).

PatrolBot conducts object detection by feeding captured
images into a pre-trained neural network [164] to identify
suspicious objects. The neural network inference accounts for
93% of the total processing time.

MoveBot is tasked with moving its arm from one point to
another, employing RRT for planning [117]. It uses cuboid-
cuboid collision detection (CCCD) [161] to bound obstacles
and the robot’s body with cubes, checking for intersections
during movement planning. CCCD prioritizes speed over accu-
racy and is parallelized across eight threads, each responsible
for assessing collision possibilities with certain obstacles.
Without parallelization, CCCD emerges as the primary bottle-
neck [81]; yet, once parallelized, the major bottleneck shifts
to nearest-neighbor search (NNS) operations required by RRT,
consuming 45% of execution time. NNS results in irregular
memory accesses, challenging existing cache and prefetch
techniques in the architecture.

HomeBot uses point-based fusion for 3D reconstruction [151],
with 56% of execution time spent on transformation matrix
(T) prediction to track the robot’s movements. This involves
matching point clouds and solving a large linear equation
system, including many NNS operations. The irregular mem-
ory references from point cloud matching and the heavy
floating-point computations for the equations challenge the
architecture, stressing memory and processing capabilities.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

FlyBot conducts aerial photography, requiring frequent relo-
cations in a 3D space. It uses the WA* algorithm for path
planning [139], utilizing a sophisticated heuristic function to
significantly narrow down its search scope. Yet, the computa-
tion of this heuristic function, discussed in §V-F, dominates
the process, consuming over 74% of the execution time.
CarriBot transports sensitive materials within a factory, em-
ploying the A* algorithm [139] with precise collision detection
in (z,y,60) space. This collision detection process is time-
intensive, consuming over 81% of the execution time. Similar
to ray-casting, it requires verifying the occupancy status of
various cells in the environment map along oriented lines.

IV. ORIENTED VECTOR LOADS

Data accesses during intensive robotic kernels such as col-
lision detection [80] and ray-casting [82] manifest in oriented
patterns. Fig. 2.a illustrates this using ray-casting as an exam-
ple. A robot’s laser casts rays in different directions to gauge
the distance to the nearest obstacle in each direction. Ray-
casting is the process of integrating laser-generated distance
readings with the robot’s pre-existing knowledge (i.e., stored
state). During ray-casting, the algorithm scans the map along
trajectories that align with the orientation of each emitted ray.

X .

-\
- 3/ p

N> | R0

¢

(b) The lifetime of a
single ray

(%th—P b[c[E[A] [LQ
Zmm

”i

(a) Ray-casting example (c) Address generation circuit
Fig. 2: Tartan’s oriented vectorization.

Fig. 2.b shows the process of ray-casting for a single ray. Let
O be the origin of the ray, which is the location of the laser in
the environment; let ¢/ be the orientation of the ray with respect
to the z-axis; and let d be the step length. The algorithm starts
at the origin and iteratively extends the ray’s length until it
encounters the first obstacle. At step ¢, the algorithm evaluates
the location (O, Oy) + i - (dz, dy), where dz = dcos6 and
dy = dsin@. All the (z,y) pairs generated during ray-casting
are floating-point numbers; these are rounded to integers for
mapping to the addressable memory grid. For instance, in a
16 x 16 environment, stored in env [256], the point (4.6,8.5)
would be flattened to 4.6 x 16 + 8.5 = 82.1 and mapped to
env[82] in memory.

A. The Problem

In Fig. 2.b, the red dots denote the points checked during
a single ray-casting operation, with each check determining
whether a location is free or occupied. Current CPU vector-
ization approaches, including post-AVX2 gather instructions
(§VIII-A), fail to vectorize such operations: despite the mem-
ory locations checked being nearby and running the same
check, the operation cannot be vectorized.

Consequently, the software needs to sequentially traverse the
map on a cell-by-cell basis to perform these checks, leading to

551

excessive processing time. For example, RoWild [81] reports
that more than 80% of the end-to-end execution time in two of
the six modeled robots are attributed to ray-casting or collision
detection—kernels dominated with oriented memory accesses.

B. Vectorization of Oriented Loads

To address the issue, we propose Oriented Vectorization
(OVEC). We incorporate an extra operand into the vector
load instruction: a register containing the traversal orientation.
OVEC extends the ISA with the following instruction:

O_MOVE %zmm, (%org), %orient

zmm is the destination vector register for data loading. org
is the memory source operand, which is a register holding
the address of the starting point. In ray-casting, org initially
holds the origin of the ray. These two operands are similar to
conventional vector loads. orient is the new operand that
OVEC introduces, which is a scalar register encapsulating the
traversal orientation; the flattened representation of (d, d,) in
2D or (dy,dy, d.) in 3D in number of bytes. For example, with
an N x N occupancy grid [81], in which every cell stores the
occupation probability of an environment location in a f1oat,
orient is (dy X N +d;) x sizeof (float).

Finally, as in other x86 instructions, the data type is spec-
ified in the opcode; e.g., O_MOVEAPS and O_MOVEAPD for
single- and double-precision floating-point, respectively.

C. Implementation Details

Upon execution of the instruction, the needed addresses
must be generated and sent to the memory system. Conven-
tional vector load instructions send only the address of the
vector’s initial lane, stored in org. Addresses of the following
lanes are implicitly sequential (e.g., org+1l, org+2, ...).
However, in oriented vector loads, the addresses for each lane
within the vector require explicit generation.

Fig. 2.c shows the address generation process for a vector
comprising four lanes. For each lane ¢ within the vector, the
address is computed by adding (D) the origin address to (2) the
product of ¢ and the orientation. 3) The fractional parts of the
resulting addresses are omitted, and (@) the integral addresses
are enqueued into the load queue (LQ). Parallel address
generation via this hardware circuit, as opposed to serial
checking in software, substantially accelerates operations like
ray-casting and collision detection, as we show in §VIII-A.

A challenge in oriented vectorization is the accurate data
alignment within a vector register. The addresses from an ori-
ented vector load correspond to different lanes in the register.
Thus, when data are fetched from the memory hierarchy, its
designated lane within the vector register is unknown.

To tackle this issue, we adopt Intel’s approach for gather
operations: storing the designated lane for loads within LQ
(subscripts in Fig. 2.c). Consequently, when data arrive, it uses
the number in LQ to position itself in the intended lane.

Once data are fully loaded into the vector register, it engages
the vector ALU similar to conventional vector instructions,
implementing operations as directed by the software. The
vector ALU and register file remain unchanged.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

D. Related Work

Prior work on augmenting vector unit capabilities en-
compasses speculative vectorization support for certain op-
erations [135], employing vector units for runahead execu-
tion [127], [128], and data streaming [96]. Tartan introduces
OVEC, a novel design markedly distinct from previous initia-
tives in terms of design, operation, and targeted applications.

V. APPROXIMATE-ACCELERATION

Prior work exploits error-tolerance in tasks like speech
recognition, proposing approximate execution to trade accu-
racy for performance. Both software and hardware can imple-
ment this approach. For example, NVIDIA’s TensorRT [44]
uses quantization, allowing neural networks to switch from
FP32 to INTS representations, which results in faster opera-
tions, albeit with some accuracy loss. Similarly, EDEN [114]
lowers voltage for DRAM partitions hosting neural network
data, sacrificing some accuracy to save energy.

A. Approximate Execution Accurate Results

In this paper, we introduce a new paradigm: Approximate
Execution Accurate Results (AXAR). We find that certain com-
putations in robotics can be approximated without altering the
final outcome, thanks to algorithmic guarantees. We explain
and implement AXAR in the context of robot path planning.
Specifically, we approximate heuristic cost calculation in robot
path planning without affecting the final path.

Path planning refers to the process of finding an efficient
(e.g., short) path from a start to a goal point—a key operation
in every autonomous robot. A*, along with its derivatives [83],
[108], [119], [139], [168], is widely used in path planning in
robotics [81] and beyond (e.g., Google Maps [76]). Central to
A* is its heuristic cost function, which makes it an informed
search algorithm. For a given state S, the heuristic function,
h(S), estimates the cost to reach the goal from S. In practice,
h(S) can be for example the aerial or Manhattan distance of
S to the goal. Using the heuristic function drastically narrows
the search compared to uninformed algorithms (e.g., Dijkstra).

A*! with any admissible heuristic outputs an optimal path.
An admissible heuristic function h satisfies i (S) < h*(S) for
all S, where h*(.S) denotes the optimal cost to the goal. This
means that an admissible heuristic never overestimates the
cost. An example heuristic h(S) = 0 for all S is technically
admissible, but not effective as it provides no insight into
the actual cost. Ideally, h(S) should be close to h*(S);
ie., h(S) < h*(S)—the closer h(S) is to h*(S), the more
effectively A* narrows the search.

Calculating h(S) can be costly in robotic applications [83],
[147], [168]. For instance, it may require solving an optimiza-
tion problem at each step [83]. We propose AXAR-acceleration
of such cases by approximating heuristic cost calculation. We

'More precisely, A* with re-expansions permitted [166].

argue that as long as the heuristic admissibility is maintained,
the planning outcome will be unaffected.

B. Traditional Approximation

Besides AXAR, robotics permits Traditional Approximation
(TRAP); trading off some accuracy for performance. For
example, while a vacuum robot [81] ideally covers every inch
of a floor, occasionally missing a spot does not significantly
affect the overall cleaning outcome. This means there is some
leniency in the execution of its scene understanding algorithm.

C. Hardware-Accelerated Neural Approximation

Both approximation schemes are important. We find that
as much as 74% and 56% of the execution time in our
workload suite could potentially benefit from AXAR and TRAP,
respectively (§VIII-B). This underscores the importance for
the processor to be compatible with both schemes.

To support both AXAR and TRAP, Tartan includes a Neural
Processing Unit (NPU) [99], [104] tightly coupled to its
pipeline. NPU is a spatial array of processing elements (PEs),
each with a multiply-accumulate (MAC) unit, a lookup table
implementing sigmoid-activation, and dedicated buffers for
inputs, weights, and outputs, as shown in Fig. 3.

:l:l:l]lnput Buffer ,/ [Input Yy e sigmoid
|:|:|:|:| Config Buffer \ deht)))
D]I Output Buffer \ Output(((J

Fig. 3: Tartan’s neural processing unit.

As in [99], the programmer marks certain functions as
“approximation-safe.” Then, a neural model is developed with
a focus on efficiency, which is indicated by its capability to
provide satisfactory accuracy in replicating the outputs of the
original function while maintaining a computational footprint
that does not far exceed the cost of the original function on
CPU. This model replaces the original function at the compile-
time, allowing the NPU to execute it efficiently during runtime.

At runtime, the CPU initially sends the configuration param-
eters (e.g., layers and weights) to the NPU. Then, the CPU
sends inputs to the NPU to initiate the inference process for
a particular input. Upon completion, the CPU retrieves the
inference results from the NPU for subsequent operations.

Leveraging the NPU’s highly-parallel architecture, an effi-
cient neural network can execute significantly faster than the
intensive original function on the CPU. Further details, like
interrupt handling and CPU-NPU communications, being akin

2We believe this behavior is not limited to robotics. For example, when
finding a graph’s minimum spanning tree, edge weights can be approximated;
as long as their relative order does not change, the approximation will not
affect the output. This concept is innovatively exploited by Tartan, but in fact,
it is not new to computer architecture. For example, in caching, in hardware or
software, LRU is sometimes approximated by Pseudo-LRU. However, since
LRU itself is a heuristic to the optimal policy and caching operates on a best-
effort basis, the approximation does not alter execution time significantly nor
the results at all. We leave explorations beyond robotics to future research.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

to [99], are not explained further for brevity. However, their
quantification and significance are discussed in §VIII-B.

The NPU’s configuration, including the number of PEs, can
be set based on the available area in the host processor. In
§VIII-B, we evaluate various NPU configurations.

D. Why “Neural” Approximation?

The inclusion of the NPU and the use of neural models,
rather than table-based alternatives, serves a dual purpose:
(i) Versatility: neural models can learn a broad range of
functions, surpassing table-based methods in complex applica-
tions [121], and (i) Multimodal: as robotics are increasingly
reliant on neural network algorithms [81], the NPU can
expedite both “native” neural networks (i.e., neural models
originally employed by the robot software) and “imported”
neural networks generated for approximate computing.

Notice NPU’s primary purpose is not to expedite native neu-
ral models; this is rather a secondary benefit. This advantage
becomes apparent in scenarios where a robot lacks a GPU
or a specific accelerator for neural models, and the NPU is
available, not being used for approximate acceleration. Thus, it
becomes suitable to offload native models to NPU. Essentially,
for applications that demand large native neural networks, such
as advanced perception in autonomous vehicles, the use of
GPUs or dedicated accelerators [165] is often necessary, and
is complementary to our use of NPU.

E. Software Workflow

Model training is offline, utilizing multilayer perceptrons
(MLPs) for their balance of performance and cost-efficiency in
robotics [158]. Network topology and parameters are tailored
to each application, considering the acceptable quality loss.
§VIII-B outlines the training data for each application, the
selected network topology, and an analysis of quality loss.

FE. Training for AXAR

In AXAR, the inaccuracy of neural models necessitates a su-
pervisor to ensure outputs align with algorithmic requirements,
similar to quality controllers in [121], [144]. Unlike these
methods that need hardware changes and complex software-
hardware co-design, our approach implements supervision in
software, integrated within the algorithmic steps. Differing
from previous methods’ emphasis on predicting erroneous
invocations, our strategy reduces erroneous predictions using
recent training techniques (see §VIII-B).

We next detail AXAR in its application context, applying
it to AnyTime A* (ATA*) [119] within FlyBot [81], a drone
navigating in 3D. However, it is important to note that the
methods and discussions are also relevant to a wide range of
other applications.

ATA*: ATA*, widely used in real-time robotics, operates on the
principle that inflating the heuristic cost with a factor ¢ > 1
speeds up execution at the expense of generating e-optimal
paths, costing up to ¢ times the optimal. It starts with a high
e = 8 for a quick initial path, then progressively reduces € by
step = 1 to enhance path quality, eventually reaching ¢ = 1

553

for the optimal path. Its resilience in unpredictable situations,
like delays from unexpected interrupts, makes it popular. In
such scenarios, ATA* quickly produces an initial path and
continually refines it, or delivers the best path so far, thereby
maintaining functionality despite disruptions.

Our method leverages a key aspect of the ATA* algorithm
to supervise AXAR: each step’s path cost does not exceed that
of the previous step. The first iteration, with a high e, runs
entirely on the CPU (high € runs quickly). From the second
iteration onward (with lower ¢; slower), we offload heuristic
cost calculations to the NPU. After each iteration’s completion
(not after every NPU invocation), we assess if the current
path’s exact cost is higher than the previous, indicating NPU
overestimation. In such cases, the iteration is rerun on the
CPU. If not, the process moves to the next iteration. This
supervision method introduces minimal overhead, adding a
few CPU instructions at the end of each extensive iteration.

This approach ensures that AXAR consistently produces
outputs within an acceptable range, as the initial iteration
runs accurately on the CPU. Thus, AXAR maintains the path
cost guarantees inherent to the algorithm. Although, in the-
ory, AXAR might marginally extend the worst-case execution
time by the duration of one NPU-accelerated iteration, the
algorithm’s design and the fact that the first iteration is CPU-
based ensures a key feature: the availability of a viable path
even if unexpected events occur post the first iteration. This
mirrors the reliability offered by an AXAR-less execution.
Training for AXAR: FlyBot is a battery-powered drone. It
tries to find the shortest path to extend its operation range.
It relies on a sophisticated heuristic function to estimate the
cost to the goal. The heuristic function calculates the impact
of (i) aerodynamic drag, (ii) altitude change, and (iii) wind
influence to estimate the cost. Calculating (ii) is simple, but
computing (i) and (iii) involves integrating over the path,
which is computationally expensive.

In our approach, the heuristic function is substituted by a
neural model, with an emphasis on training to minimize CPU
rollbacks by minimizing overestimations. Our training involves
an asymmetric, piece-wise loss function which penalizes over-
estimations more significantly than underestimations:

if Ypred > Yirue
otherwise

« - (ypred - ytrue)2
(ypred - ytrue)2

Here, @ = 8 is a constant that determines how much more
we penalize overestimations. Also, we employ L2 regulariza-
tion [131] to prevent overfitting by penalizing larger weights.
This regularization adds a term A, w? to the loss function,
where A = 0.01 is the regularization strength, and w; denotes
the model weights. Lastly, we utilize gradient clipping [124],
capping the gradients at ¢ = 2.5 during training. This limit
is crucial for preventing the model from making excessively
large updates, thus aiding in curbing overestimations.

In §VIII-B, we show that, through the employed training
techniques, overestimation does not occur during the entire
operational period of FlyBot, with more than a million infer-
ence operations (see Table II). Finally, it bears repeating that

L(ytrue7 ypred) = {

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

the entire process specific to AXAR is conducted purely in
software. From a hardware standpoint, there is no distinction
between AXAR, TRAP, and native neural network executions.

G. Related Work

Approximation is a widely explored concept in
robotics [110] and other fields [99]. The innovations
of Tartan primarily lie in AXAR, proposing that certain
computations can be effectively approximated based on
algorithmic guarantees to yield reliably accurate results.
A secondary contribution of Tartan involves examining
hardware-based approximation for tasks such as 7" prediction,
detailed further in §VIII-B.

VI. EFFICIENT NNS IN HIGH-DIMENSIONAL SPACES

Nearest Neighbor Search (NNS) in high-dimensional spaces
is essential in key robotic tasks, including motion plan-
ning [82], scene reconstruction [169], object detection [81],
kinematics [134], and sensor data fusion [152].

Popular libraries like OMPL [62], integrated within
ROS [58] and Movelt [40], implement NNS using k-d trees
and octrees. These data structures, however, present several
challenges: (i) They lead to inefficient memory access due to
scattered node locations, especially in deep octree structures.
(ii) They do no fully utilize application semantic information.
Sparse areas result in octrees having many underutilized nodes
and k-d trees developing long, data-sparse branches, both
leading to inefficient traversal. (iii) Octrees are not effective
beyond three dimensions, posing a challenge for industrial
robots with higher degrees-of-freedom (DoF), which often
require searches in higher dimensions (typically 6-7, with
cases like the 57-dimensional ASIMO robot [8]).

We implement NNS using Locality Sensitive Hashing
(LSH), a dimensionality reduction method. While not the first
to use LSH for NNS, our approach is unique in how it capi-
talizes on the architectural capabilities of modern processors.

A. Background on LSH

LSH is a technique for reducing dimensionality. It hashes
input items so that similar items tend to be mapped to the
same “buckets.” The fundamental aspect of LSH is its ability
to increase the likelihood of similar items colliding. In this
work, we implement LSH using random projections.

For a point x € R? (where d is the dimensionality, e.g., 5 for
a 5-DoF robot), the hash function is given by f(x) = [XX,
where r is a random d-dimensional vector, each element of
which is sampled from a Gaussian distribution A/(0, 1), and
w controls the bucket sizes in the hash space.

The likelihood of two points x and y hashing to the same
value is linked to their Euclidean distance—the closer two
points are in Euclidean space, the higher the probability they
end up in the same bucket.

554

B. Approximate NNS using LSH

Fig. 4.a shows how NNS is performed using LSH. For () a
query point x, the hash function, f, (@) assigns it to a specific
bucket. This bucket (3) contains a set of points P, Ps, ..., Py,
likely to be near x in Euclidean space. The algorithm examines
these points and selects those within a predefined distance
threshold € (i.e., [|[x —y||2 < €) as the nearest neighbors. This
selection can include all or a specific number of points, based
on the implementation specifics.

Intermediary Buckets

PC Region | CD | LD
ox5f | ox4008el | 4 7
0x99 | Ox40073f | 1 1

(a) Nearest neighbor search using LHS
Fig. 4: Nearest-neighbor search with LSH.

(b) Adaptive next-line prefetching

Notably, NNS via LSH is approximate, as it relies on
LSH’s probabilistic properties. Nonetheless, in the context
of robotic NNS within high-dimensional spaces, where the
utilized algorithms (e.g., RRT [82]) inherently accommodate
certain levels of error, LSH is an effective approach. For
example, RRT aims to find an efficient, rather than optimal,
path for planning. Its stochastic nature and reliance on random
sampling inherently absorb the imprecision of inexact NNS—
the algorithm’s success is not predicated on perfect accuracy
(optimal path) but on its ability to rapidly explore and connect
feasible paths through the space to output an efficient path.

C. Vectorization of NNS

Vector units are becoming increasingly potent, with AVX-
512 featuring 512-bit vector registers. However, the full po-
tential of these units is often underutilized, partly due to
limitations in compiler optimization capabilities [148].

We identify untapped potential for vectorization in LSH-
based NNS, a domain where existing implementations, in-
cluding the widely adopted FLANN [20] (integrated into
OpenCV [45]), fall short. We develop a highly-vectorized
version of LSH-based NNS, and show that it offers superior
performance (§VIII-C). Our approach focuses on vectorizing
the projection step (i.e., the dot-product calculation) and
aggressively vectorizing the examination process. We call this
implementation Vectorized LHS-Based NNS (VLN). VLN is a
software approach with no hardware modifications.

D. Adaptive Next-Line Prefetching

As Fig. 4.a suggests, access patterns within each bucket
are sequential, leading us to employ next-line prefetchers.
However, we observed notable variability in the number of ac-
cesses per bucket, correlating directly with their density. This
variance is linked to the state of the analyzed environment. For
instance, in motion planning, areas densely populated with
obstacles result in fewer viable pathfinding points, creating
less populated buckets. Conversely, obstacle-free zones yield
densely-filled buckets. This trend is observed beyond motion
planning, such as in point cloud manipulation for scene

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

understanding [82], where we note significant differences in
memory access patterns between dense and sparse areas.

To leverage this observation, we introduce an Adaptive Next-
Line Prefetching (ANL) prefetcher, depicted in Fig. 4.b. ANL
operates with two counters per PC+Region pair: current
degree (CD) and last degree (LD). PC is the program counter
of load instructions, and Region is the high-order bits of load
addresses. CD learns the prefetching degree (i.e., the number
of prefetches issued) for each PC+Region, while LD stores
the past observations to issue prefetches.

ANL employs a 16-entry table, tagged by the concatenation
of PC and Region bits. Upon a cache miss, the table is looked
up using the PC+Region bits of the load. If the table lookup
is a hit, we (i) prefetch the number of cachelines indicated
by LD, (ii) increment CD, and (iii) reset LD. If it is a miss,
we allocate a new entry, possibly evicting an existing one (see
below). New entries start with CD and LD set to 0. When
a region is terminated (a cacheline of it is evicted from the
cache), all ANL entries tracking that region (i) copy their CD
to LD and (ii) reset CD. This mechanism enables ANL to learn
distinct access patterns for each PC+Region.

Two details are important to the efficient performance of
ANL. Firstly, ANL needs to use small regions to minimize
overprediction. ANL bases its prefetching decisions solely on
the count of used cachelines. Therefore, in medium-density
environments, larger region sizes could lead to significant
overprediction. In this work, we utilize 1KB regions.?

Secondly, when ANL needs to evict an entry for a new one,
it chooses the entry with the lowest max (CD, LD) value.
This approach is hardware-implementable with small tables
like ANL’s (§VIII-C). The rationale behind this policy is to
keep entries with higher degrees, as these are responsible for
the majority of prefetch requests. This means that ANL is less
affected by missing prefetch opportunities in sparser regions,
whereas missing such opportunities in denser regions would
be more detrimental to its performance.

Finally, ANL is not designed merely to accelerate NNS.
Rather, it is designed as a general-purpose prefetcher for
robotic applications, adept at learning and adapting to the
density of references across different regions during runtime.
In §VIII-C, we evaluate the effectiveness of ANL for all six
robots. Also, ANL can prefetch into any cache level; in this
paper, we put the prefetch requests into the private L2 cache.

E. Discussion

Our approach addresses the challenges associated with k-d
trees and octrees (§VI). (i) Storing points in buckets facilitates
cache-friendly, sequential memory accesses. (ii) ANL leverages
semantic information (e.g., varying densities) within the appli-
cation. (iii) LSH scales well to higher dimensions due to the
dimensionality reduction in its projection phase.

3Notice, while the explanation of ANL draws parallels between LSH
“buckets” and prefetcher “regions”, and a correlation exists (different buckets
correspond to different memory addresses), it is important to differentiate
them: “buckets” are conceptual, at the algorithm level, while “regions” pertain
to hardware-level physical address granularities.

F. Related Work

NNS is vital for a broad range of applications and is
tackled through a variety of approaches including paralleliza-
tion [79], [88], compression [97], and application-specific
optimizations (e.g., for CNNs [163]). Tartan introduces a
novel hardware/software strategy that significantly enhances
performance (see §VIII-C). While Tartan’s NNS solution can
stand alone as a simple and effective method, it can also work
orthogonally with existing techniques. For instance, compress-
ing LSH data [97] boosts efficiency without compromising
the benefits of VLN. Alternatively, Tartan’s components, such
as ANL, can be synergistically combined with other methods
where its premise, like data heterogeneity, applies.

VII. INTRA-APPLICATION CACHE PARTITIONING

Graph search is crucial in tasks like pathfinding, motion
planning, and decision making. In graph search, the robot
seeks a path from a start to a goal point. This “path” varies by
context: in pathfinding, it is the sequence of locations to the
goal; in motion planning, it is the configurations for object
grasping; and in decision making, it is the set of actions
required to perform a task.

Graph algorithms employed across various robotic appli-
cations are varied, yet they share a key feature: concurrent
exploration of multiple paths to determine an efficient, or
the most efficient, path. The definition of efficiency varies
by application: for drones, it may be the shortest path; for
manipulator robots, the smoothest; and for self-driving cars,
the path that optimizes fuel efficiency.

Fig. 5.a illustrates a mobile robot’s concurrent exploration
of multiple paths in pathfinding, moving from start point S
to goal GG. Due to two large obstacles, the route forks into
three paths: A, B, and C'. The algorithm concurrently expands
these paths, ultimately choosing one as the final route. This
illustration omits two key aspects for clarity: (i) the actual
number of paths can exceed three, depending on the number
and proximity of obstacles; (ii) each graph node typically
involves extensive neighbor explorations, implying numerous
memory accesses to adjacent locations.

R bits 0 bits

@ Offset @

@ < Update Logic_S'(5)

(b) Tartan’s cache partitioning scheme

(a) Pathfinding example
Fig. 5: Tartan’s FCP with an example application.

A. The Problem

When multiple paths are explored concurrently, they com-
pete for resources, notably hardware caches. This competition
leads to paths evicting each other’s data from the cache. This
issue arises even in private caches and is particularly prevalent
in widely-used algorithms like A* and RRT. The frequent
eviction of data from caches negatively impacts the hit ratio,
degrading performance.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

Importantly, the concurrent exploration of multiple paths is
not a rare event in many applications. In the A* algorithm and
its variants, each iteration involves selecting the node with the
highest potential for the optimal path, leading to frequent time-
wise switches between paths in A—-B—(C—A—-B—C— ---
order. Therefore, each time C'— A occurs, there is a possibility
that some of A’s data has been evicted from the cache,
resulting in a slowdown. Similarly, in the RRT algorithm, path
choices are based on random sampling, which leads to random
switches between paths and the same caching challenge.

B. Cache Partitioning

Partitioning the cache space among different paths can alle-
viate this issue. However, current cache partitioning solutions
like Intel’s CAT [32] are unsuitable for several reasons. Firstly,
they focus on partitioning across cores, which is not applicable
to single-thread executions. Secondly, they partition cache by
physical ways, an approach not feasible when dealing with
potentially tens of paths (> number of ways). Thirdly, these
methods often compromise performance to ensure fairness
or quality of service, which holds no value in this context.
Research proposals in this area [93], [94], [98], [145], [156],
[159] similarly encounter one or more of these issues.

In this work, we propose Fuzzy Intra-Application Cache
Partitioning (FCP). The key idea of FCP is the partitioning
of cache by manipulating replacement metadata. Specifically,
it prioritizes evicting cachelines associated with paths that
have excessively used cache capacity. Below, we detail the
operations of FCP. Unlike CAT [32], FCP does not enforce
strict cache partitioning but instead implements a “fuzzy”
partitioning approach, functioning on a best-effort basis.

FCP is predicated on the understanding that inter-path
cache contention becomes problematic when paths diverge
significantly, each exploring a distinct, distant memory region.
In other words, when paths traverse spatially close regions,
inter-path cache contention is not only unproblematic but also
beneficial for spatial locality. For instance, in Fig. 5.a, the
A—B—C—A traversals adversely affect A if both B and
C' access memory regions far from A. Conversely, if either
is spatially proximate to A, the inter-path contention from
temporally-interleaved B—C— A traversals can be advanta-
geous. This is because it might (inadvertently) prefetch data
for A if that data resides in the cachelines of B or C.

To address the issue, FCP first aims to map some of the data
from individual regions to the same cache sets. It achieves
this by altering the cache’s indexing scheme. Considering
regions of 2© cacheline size, the incoming addresses (byte
offset excluded) comprise R bits for the region and O bits for
the offset within the region, as shown in (O in Fig. 5.b. With
25 gets, the standard practice without FCP is to use the lower
S bits for indexing. When O < S, which is almost always
the case, cachelines from a region never map to the same set.
FCP seeks to modify this, increasing the likelihood that some
cachelines within a region map to the same set.

A naive solution could be to index the cache solely with the
R bits of the region, causing cachelines of a region to map to

556

the same set. However, this method is detrimental to regions
with good spatial locality. The cache’s limited associativity
prevents storing all or most cachelines from such regions
simultaneously, thus failing to exploit the spatial locality.

To strike a balance between locality and partitioning, our
approach involves XORing the low-order [bits of the region
with the high-order [bits of the offset when (2) indexing the
cache. This technique introduces some uniform entropy into
the indexing process, aiding in achieving a balance between
spatial locality and the objectives of FCP. Additionally, to
ensure compatibility with Tartan’s ANL prefetcher (§VI),
we exclude the low-order bits of the offset from the XOR
operation to prevent cache hotspots induced by the prefetcher.
In Section § VIII-D, we will present an experimental analysis to
determine the optimal values for [and the region size, thereby
choosing the most effective indexing scheme.*

The second component of FCP involves manipulating re-
placement metadata. When a cache fill occurs, either due to a
demand miss or prefetching of cacheline X, concurrently with
tag-checking, (3) cachelines that share the same region bits with
X are identified for manipulation. These selected cachelines
are then processed through an @ update logic, which modifies
their LRU recency. The update unit executes the function m(z)
on each recency number, followed by (5 writing the updated
metadata back into the cache.

It is important to note that these operations occur con-
currently with the cache’s baseline functions and are fully-
implementable in hardware with minor modifications to exist-
ing circuitry. However, the function m(z), which manipulates
the recency counters, needs additional circuitry. It alters x to
expedite its eviction from the set, thus preventing the region
from occupying excessive cache capacity.

Applying the m(z) function to recency counters within a set
modifies the eviction probability of block x; to Peyier(2;) =
1 — F(m(z;)), where F(m(x;)) represents the cumulative
distribution function of the transformed recency counters.’ As
such, given the non-uniform access patterns typical in graph
processing [125], a non-linear function (e.g., quadratic), can
enhance performance by more distinctly differentiating the
eviction priorities of frequently versus infrequently accessed
blocks. We explore various manipulation functions in § VIII-D.
Finally, FCP is adaptable to any cache level; for this paper,
we focus on its implementation in the private L2 cache.

C. Related Work

To our knowledge, FCP is the first effort to partition cache
capacity within one application to enhance its performance.
Previous studies on hardware cache partitioning [98], [145],
[156], [159] have focused on partitioning cache space among
multiple applications, aiming to boost aspects such as fairness
or quality of service, but often degrade the performance.

It is important to note that a bit-wise XOR with one input known is one-
to-one, meaning this indexing method does not alter the number of tag bits.

SWe assume the baseline replacement policy priorities the eviction of lines
with larger recency counters.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

VIII. EVALUATION

We evaluate Tartan using the methodology in §III-A, as-
sessing each component individually and then in combination.

A. Tartan Accelerates Ray-Casting and Collision Detection

Fig.6 shows the execution time (bars) and dynamic instruc-
tion count (dots) across different methods, normalized to the
Baseline processor. We evaluate OVEC, Gather, and RACOD
[80]. Results are shown only for robots affected by OVEC.

'g 1.5 | O Ray-Casting/Collision Check - @ Other | 1.5 g
= =1
f]"_; 1.0 1.0 é
S 0.5 0.5 =
€ 0.0 00 £
o o
z z

DeliBot
Fig. 6: Oriented access patterns and different vectorization methods.

CarriBot

OVEC, a component of Tartan (§1V), is estimated to have a
latency of 5 cycles for address generation, based on numbers
published in [78], [154]. This estimation accounts for the
latency of one floating point addition and multiplication, with
the latter simplified in hardware due to (i) one constant integer
input and (ii) no need for the output’s fractional part.

Gather, a software implementation of OVEC using Intel’s
VGATHERDPS [71], serves as a reference. It involves calcu-
lating |i X orient] for each lane 4 (§IV-C) and arranging them
in a vector register in software, with VGATHERDPS fetching
data based on this index vector [24].

RACOD [80], designed for collision detection in mobile
robots, parallelizes address generation in hardware. RACOD
is not readily applicable to ray-casting. However, to project
the speedup that a RACOD-like accelerator can achieve for
ray-casting, we model a design that performs both address
generation and obstacle-checking in hardware.

Results indicate that OVEC substantially boosts ray-casting
and collision detection, with speedups of 1.64x and 1.69x,
respectively. This is because OVEC vectorizes memory fetch
operations and exploits the underutilized vector ALU. This not
only parallelizes the operations but also reduces the number
of executed instructions by an average factor of 1.8x, by
transferring the address calculation tasks to hardware, that
would otherwise be run by software.

Gather is less effective, as the added instructions for index
calculations outweigh the vectorization benefits, resulting in a
negligible average speedup of less than 1%. The inclusion of
instructions for index calculation (i.e., |¢ x orient| for differ-
ent lanes) leads to an increase in the total number of dynamic
instructions executed. This surpasses the baseline instruction
count, offsetting the advantages of vectorization by increasing
the processor’s workload. RACOD outperforms both due to
eliminating CPU back-and-forths; it fetches addresses and only
interacts with CPU for final outcomes. However, RACOD
requires integrating two separate ASIC units for ray-casting
and collision detection. In contrast, OVEC achieves 89%/82%

557

of RACOD’s benefits in ray-casting/collision detection, with
minimal overheads (§VIII-E).

Finally, Intel has fabricated a 10nm ray-casting accelera-
tor [112], which performs in-hardware trilinear interpolation,
a component of some ray-casting algorithms [137]. This
accelerator also includes specialized local voxel storage (LVS)
to exploit the locality of nearby 3D voxels during ray-casting.
However, it lacks any mechanism for vectorizing memory
accesses, a feature central to OVEC. Consequently, Intel’s
accelerator is fully orthogonal to our proposal.

To evaluate the effectiveness of this accelerator, we add in-
terpolation into the ray-casting implementation from RoWild.
Note that interpolation is not a component of every ray-
casting implementation; it is used when a very high level
of accuracy is needed. This modification introduces a new
bottleneck in ray-casting, which is what Intel’s accelerator
addresses. Given that the specific details of Intel’s accel-
erator are not available to us, we simulate an optimistic
implementation, assuming zero-cycle latency for interpola-
tion operations. Furthermore, we assume an unlimited LVS,
where memory references incur cache latency only once
before the data are stored in the LVS. Fig. 7 shows the
impact on ray-casting time, comparing Baseline (with inter-
polation), OVEC, Intel, and the combination of the latter two.

The speedup from OVEC de-

creases from 1.64x to 1.36x due ¢ "0
to increased time in what it does '; 0.5
not target, i.e., interpolation. In- & 00

B 0 | O+
Fig. 7: Ray-casting time with
different techniques.

tel’s accelerator, by speeding up
interpolation and reducing mem-
ory references, achieves a 1.92x
speedup. When OVEC is combined with Intel’s accelerator, a
cumulative speedup of 2.56x over the baseline and 1.33x
over Intel’s accelerator alone is observed, reinforcing their
orthogonal functionality.

B. Tartan Significantly Accelerates Approximable Robotics

Table II details the functions we select for approximate
acceleration and their neural network replacements. Note that
these functions do not represent the entire spectrum of ap-
proximable tasks in robotics. There exist additional tasks (e.g.,
controlling velocity and acceleration) where exact computation
is not strictly necessary. However, for neural acceleration to be
beneficial, the tasks must meet two key criteria: (i) they should
be learnable by an efficient neural network, and (ii) they must
be computationally intensive enough to justify the CPU-NPU
communication overheads (see below).

TABLE II: The neural network workloads evaluated.

Type Robot Function Topology Error
AXAR FlyBot Heuristic Cost 6/16/16/1 0%
TRAP HomeBot T Prediction 192/32/32/6 6.8%
Native PatrolBot Classification 50/1024/512/1 1.3%

As discussed in §V-F, for FlyBot, we replace the costly
heuristic function with a neural model. The model features

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

a topology of 6/16/16/1, which means the network takes 6
inputs (z, y, z coordinates of start and goal), produces 1 output
(estimated cost), and has two hidden layers with 16 neurons
each. For training, we use a portion of the Freiburg map [21],
distinct from FlyBot’s operational area [81], and measure the
error by the increased size of the final path. We use the custom
loss function described in §V-F.

HomeBot employs a neural model for predicting trans-
formations, contrasting baseline’s ICP algorithm [81]. The
model’s training [107] and test [141] data are separate. The
error is the geometric mean of rotation and translation errors.
The loss function is MSE [116].

PatrolBot’s object detection uses a convolutional neural
network (CNN), but for the NPU, a multi-layer perceptron
(MLP) accelerator is used. Despite MLP’s limitations in image
classification due to input data flattening, their broad learning
spectrum led to their choice for NPU, aiming for a general-
purpose approximate-accelerator for various robotic tasks. To
showcase NPU’s effectiveness, PatrolBot’s object detection
task is implemented with an MLP. We employ principal
component analysis (PCA) [113] with & = 50 components
for dimensionality reduction, training the model with the
same dataset as the original CNN [15]. The loss function is
BCE [116]. This MLP model on NPU proves to be sufficiently
accurate and offers reduced execution time. compared to the
original CNN running on the CPU.

As detailed in §V-C, Tartan integrates NPU directly into
the CPU’s pipeline, ensuring close interaction. An alterna-
tive design involves treating NPU as a distinct co-processor,
similar to Tesla’s FSD chip [22], where two independent
neural processing units operate outside the CPU die. In such
a setup, every time CPU invokes NPU, it needs to manage
communication by sending messages off-die, launching the
NPU’s kernel, and collecting the results upon completion.

Fig. 8 compares execution times and dynamic instruction
counts across methods, normalized to the Baseline processor.
Results are shown only for robots affected by NPU. We
evaluate Hardware-accelerated and Software-executed neural
models, with the former running on a 4-PE NPU and the
latter implemented using [67] on the baseline processor. In
software-executed neural models, the target function is re-
placed with a neural network executed on software. We assume
a CPU-NPU communication latency of 4 clock cycles and
8 clock cycles for MAC operations. We also evaluate NPU
configured as a Co-processor. Optimistically, we project the
CPU-NPU communication delay to be 104 cycles, drawing
from insights into FSD’s architecture [22]. Also, we assume
zero-cycle inference latency for this arrangement, considering
that standalone, off-die NPUs might achieve more aggressive
performance compared to those integrated within the CPU.

The results indicate substantial target function speedups
with hardware-accelerated neural executions for PatrolBot,
HomeBot, and FlyBot (3.85x, 1.52x, and 2.7x, respectively,
communication time included). These speedups are achieved
while maintaining acceptable accuracy, as shown in Table II.
On the other hand, software-executed neural models suffer

558

. . 3.2 107
‘g 1-5‘ @ Target Func. @ Communication DOther' 15/71. 2 o 2.0 g
IS , =
G610 — —= 53
g 1.0 E
g 03 05 g
200 002

HomeBot

PatrolBot

FlyBot
Fig. 8: Neural acceleration of robotics. ‘Target Func.” refers to the function designated
for neural acceleration. ‘Communication’ denotes the time spent in CPU-NPU
communications. ‘Other’ signifies the execution time of the remaining program
components, i.e., those not selected for neural acceleration.

from significant slowdowns due to increased dynamic in-
struction counts over the original code, software-based MAC
operations that require calculating neuron weight addresses
and loading them, and overhead from library function calls.
Utilizing large NPUs as co-processors, akin to Tesla’s FSD,
proves highly advantageous for “native” neural network tasks
like object detection in PatrolBot, where infrequent CPU-NPU
interactions (milliseconds-scale) suffice. However, in scenarios
like the approximate computations in HomeBot and FlyBot,
where only segments of the code execute on the NPU and
results must be frequently relayed back to the CPU, the
benefits are negated by the high CPU-NPU communication
overhead in a co-processor architecture, leading to significant
performance degradation. This aligns with findings from the
original NPU study [99], emphasizing that CPU-NPU com-
munication latency should be minimal (e.g., 1-4 cycles) to
achieve meaningful performance gains. Contrary to FSD’s
approach, Tartan necessitates integrating NPU directly into the
CPU pipeline to effectively harness approximate acceleration.
Table III explores how varying the number of PEs

affects speedup. More PEs allow for increased paral-
lelism of operations, leading to further speed improvements.
Given these
outcomes, we TABLE III: Different NPU configurations.
select a 4- p— GVican Speedun Area L]
. S €mor ean eedu rea m

PE design for y peectip "
th Tartan’ 2 10.5KB 1.25x% 920

€ artan's 4 I8.8KB 1.58x 1661
NPU. Although 8 353KB 1.68x 3144

increasing PEs to
8 enhances speedup, the primary benefit accrues to PatrolBot,
with minimal gains for other robots.

A 4-PE NPU utilizes 18.8KB of SRAM, with 16.5KB
dedicated to PEs and 2.3KB for their interconnect [99]. Most
of the per-PE area is allocated for storing weights (2KB) and
the Sigmoid LUT (512x32 bits), while a smaller portion is
used for input/output buffers (64B). The interconnect com-
prises a bus scheduler (1.25KB), input/output buffers (1KB),
and a configuration FIFO (32B), as illustrated in Fig. 3. The
logic area, required for a 32-bit MAC per PE, occupies an
insubstantial part of the silicon area (§VIII-E).

Finally, integrating the NPU into every core is not necessary.
In this paper, we consider its integration into just one core.
This approach is similar to heterogeneous core architectures in
processors such as CELL-BE [90] and ARM Big.LITTLE [5],
where cores possess varying capabilities. The NPU is incor-

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

porated into a select core, with the runtime or programmer
directing tasks for NPU execution to that specific cores.

C. Tartan Accelerates Nearest Neighbor Search and Beyond

1) Hardware/Software Nearest Neighbor Search

We evaluate Tartan’s techniques for NNS in MoveBot and
HomeBot, both heavily reliant on NNS. Fig. 9 shows execution
time and L2 misses for various methods. We evaluate Brute-
force, VLN, FLANN, and K-d tree, with methods marked with
a ‘+” using ANL in hardware. Results are normalized against
brute-force search without ANL.

é - [T oNNS 0 Other 20 %
oo 2R iR FETARE o °
] H ° o] ~
s S0 X N 5 = = 5 5 U = P P P Y
IS B|B+|V V+|F|F+|K|K+ B|B+|V|V+|F|F+|K|K+ g
‘;’ MoveBot HomeBot 2

Fig. 9: NNS with different approaches.

The brute-force search, serving as the baseline [81], iterates
over all points to identify those close to the query point.
Our VLN employs LSH and vectorization for NNS (§VI-C).
FLANN [20] also uses LSH, but without aggressive vector-
ization. We tune the bucket sizes (w) for each method to
ensure robotic operation accuracy within 1% of the brute-force
method (§VI-A). The k-d tree method uses [36].

Our results show that VLN, our software-only technique, not
only surpasses brute-force and k-d tree but also significantly
outperforms FLANN. The NNS performance gains of VLN
over brute-force, FLANN, and k-d tree are 5.29x, 1.7x,
and 2.43x, respectively. The NNS speedup of VLN with
ANL enabled over brute-force rises to 9.37x. The brute-force
approach is exhaustive, searching all nodes, while k-d tree,
though an improvement, suffers from costly cache misses. Its
misses are often dependent, causing full stalls [109].

The advantage of VLN over FLANN lies in its effective use
of processor vectorization capabilities. Compilers like GCC,
Clang, and ICC currently struggle to efficiently vectorize LSH-
based NNS computation patterns, as seen in FLANN, due to
conditional branches in each iteration (§VI-B) [75].

2) Adaptive Next-Line Prefetcher

Fig.10 evaluates ANL across all six robots. For context,
we also examine Next-Line and Bingo [84]. NL is not adap-
tive and serves to evaluate the significance of adaptiveness.
Bingo, a state-of-the-art spatial prefetcher, like ANL learns per-
page history, albeit with a different algorithm and structure.
‘Coverage’ is the fraction of L2 cache misses covered by the
prefetcher, and ‘Accuracy’ is the fraction of prefetch requests
used by the application.

ANL offers high coverage and accuracy across all work-
loads, showing its versatility in robotics. It effectively han-
dles the sparse-dense environmental heterogeneity in robots,
prefetching memory requests efficiently (§VI-D). In contrast,
Next-Line fails to provide high miss coverage due to the
untimeliness of its requests (one prefetch per invoke).

559

Norm. Exec. Time
Coverage/Accuracy

Fig. 10: Different prefetching approaches.

Although Bingo shows higher performance due to its so-
phisticated pattern learning capabilities, it incurs a significant
per-core area overhead of over 100KB for history pattern stor-
age. Conversely, ANL matches 85% of Bingo’s performance
improvement on average with 1000x less area overhead.

In some robots like PatrolBot, prefetchers’ high miss cov-
erage does not lead to significant end-to-end speedups. This
is typical in compute-bound robots [81], where the absolute
number of cache misses is low, rendering even a high coverage
of these misses insufficient for substantial performance gains.

Finally, ANL’s metadata table tracks 16 entries, with each
entry comprising 12 low-order bits from the program counter
plus 38 bits from region addresses for tagging, and 10 bits per
entry for recording the current and last degrees. This results in
a 120B per core overhead. Also, the logic for implementing the
table’s replacement policy incurs minimal overhead, requiring
only a few integer comparators (§VIII-E).

D. Tartan Effectively Mitigates Inter-Path Cache Contention

Fig. 11 assesses FFCP across various manipulation functions
and R — [configurations, where R is the region size and [is
the number of bits used for XOR (see §VII-B). The results
are normalized to a baseline without FCP. The L2 cache is
8-way set-associative in the evaluated processor.

g2 Im(x) Ox+1 0O2x szy
E

- 1.00

%

@ 0.75

£

S 0.50

=z

CarriBot

Fig. 11: FCP with different parameters. x + 1, 2z, and 22 are different manipulation
functions (m(z)) applied to the replacement counters with FCP (§VII-B).

The evaluation shows differing behaviors based on the
chosen parameters. For example, [= 3 is effective in graph-
search-intensive robots like MoveBot but incurs slowdowns
in certain scenarios where the underlying assumptions do not
apply. We select [= 2 bits, setting the region size to 1KB.

More, results shows the critical role of the manipulation
function, m(x). As expected, m(x) 2 enhances perfor-

x
mance by creating more distinct eviction priorities, as dis-
cussed in §VII-B. The function m(z) = 2z also demonstrates
competitive performance, trailing 22 by only 2.9%. We opt for
m(x) = 2% in FCP due to its superior performance. Notably,
the full 22 logic need not be implemented in hardware; given
the known input range, a small lookup table can efficiently

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

realize this function. FCP achieves up to 8% in performance
improvement and a 18% reduction in L2 misses.

Some applications exhibit only modest gains, mainly be-
cause most L2 misses are serviced by the larger SMB L3
cache, whose latency is somewhat tolerable by the employed
aggressive 00O cores. Our analysis indicates that FCP is not
warranted for L3 in our workloads. However, its general-
purpose nature suggests potential for more significant im-
provements in other scenarios. For instance, in less aggressive
robotic CPUs [43], private cache misses are less tolerable,
or in other graph-intensive applications with high L3 miss
rates [85], implementing FCP for L3 is more justifiable.

E. Putting It Altogether

So far, we evaluated components individually on modified
software. It is crucial that the components operate in harmo-
nious synergy. Fig. 12 shows the end-to-end speedup of Tartan
with all components enabled over the baseline processor.

- 5.0 mBaseline mTartan
gg 4o
=8 3.0
£ g 20
§ “ 1.0

0.0

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot GMean
Fig. 12: Tartan’s end-to-end performance. The variations in the results is primarily
attributed to the applications’ extensive use of random number generation.

The results confirm the seamless integration of Tartan’s
components, preserving their individual performance benefits.
An exception is noted in the combination of NPU and ANL
with the optimized software. Here, the integration of NPU
leads to substituting the 7" estimation in the ICP algorithm
with a neural approach, thereby removing the NNS operations
necessary in the baseline algorithm from the approximate
version. This change results in a diminished impact of ANL,
as the opportunities for speedup are reduced.

Fig. 12 shows the results for approximable, optimized-
for-Tartan software. The results show that Tartan achieves
an average speedup of 2.11x across all workloads. Tartan
achieves this speedup by providing architectural supports for
accelerating the key bottlenecks in robots (see §1II-B).

When approximation is not allowed, Tartan offers a speedup
of 1.61x. The reduction in speedup comes from not utilizing
NPU. Also, Tartan enhances the performance of legacy soft-
ware (i.e., not optimized for Tartan) by 1.2x. The hardware-
only techniques, ANL and FCP, contribute to performance
improvements for both legacy and optimized software.

Finally, Table IV shows
the estimated overheads for
each component, using data

TABLE IV: Overhead breakdown.

Component Memory Area [1m?]

from [78], [154]. Assum-
. . . 4 x OVEC — 258
ing a mobile die area of | % NPU 18.8KB 1661
133mm? in 14nm [31], the 2X ?é\% 418201;3 310
X
overall overhead for Tartan
Total 19.3KB 1949

is merely 0.001%.
The overhead in OVEC
arises from the logic used for address generation. For NPU, the

560

overhead is attributed to its PEs and their interconnections. The
main source of overhead in ANL is its metadata table. Finally,
the overhead of FCP mainly stems from its 8-entry lookup
table per L2 cache, which facilitates the implementation of
the manipulation function.

IX. OTHER RELATED WORKS

Tartan belongs to the category of Domain-Specific Pro-
cessors—processors whose architectures are specifically op-
timized for certain types of workloads. Notable examples
include ARM’s Neoverse [136] and Cavium’s ThunderX [66]
for cloud computing; D. E. Shaw’s Anton [150] for molecular
dynamics simulation; Oracle’s SPARC M8 [61] for databases;
Cisco’s Silicon One [14] and Marvell’s ARMADA [6] for net-
working; Bitmain Antminer [10] for cryptocurrency mining;
and, SandForce’s SF [59] for SSD management. Each of these
processors is tailored to excel in their respective domains.

Robotic developer kits, such as Arduino [4], Rasp-
berry Pi [54], and others [9], [18], [37], [42], [55], [70],
are designed to provide a user-friendly platform for robotics
development. These kits are furnished with integrated pe-
ripherals, enabling interaction with a wide array of sensors
and actuators. However, unlike Tartan, which offers robot-
specific microarchitectural optimizations, these kits come with
general-purpose processors, such as the ARM Cortex series.

Custom hardware accelerators are developed to optimize
different robotic tasks. Qualcomm’s QCS610 SoC [49] fea-
tures dedicated SLAM hardware, a key robotic function. Texas
Instruments’ DRV8305 [16] includes hardware support for
motion control, and Bosch’s BMIO85 [11] offers hardware-
accelerated robotic sensory data fusion. The scholarly realm
also sees a surge in related proposals [80], [89], [101], [122],
[129], [143], [149] and artifacts [91], [92], [111], [112],
[120]. These accelerators optimize specific operations, and
their application range remains narrow. In contrast, Tartan is
optimized for a broad spectrum of robotic workloads. More-
over, Tartan introduces methods to overcome the “memory
wall,” an issue often overlooked by hardware accelerators.

X. CONCLUSION

This paper introduces Tartan, a CPU architecture specifi-
cally designed for robotics. Tartan aims to rectify the limita-
tions of current processors by integrating targeted architectural
advancements for more efficient robotic task execution. While
currently focusing on performance enhancement, future itera-
tions of Tartan could extend its capabilities, improving aspects
like cyber-security, user privacy, and error resilience, thereby
advancing the development of real-time robotic systems.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation grant CNS-2211882 and by the Parallel Data Lab
(PDL) Consortium (Amazon, Google, Hitachi, Honda, IBM,
Intel, Jane Street, Meta, Microsoft, Oracle, Pure Storage,
Salesforce, Samsung, Two Sigma, and Western Digital). Mo-
hammad Bakhshalipour was supported by the James Sprague
Presidential Fellowship from Carnegie Mellon University.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

APPENDIX

A. Abstract

This artifact comprises the implementation of all software
and hardware components of Tartan, as well as scripts for
replicating the final, end-to-end performance results (Fig. 12).
The software components within Tartan utilize x86 assembly
instructions, built upon the RoWild [81] benchmark suite’s six
end-to-end robotic applications. On the hardware side, Tartan’s
components are implemented in the ZSim [146] simulator.
This artifact is designed to facilitate the reproduction of our
results derived from hardware-software co-design, and to share
our implementations of various hardware and software com-
ponents with the research community for further exploration.

Two methods are provided for reproducing the results:
(i) Native Execution (NE) and (ii) Docker Execution (DE). NE
involves installing all necessary packages on the host machine
and running the experiments natively, which is considerably
faster than DE, where the experiments are run inside a Docker
container. Both methods produce equivalent results.

B. Artifact check-list (meta-information)

o Program: End-to-end robotic applications implemented in C++
and augmented by x86 assembly instructions for simulation
purposes. Plus the hardware processor model implemented in
the ZSim simulator.

o Compilation: GCC 11.1.0 or above.

« Data set: The environments for robots to function, all prepared
using the supplied scripts.

o Metrics: End-to-end speedup.

o Output: Plot with end-to-end speedup data.

« Experiments: Generate experiments using supplied scripts.

« How much disk space required (approximately)?: 5GB.

« How much time is needed to prepare workflow (approxi-
mately)?: Less than an hour.

« How much time is needed to complete experiments (approx-
imately)?: 2 hours for NE or 6 hours for DE.

« Publicly available?: Yes.

o Code licenses (if publicly available)?: MIT License.

o Archived (provide DOI)?: 10.5281/zenodo.10981770

C. Description

1) How to access

The artifact can be from GitHub at
https://github.com/cmu-roboarch/tartan.git
or downloaded as a .zip file from
https://zenodo.org/doi/10.5281/zenodo.10981770.

2) Hardware dependencies

The artifact runs on any general-purpose CPU with at least
5 GB of free disk space. For optimal performance, a machine
with 16 or more cores is recommended.

cloned

3) Software dependencies

For NE, dependencies include OpenCV, Intel PIN, and
various Linux and Python packages, installed via the provided
setup. sh script, assuming a Debian-based OS.

For DE, all necessary software packages are pre-installed in
the Docker image.

4) Data sets

Utilizes the RoWild [81] benchmark suite data sets for
robotic modeling, with preparation handled by included
scripts.

D. Installation

1) Native Execution
To install, clone the repository and run the setup script:

$ git clone https://github.com/cmu-roboarch/tartan.
— git

$./setup.sh

$ source ${HOME}/.bashrc

2) Docker Execution
For Docker installation and setup:

$ apt-get install docker.io
$ systemctl start docker
$ service docker status

E. Experiment workflow

1) Native Execution
Run the replicate.py script to execute all experiments:

$./replicate.py

2) Docker Execution
Set up a results directory and run the Docker container:

$ mkdir -p results

$ docker run --net=host -it --privileged --name
— my_interactive_tartan -v "$ (pwd) /results:/
< tartan/results" kasraa/tartan:latest

F. Evaluation and expected results

In both NE and DE, execution of the scripts will generate a
results/ directory containing a .csv file and a .png file
depicting the performance results.

REFERENCES

[1] “3 New Chips to Help Robots Find Their Way Around,” https://
spectrum.ieee.org/3-new- chips-to-help-robots-find- their-way-around.

[2] “ABB IRB 1200,” https://new.abb.com/products/robotics.

[3] “An Unprecedented Edge Al and Robotics Platform,”
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/.

[4] “Arduino Robot Kit,” https://www.arduino.cc.

[5]1 “ARM Big.LITTLE Architecture,” https://www.arm.com/technologies/
big-little.

[6] “ARMADA - Marvell,” https://en.wikichip.org/wiki/marvell/armada.

[7] “AscTec Pelican,” https://www.aeroexpo.online/prod/ascending-
technologies/product-181442-24426.html.

[8] “ASIMO Specifications,” https://asimo.honda.com/asimo-specs/.

[9] “BeagleBone Blue,” https://www.beagleboard.org/boards/beaglebone-
blue.

[10] “Bitmain Antminer S19 Pro,” https://www.asicminervalue.com/miners/
bitmain/antminer-s19-pro-110th.

[11] “Bosch BMIO85 IMU,” https://www.bosch-sensortec.com/products/
motion-sensors/imus/bmi085/.

[12] “Boston Dynamics’ Spot Robot,” https://www.bostondynamics.com/
products/spot.

[13] “Boxbot Launches Last-Mile, Self-Driving Parcel Delivery System,”
https://www.roboticsbusinessreview.com/supply-chain/boxbot-
launches-last-mile-self-driving-parcel-delivery-system/.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

[14]

[15]
[16

[17]

[18]
[19]

[20]

21

[22]
[23]

[24]

[25]

[26]

[27]

[28

[29]

[30

[31]

132

[33]
[34]

135

[36]
[37]

138
[39

[40
[41]

[42]
[43]

[44
[45

[46
[47]

[48

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

“Cisco Silicon One Q100 and QIOOL Processors Data
Sheet,” https://www.cisco.com/c/en/us/solutions/collateral/silicon-
one/datasheet-c78-744214.html.

“COCO Dataset,” https://cocodataset.org/#explore.

“DRV8305 Three Phase Motor Driver,” https://www.ti.com/product/
DRV8305.

“Dual-Arm YuMi - IRB 14000,” https://new.abb.com/products/robotics/
robots/collaborative-robots/yumi/dual-arm.

“EZ-Robot Developer Kit,” https://www.ez-robot.com.

“FANUC Robotics Products,” https://www.fanucamerica.com/products/
robots/.

“FLANN - Fast Library for Approximate Nearest Neighbors,” https:
/Igithub.com/flann-lib/flann.

“Freiburg Campus 360 Degree 3D Scans,” http://ais.informatik.uni-
freiburg.de/projects/datasets/fr360/.

“FSD Chip - Tesla,” https://en.wikichip.org/wiki/tesla_(car_company)
/fsd_chip.

“Https: /Iwww.techpowerup.com/gpu-Specs/quadro-1000m.c1431,”
NVIDIAQuadro1000M.

“Intel 64 and IA-32 Architectures Software Developer Manuals,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html.

“Intel Celeron Processor 847, https://ark.intel.com/content/www/us/
en/ark/products/56056/intel-celeron-processor-847-2m-cache- 1-10-
ghz.html.

“Intel Core 17-10610U Processor,” https://www.intel.com/content/
www/us/en/products/sku/201896/intel-core-1710610u-processor-8m-
cache-up-to-4-90-ghz/specifications.html.

“Intel Core 19-12900 Processor,” https://www.intel.com/content/www/
us/en/products/sku/134597/intel-core-i912900- processor-30m-cache-
up-to-5- 10-ghz/specifications.html.

“Intel NUC 12 Extreme / Pro X, https://www.intel.com/content/
dam/support/us/en/documents/intel-nuc/NUC12DCM_NUCI12EDB_
TechProdSpec.pdf.

“Intel NUC Board DCP847SKE,” https://ark.intel.com/content/www/
us/en/ark/products/71620/intel-nuc-board-dcp847ske.html.

“Intel NUCI10i5 (Fully Configured),” https://roverrobotics.com/
products/intel-nuc.

“Intel’s Broadwell-U Arrives Aboard 15W, 28W Mobile Processors,”
https://techreport.com/news/intels-broadwell-u-arrives-aboard- 15w-
28w-mobile-processors/.

“Introduction to Cache Allocation Technology in the Intel Xeon
Processor E5 V4 Family,” https://www.intel.com/content/www/
us/en/developer/articles/technical/introduction-to-cache-allocation-
technology.html.

“Jetson Nano Developer Kit,” https://developer.nvidia.com/embedded/
jetson-nano-developer-kit.

“Jetson Orin Technical Specifications,” https://www.nvidia.com/en-us/
autonomous-machines/embedded- systems/jetson-orin/.

“Jetson TX1 Module,” https://developer.nvidia.com/embedded/jetson-
tx1.

“KDTree,” https://github.com/crvs/KDTree.git.

“LEGO Mindstorms EV3,” https://www.lego.com/en-us/themes/
mindstorms.

“LoCoBot,” https://www.trossenrobotics.com/locobot-base.aspx.
“Modern Hardware Platforms Used in Robotics,” https://evergreen.
team/articles/how-to- create-robots.html.

“Movelt,” https://moveit.ros.org.

“NASA Humanoid Robot to Be Tested As Remote Oil Rig Attendant,”
https://www.theregister.com/2023/07/10/nasa_to_test_humanoid_robot.
“NVIDIA Jetson Nano,” https://www.nvidia.com/en-us/autonomous-
machines/embedded- systems/jetson-nano/.

“NVIDIA Jetson Nano System-On-Module,” https://developer.nvidia.
com/downloads/embedded/dlc/jetson-nano-system-module-datasheet.
“NVIDIA TensorRT,” https://developer.nvidia.com/tensorrt.

“OpenCV: Open Source Computer Vision,” https://docs.opencv.org/4.
x/index.html.

“PicoGo,” https://www.waveshare.com/wiki/PicoGo.

“Pioneer 3-DX.” https://www.generationrobots.com/media/
Pioneer3DX-P3DX-RevA.pdf.

“Powered by Intel Technology, Robot Helps Retail Customers
Find the Right Computer,” https://www.intel.com/content/
www/us/en/newsroom/news/with-intel-tech-robot- assists-retail-
customers.html#gs.5h69r1.

562

[49]

[50]

[51]

[52
[53]

[54]
[55

[56]

[57]

[58]
[59]
[60]
[61]

[62]
[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]
[74]
[75]
[76]

[77]

[78]

[79]

[80]

“Qualcomm QCS610/615,” https://www.qualcomm.com/products/
technology/processors/application-processors/qcs610.

“Qualcomm QRB5165 SoC for IoT,” https://www.qualcomm.com/
content/dam/qcomm- martech/dm-assets/documents/qrb5165-soc-
product-brief_87-28730- 1-b.pdf.

“Qualcomm Robotics RB3 Platform (SDA/SDM845),”
https://www.qualcomm.com/content/dam/qcomm-martech/dm-
assets/documents/robotics-rb3-platform-product-brief.pdf.

“Raspberry Pi 1,” https://www.pololu.com/product/2760.

“Raspberry Pi 5, https://www.raspberrypi.com/products/raspberry-pi-
5/.

“Raspberry Pi Robot Kit,” https://www.raspberrypi.org.

“Robotis Bioloid Kit,” https://www.worthpoint.com/worthopedia/
robotis-programmable-humanoid-bioloid-468854112.
“Robots and International Economic Development,” https:

/fitif org/publications/2021/01/25/robots-and-international-economic-
development/.

“Roomba 17+ Self-Emptying Robot Vacuum,” https://www.irobot.
com/en_US/roomba-vacuuming/robot- vacuum-irobot-roomba-i7-
plus/1755020.html.

“ROS - Robot Operating System,” https://www.ros.org/.

“SandForce SF2600 and SF2500 Enterprise,” https://www.seagate.com/
www-content/product-content/lsi-fam/enterprise- flash-controller/en-
us/docs/enterprise- fsp-sf-2500-ds1828- 1-1409us.pdf.

“SCARA Robot,” http://www.innovativerobotics.com/Downloads/
SCARA%20robot%20vs%20r-theta.pdf.

“SPARC M8 Processor,” https://www.oracle.com/us/products/servers-
storage/sparc-m8- processor-ds-3864282.pdf.

“The Open Motion Planning Library,” http://ompl.kavrakilab.org/.
“The Rise of Robots in Defence,” https://www.rowse.co.uk/blog/post/
the-rise-of-robots-in-defence.

“The (robotic) Doctor Will See You Now,” https://www.weforum.org/
agenda/2021/03/why-robots-can-be-beneficial-in-healthcare/.

“The Role of Robotics in Agriculture,” https://www.challenge.org/
knowledgeitems/the-role-of-robotics-in-agriculture/.

“ThunderX2 - Cavium,” https://en.wikichip.org/wiki/cavium/
thunderx2.

“Tiny-Dnn: Header Only, Dependency-Free Deep Learning Framework
in C++14,” https://tiny-dnn.readthedocs.io/en/latest/.

“TurtleBot3,” https://emanual.robotis.com/docs/en/platform/turtlebot3/
overview/.

“UArm Swift & UArm Swift Pro Specifications,” http://download.
ufactory.cc/docs/en/uArm- Swift- Specifications- 171012.pdf.

“VEX Robotics Kit,” https://www.vexrobotics.com.
“VGATHERDPS/VGATHERDPD - Gather Packed Single, Packed
Double with Signed Dword Indices,” https://www.felixcloutier.com/
x86/vgatherdps:vgatherdpd.

“Yaskawa: Intel FPGA in Robot Controllers,” https://www.intel.
com/content/www/us/en/customer-spotlight/stories/yaskawa-customer-
story.html.

“LoCoBot: An Open Source Low Cost Robot,” http://www.locobot.
org/, 2012.

“How Robots Change the World,” https://resources.oxfordeconomics.
com/how-robots-change-the-world/, 2019.

“C++ Vector Class Library Version 2,” https://www.agner.org/optimize/
vel_manual.pdf, 2022.

“How Does Google Map Works?” https://www.geeksforgeeks.org/how-
does-google-map-works/, 2022.

M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource Allocation and Service Provisioning in Multi-Agent Cloud
Robotics: A Comprehensive Survey,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 842-870, 2021.

M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal,
S. Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/s-
parse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Dat-
apath in 14nm Tri-Gate CMOS,” in 2018 IEEE Symposium on VLSI
Circuits. 1EEE, 2018, pp. 39-40.

F. André, A.-M. Kermarrec, and N. Le Scouarnec, “Accelerated Nearest
Neighbor Search with Quick Adc,” in International Conference on
Multimedia Retrieval (ICMR), 2017, pp. 159-166.

M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhacheyv,
and P. B. Gibbons, “RACOD: Algorithm/Hardware Co-Design
for Mobile Robot Path Planning,” in International Symposium

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

(971

in Computer Architecture (ISCA). 1EEE/ACM, 2022.
Available: https://doi.org/10.1145/3470496.3527383

M. Bakhshalipour and P. B. Gibbons, “Agents of Autonomy: A
Systematic Study of Robotics on Modern Hardware,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems
(POMACS), vol. 7, no. 3, dec 2023, https://cmu-roboarch.github.io/
rowild. [Online]. Available: https://doi.org/10.1145/3626774

M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “RTRBench:
A Benchmark Suite for Real-Time Robotics,” in IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2022, https://cmu-roboarch.github.io/rtrbench/. [Online].
Available: https://doi.org/10.1109/ISPASS55109.2022.00024

M. Bakhshalipour, M. Qadri, D. Guri, S. B. Ehsani, M. Likhachev, and
P. Gibbons, “Runahead A*: Speculative Parallelism for A* with Slow
Expansions,” in International Conference on Automated Planning and
Scheduling (ICAPS), 2023.

M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo Spatial Data Prefetcher,” in International Symposium on
High-Performance Computer Architecture (HPCA). 1EEE, 2019, pp.
399-411.

S. Beamer, K. Asanovi¢, and D. Patterson, “The GAP Benchmark
Suite,” arXiv:1508.03619v4, 2017.

B. Boroujerdian, H. Genc, S. Krishnan, B. P. Duisterhof, B. Plancher,
K. Mansoorshahi, M. Almeida, W. Cui, A. Faust, and V. J. Reddi,
“The Role of Compute in Autonomous Micro Aerial Vehicles:
Optimizing for Mission Time and Energy Efficiency,” ACM Trans.
Comput. Syst., vol. 39, no. 1-4, jul 2022. [Online]. Available:
https://doi.org/10.1145/3511210

R. Canal, C. Hernandez, R. Tornero, A. Cilardo, G. Massari, F. Reghen-
zani, W. Fornaciari, M. Zapater, D. Atienza, A. Oleksiak et al.,
“Predictive Reliability and Fault Management in Exascale Systems:
State of the Art and Perspectives,” ACM Computing Surveys (CSUR),
vol. 53, no. 5, pp. 1-32, 2020.

L. Cayton, “Accelerating Nearest Neighbor Search on Manycore Sys-
tems,” in International Parallel and Distributed Processing Symposium
(IPDPS). 1EEE, 2012, pp. 402-413.

F. Chen, R. Ying, J. Xue, F. Wen, and P. Liu, “ParalleINN: A Paral-
lel Octree-Based Nearest Neighbor Search Accelerator for 3D Point
Clouds,” in International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2023, pp. 403-414.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell Broadband
Engine Architecture and Its First Implementation—a Performance
View,” IBM Journal of Research and Development, vol. 51, no. 5,
pp. 559-572, 2007.

C. Chung and C.-H. Yang, “A Distributed Autonomous and
Collaborative Multi-Robot System Featuring a Low-Power Robot
SoC in 22nm CMOS for Integrated Battery-Powered Minibots,” in
International Solid-State Circuits Conference (ISSCC). 1EEE, 2019,
pp. 48-50. [Online]. Available: https://doi.org/10.1109/ISSCC.2019.
8662463

C. Chung and C.-H. Yang, “A 1.5-pJ/Task Path-Planning Processor
for 2-D/3-D Autonomous Navigation of Microrobots,” IEEE Journal
of Solid-State Circuits (JSSC), vol. 56, no. 1, pp. 112-122, 2020.
[Online]. Available: https://doi.org/10.1109/JSSC.2020.3037138

S. Darabi, N. Mahani, H. Baxishi, E. Yousefzadeh-Asl-Miandoab,
M. Sadrosadati, and H. Sarbazi-Azad, “NURA: A Framework for
Supporting Non-Uniform Resource Accesses in GPUSs,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 6,
no. 1, pp. 1-27, 2022.

S. Darabi, M. Sadrosadati, N. Akbarzadeh, J. Lindegger, M. Hosseini,
J. Park, J. Gémez-Luna, O. Mutlu, and H. Sarbazi-Azad, “Morpheus:
Extending the Last Level Cache Capacity in GPU Systems Using
Idle GPU Core Resources,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2022, pp. 228—
244.

S. Darabi, E. Yousefzadeh-Asl-Miandoab, N. Akbarzadeh, H. Falahati,
P. Lotfi-Kamran, M. Sadrosadati, and H. Sarbazi-Azad, “OSM: Off-
Chip Shared Memory for GPUS,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 3415-3429, 2022.

J. M. Domingos, N. Neves, N. Roma, and P. Tomds, “Unlimited Vector
Extension with Data Streaming Support,” in International Symposium
in Computer Architecture (ISCA). 1EEE, 2021, pp. 209-222.

P. H. E. Becker, J.-M. Arnau, and A. Gonzdilez, “KD Bonsai: ISA-
Extensions to Compress KD Trees for Autonomous Driving Tasks,” in

[Online].

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

563

International Symposium in Computer Architecture (ISCA), 2023, pp.
1-13.

N. El-Sayed, A. Mukkara, P-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A Hybrid Cache Partitioning-Sharing Technique
for Commodity Multicores,” in International Symposium on High-
Performance Computer Architecture (HPCA), February 2018.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Accel-
eration for General-Purpose Approximate Programs,” in International
Symposium on Microarchitecture (MICRO). 1EEE, 2012, pp. 449-460.
F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-Time Motion Planning of Legged Robots: A Model Predictive
Control Approach,” in [EEE-RAS International Conference on
Humanoid Robotics (Humanoids). 1EEE, 2017, pp. 577-584. [Online].
Available: https://doi.org/10.1109/HUMANOIDS.2017.8246930

Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi:
Architecture Support for Point Cloud Analytics Via Delayed-
Aggregation,” in International Symposium on Microarchitecture
(MICRO). 1IEEE, 2020, pp. 1037-1050. [Online]. Available: https:
//doi.org/10.1109/MICR0O50266.2020.00087

W. Fornaciari, G. Agosta, D. Atienza, C. Brandolese, L. Cammoun,
L. Cremona, A. Cilardo, A. Farres, J. Flich, C. Hernandez et al.,
“Reliable Power and Time-Constraints-Aware Predictive Management
of Heterogeneous Exascale Systems,” in International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simula-
tion, 2018, pp. 187-194.

C. S. Gadde, M. S. Gadde, N. Mohanty, and S. Sundaram, “Fast Ob-
stacle Avoidance Motion in Small Quadcopter Operation in a Cluttered
Environment,” in 2021 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT). 1EEE,
2021, pp. 1-6.

S. Ghodrati, S. Kinzer, H. Xu, R. Mahapatra, Y. Kim, B. H. Ahn,
D. K. Wang, L. Karthikeyan, A. Yazdanbakhsh, J. Park, N. S.
Kim, and H. Esmaeilzadeh, “Tandem Processor: Grappling with
Emerging Operators in Neural Networks,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ser. ASPLOS °24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 1165-1182. [Online].
Available: https://doi.org/10.1145/3620665.3640365

R. Ghzouli, S. Dragule, T. Berger, E. B. Johnsen, and A. Wasowski,
“Behavior Trees and State Machines in Robotics Applications,” arXiv
preprint arXiv:2208.04211, 2022.

G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the
Edge: Inference on Intermittent Embedded Systems,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019, pp. 199-213.

A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A
Benchmark for RGB-D Visual Odometry, 3D Reconstruction and
SLAM,” in International Conference on Robotics and Automation
(ICRA). 1EEE, 2014, pp. 1524-1531. [Online]. Available: https:
//doi.org/10.1109/ICRA.2014.6907054

P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
[Online]. Available: https://doi.org/10.1109/TSSC.1968.300136

M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Acceler-
ating Dependent Cache Misses with an Enhanced Memory Controller,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 444—
455, 2016.

Y.-S. Hsiao, S. K. S. Hari, B. Sundaralingam, J. Yik, T. Tambe, C. Sakr,
S. W. Keckler, and V. J. Reddi, “VaPr: Variable-Precision Tensors
to Accelerate Robot Motion Planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2023,
pp. 6304-6309.

D. Im, G. Park, Z. Li, J. Ryu, S. Kang, D. Han, J. Lee, and H.-J.
Yoo, “DSPU: A 281.6 MW Real-Time Depth Signal Processing Unit
for Deep Learning-Based Dense RGB-D Data Acquisition with Depth
Fusion and 3D Bounding Box Extraction in Mobile Platforms,” in 2022
IEEE International Solid-State Circuits Conference (ISSCC), vol. 65.
IEEE, 2022, pp. 510-512.

M. Kar, A. Agarwal, S. Hsu, D. Moloney, G. Chen, R. Kumar,
H. Sumbul, P. Knag, M. Anders, H. Kaul, J. Byrne, L. Sarti,
R. Krishnamurthy, and V. De, “A Ray-Casting Accelerator in 10nm
CMOS for Efficient 3D Scene Reconstruction in Edge Robotics
and Augmented Reality Applications,” in [EEE Symposium on

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

[113]

(114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

VLSI Circuits (VLSIC). IEEE, 2020, pp. 1-2. [Online]. Available:
https://doi.org/10.1109/VLSICircuits18222.2020.9163067

F. Kherif and A. Latypova, “Principal Component Analysis,” in Ma-
chine Learning. Elsevier, 2020, pp. 209-225.

S. Koppula, L. Orosa, A. G. Yaglik¢i, R. Azizi, T. Shahroodi,
K. Kanellopoulos, and O. Mutlu, “EDEN: Enabling Energy-Efficient,
High-Performance Deep Neural Network Inference Using Approximate
DRAM,” in International Symposium on Microarchitecture (MICRO),
2019, pp. 166-181.

L. Koutras and Z. Doulgeri, “Dynamic Movement Primitives for
Moving Goals with Temporal Scaling Adaptation,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
144-150.

H. Koyuncu, “Loss Function Selection in NN Based Classifiers: Try-
Outs with a Novel Method,” in 2020 12th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). 1EEE,
2020, pp. 1-6.

S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” 1998.

J.J. Leonard, D. A. Mindell, and E. L. Stayton, “Autonomous Vehicles,
Mobility, and Employment Policy: The Roads Ahead,” Massachusetts
Institute of Technology, Cambridge, MA, Rep. RB02-2020, 2020.

M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm.” in Inter-
national Conference on Automated Planning and Scheduling (ICAPS),
vol. 5, 2005, pp. 262-271.

I.-T. Lin, Z.-S. Fu, W.-C. Chen, L.-Y. Lin, N.-S. Chang, C.-P. Lin, C.-S.
Chen, and C.-H. Yang, “2.5 A 28nm 142mW Motion-Control SoC for
Autonomous Mobile Robots,” in 2023 IEEE International Solid-State
Circuits Conference (ISSCC). 1EEE, 2023, pp. 1-3.

D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and
H. Esmaeilzadeh, “Towards Statistical Guarantees in Controlling
Quality Tradeoffs for Approximate Acceleration,” in International
Symposium in Computer Architecture (ISCA), ser. ISCA 16, 2016, p.
66—77. [Online]. Available: https://doi.org/10.1109/ISCA.2016.16

V. Mayoral-Vilches, S. M. Neuman, B. Plancher, and V. J. Reddi,
“Robotcore: An Open Architecture for Hardware Acceleration in ROS
2, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2022, pp. 9692-9699.

V. Mayoral-Vilches, J. Jabbour, Y.-S. Hsiao, Z. Wan, A. Martinez-
Farifia, M. Crespo-Alvarez, M. Stewart, J. M. Reina-Muiioz, P. Nagras,
G. Vikhe, M. Bakhshalipour, M. Pinzger, S. Rass, S. Panigrahi,
G. Corradi, N. Roy, P. B. Gibbons, S. M. Neuman, B. Plancher, and V. J.
Reddi, “RobotPerf: An Open-Source, Vendor-Agnostic, Benchmarking
Suite for Evaluating Robotics Computing System Performance,” in
Proceedings of International Conference on Robotics and Automation
(ICRA), 2024.

A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar, “Can Gradi-
ent Clipping Mitigate Label Noise?” in International Conference on
Learning Representations (ICLR), 2019.

A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting Locality in Graph Analytics Through Hardware-
Accelerated Traversal Scheduling,” in International Symposium on
Microarchitecture (MICRO). 1EEE, 2018, pp. 1-14.

M. P. Muresan, 1. Giosan, and S. Nedevschi, “Stabilization and Val-
idation of 3D Object Position Using Multimodal Sensor Fusion and
Semantic Segmentation,” Sensors, vol. 20, no. 4, p. 1110, 2020.

A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Vector Runahead,” in International Symposium in Computer
Architecture (ISCA). 1EEE, 2021, pp. 195-208. [Online]. Available:
https://doi.org/10.1109/ISCAS52012.2021.00024

A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeck-
hout, “Decoupled Vector Runahead,” in International Symposium on
Microarchitecture (MICRO), 2023, pp. 17-31.

S. M. Neuman, R. Ghosal, T. Bourgeat, B. Plancher, and V. J.
Reddi, “RoboShape: Using Topology Patterns to Scalably and Flexibly
Deploy Accelerators Across Robots,” in International Symposium in
Computer Architecture (ISCA), ser. ISCA 23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589104

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and
V. J. Reddi, “Robomorphic Computing: A Design Methodology for
Domain-Specific Accelerators Parameterized by Robot Morphology,”
in International Conference on Architectural Support for Programming

564

[131]

[132]

[133]

[134]

[135]

[136]

[137

[138

[139

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Languages and Operating Systems (ASPLOS), ser. ASPLOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021,

p. 674-686. [Online]. Available: https://doi.org/10.1145/3445814.
3446746
X. Ni, L. Fang, and H. Huttunen, “Adaptive L2 Regularization in

Person Re-Identification,” in 2020 25th International Conference on
Pattern Recognition (ICPR). 1EEE, 2021, pp. 9601-9607.

D. Nikiforov, S. C. Dong, C. L. Zhang, S. Kim, B. Nikolic, and Y. S.
Shao, “RoSE: A Hardware-Software Co-Simulation Infrastructure
Enabling Pre-Silicon Full-Stack Robotics SoC Evaluation,” in
International Symposium in Computer Architecture (ISCA), ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589099
H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro, “Pure Pursuit
Revisited: Field Testing of Autonomous Vehicles in Urban Areas,” in
International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA). 1EEE, 2016, pp. 7-12.

O. A. Osman, M. Hajij, P. R. Bakhit, and S. Ishak, “Prediction of Near-
Crashes from Observed Vehicle Kinematics Using Machine Learning,”
Transportation Research Record, vol. 2673, no. 12, pp. 463473, 2019.
A. Pajuelo, A. Gonzilez, and M. Valero, “Speculative Dynamic Vector-
ization,” ACM SIGARCH Computer Architecture News, vol. 30, no. 2,
pp. 271-280, 2002.

A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The Arm
Neoverse N1 Platform: Building Blocks for the Next-Gen Cloud-To-
Edge Infrastructure Soc,” IEEE Micro, vol. 40, no. 2, pp. 53-62, 2020.
H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The
Volumepro Real-Time Ray-Casting System,” in Proceedings of the 26th
annual conference on Computer graphics and interactive techniques,
1999, pp. 251-260.

G. Pinto, F. Castor, and Y. D. Liu, “Understanding Energy Behaviors
of Thread Management Constructs,” in International Conference on
Object Oriented Programming Systems Languages & Applications,
2014, pp. 345-360.

I. Pohl, “Heuristic Search Viewed As Path Finding in a Graph,”
Artificial intelligence, vol. 1, no. 3-4, pp. 193-204, 1970. [Online].
Available: https://doi.org/10.1016/0004-3702(70)90007-X

N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridg-
water et al., “Valkyrie: Nasa’s First Bipedal Humanoid Robot,” Journal
of Field Robotics, vol. 32, no. 3, pp. 397419, 2015.

M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista,
N. Paczan, R. Webb, and J. M. Susskind, “Hypersim: A Photorealistic
Synthetic Dataset for Holistic Indoor Scene Understanding,” in
International Conference on Computer Vision (ICCV), 2021. [Online].
Available: https://doi.org/10.48550/arXiv.2011.02523

N. Rohbani, S. Darabi, and H. Sarbazi-Azad, “Pf-Dram: A Precharge-
Free Dram Structure,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2021, pp. 126—
138.

J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh,
“RoboX: An End-To-End Solution to Accelerate Autonomous
Control in Robotics,” in International Symposium in Computer
Architecture (ISCA). 1EEE, 2018, pp. 479-490. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00047

M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
Based Approximation for Data Parallel Applications,” in Proceedings
of the 19th international conference on Architectural support for
programming languages and operating systems, 2014, pp. 35-50.

D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-
Grain Cache Partitioning,” in International Symposium in Computer
Architecture (ISCA), June 2011.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural ~Simulation of Thousand-Core Systems,” in
International Symposium in Computer Architecture (ISCA), June
2013. [Online]. Available: https://doi.org/10.1145/2508148.2485963
G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig, and
H. Choset, “PRIMAL: Pathfinding Via Reinforcement and Imitation
Multi-Agent Learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378-2385, 2019.

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can Traditional Programming Bridge
the Ninja Performance Gap for Parallel Computing Applications?”

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

ACM SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 440—
451, 2012.

D. Shah, N. Yang, and T. M. Aamodt, “Energy-Efficient Realtime
Motion Planning,” in International Symposium in Computer
Architecture (ISCA), ser. ISCA °23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589092

D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell,
M. Bergdorf, J. Bhatt, J. A. Butts, T. Correia et al., “Anton 3: Twenty
Microseconds of Molecular Dynamics Simulation Before Lunch,” in
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2021, pp. 1-11.

S. Shen, Y. Cai, J. Qiu, and G. Li, “Dynamic Dense RGB-
D SLAM Using Learning-Based Visual Odometry,” arXiv preprint
arXiv:2205.05916, 2022.

Y. Shi, W. Zhang, Z. Yao, M. Li, Z. Liang, Z. Cao, H. Zhang, and
Q. Huang, “Design of a Hybrid Indoor Location System Based on
Multi-Sensor Fusion for Robot Navigation,” Sensors, vol. 18, no. 10,
p. 3581, 2018.

J. Siderska, “Robotic Process Automation—a Driver of Digital Trans-
formation?” Engineering Management in Production and Services,
vol. 12, no. 2, pp. 21-31, 2020.

T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, Y. Kim, K.-H.
Baek, S. Baek, S.-K. Oh et al., “A 14 nm FinFET 128 Mb SRAM With
Vi IN Enhancement Techniques for Low-Power Applications,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 1, pp. 158-169, 2014.
Statista Research Department, “Global Robotics Market Revenue
2018-2025,” https://www.statista.com/statistics/760190/worldwide-
robotics-market-revenue/, 2021.

K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and
B. Franke, “Cooperative Partitioning: Energy-Efficient Cache Partition-
ing for High-Performance CMPs,” in IEEE International Symposium
on High-Performance Comp Architecture. 1EEE, 2012, pp. 1-12.

I. Ullah, X. Su, X. Zhang, and D. Choi, “Simultaneous Localization
and Mapping Based on Kalman Filter and Extended Kalman
Filter,” Wireless Communications and Mobile Computing, vol.
2020, pp. 2138643:1-2138643:12, 2020. [Online]. Available: https:
//doi.org/10.1109/S1U.2009.5136492

R. Vang-Mata, Multilayer Perceptrons: Theory and Applications. Nova
Science Publishers, 2020.

K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,
S. Makineni, and D. Newell, “Molecular Caches: A Caching Structure
for Dynamic Creation of Application-Specific Heterogeneous Cache
Regions,” in International Symposium on Microarchitecture (MICRO).
IEEE, 2006, pp. 433-442.

Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu, “A Survey of FPGA-Based Robotic Computing,”
arXiv preprint arXiv:2009.06034, 2020. [Online]. Available: https:
//doi.org/10.48550/arXiv.2009.06034

Y. Wang, L. Zhang, and G. Chen, “Optimal Sensor Placement for
Obstacle Detection of Manipulator Based on Relative Entropy,” in
2019 14th IEEE Conference on Industrial Electronics and Applications
(ICIEA). 1EEE, 2019, pp. 702-707.

J. T. Wen and S. H. Murphy, “PID Control for Robot Manipulators,”
1990.

Z. Ying, S. Bhuyan, Y. Kang, Y. Zhang, M. T. Kandemir, and C. R.
Das, “EdgePC: Efficient Deep Learning Analytics for Point Clouds on
Edge Devices,” in International Symposium in Computer Architecture
(ISCA), 2023, pp. 1-14.

A. Younis, L. Shixin, S. Jn, and Z. Hai, “Real-Time Object
Detection Using Pre-Trained Deep Learning Models MobileNet-SSD,”
in International Conference on Computing and Data Engineering
(ICCDE), 2020, pp. 44-48. [Online]. Available: https://doi.org/10.
1145/3379247.3379264

B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building
the Computing System for Autonomous Micromobility Vehicles:
Design Constraints and Architectural Optimizations,” in International
Symposium on Microarchitecture (MICRO). 1EEE, 2020, pp. 1067—
1081. [Online]. Available: 10.1109/MICR0O50266.2020.00089

U. Zahavi, A. Felner, J. Schaeffer, and N. Sturtevant, “Inconsistent
Heuristics,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 7, 2007, pp. 1211-1216.

Q.-b. Zhang, P. Wang, and Z.-h. Chen, “An Improved Particle Filter for
Mobile Robot Localization Based on Particle Swarm Optimization,”

565

[168]

[169]

Expert Systems with Applications, vol. 135, pp. 181-193, 2019.
[Online]. Available: https://doi.org/10.1016/j.eswa.2019.06.006

Y. Zhou and J. Zeng, “Massively Parallel A* Search on a GPU,” in
Proceedings of the AAAI Conference on Artificial Intelligence, ser.
AAAT'15. AAAI Press, 2015, p. 1248-1254. [Online]. Available:
https://doi.org/10.1609/aaai.v29i1.9367

Y. Zhu, “RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing,” in Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2022, pp. 76-89.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from |IEEE Xplore. Restrictions apply.

