
Tartan: Microarchitecting a Robotic Processor

Mohammad Bakhshalipour
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

bakhshalipour@cmu.edu

Phillip B. Gibbons
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

gibbons@cs.cmu.edu

Abstract—This paper presents Tartan , a CPU architecture
designed for a wide range of robotic applications. Tartan provides
architectural support for common robotic kernels, ensuring its
broad utility across different robotic tasks. The architecture ef-
fectively addresses both computational and memory bottlenecks,
marking a significant advancement over previous works. Key
features of Tartan include architectural support for oriented vec-
torization, approximate acceleration with accurate outcome, robot-
semantic prefetching, and intra-application cache partitioning.

On the six end-to-end robots in the RoWild Suite, Tartan
boosts the performance of legacy robotic software by 1.2× (up
to 1.4×), non-approximable software optimized for Tartan by
1.61× (up to 3.54×), and approximable software optimized for
Tartan by 2.11× (up to 3.87×).

Index Terms—Robotics, Domain-Specific Processors, Approxi-
mate Computing, Specialization.

I. INTRODUCTION

Robots are rapidly permeating our society, transforming

various aspects of life, from economy [56] and healthcare [64]

to agriculture [65] and military [63]. Market reports predict

over 20 million robots in operation by 2030, with over $210

billion robotics market capitalization [74], [155]. To reach

this potential, robots must seamlessly integrate into real-world

environments, demanding autonomous capabilities and real-

time execution of complex artificial intelligence tasks [118].

Computer architecture plays a critical role in enabling real-

time robotics [86], [129], [130], [132]. The recent surge

in research has introduced numerous hardware accelerators,

developed in both academia [89], [101], [143], [149] and

industry [91], [111], [120], aiming to expedite specific robotic

tasks like motion planning and scene understanding.

Nevertheless, robotics is in a state of constant evolution.

With a plethora of algorithms and ideas emerging constantly,

the state of the art shifts rapidly, rendering rigid hardware

accelerators obsolete. Moreover, these accelerators struggle to

adapt beyond their specifically targeted applications. However,

the field of robotics encompasses a vast range of applications,

spanning from industrial robots to atmospheric robots. It is

unlikely that hardware vendors will implement specialized

hardware for each of these diverse robot types individually.

To address these challenges, we propose Tartan , a CPU

architecture tailored for robotics. We undertake a thorough

evaluation of robotic workloads to pinpoint software bottle-

necks and mismatches between workload demands and archi-

tecture’s capabilities (§III). Based on the insights gained from

this analysis, we develop Tartan with a focus on mitigating

bottlenecks in common robotic kernels (e.g., pathfinding),

providing architectural support to enhance their performance.

The focus on common bottlenecks ensures that Tartan is

versatile and more future-proof, capable of supporting various

robots and (future) algorithms that utilize these kernels.
A distinctive feature of Tartan is its improvements to the

memory subsystem. Tartan introduces enhancements to the

cache hierarchy, targeting and mitigating memory bottlenecks

that impede robotic applications [81]. This emphasis on

enhancing memory-bound performance distinguishes Tartan
from previous efforts in “hardware acceleration of robotics,”

which mainly concentrated on computational acceleration.
Key architectural features of Tartan include:

• Oriented Vectorization: Tartan introduces a novel ap-

proach for vectorizing non-contiguous memory accesses that

display oriented patterns, frequently encountered in robotic

tasks like ray-casting and collision detection. Tartan im-

plements an explicit, in-hardware address generator to effi-

ciently capture these patterns, departing from the implicitly-

contiguous or software-based gather address generation

methods used in existing processors.

• Approximate Execution Accurate Results: Tartan offers

support for the approximate acceleration of robotics appli-

cations. Specifically, Tartan introduces a novel computa-

tional paradigm termed AXAR: by leveraging guarantees

from specific algorithms, it allows for the approximation of

certain computations without affecting the final result.

• Robot-Semantic Prefetching: Tartan aims to leverage se-

mantic features in robotics for its novel hardware data

prefetchers. Specifically, Tartan introduces an Adaptive

Next-Line Prefetcher (ANL) that utilizes the application’s

semantic information to adapt the prefetching degree. The

semantic information used by Tartan (e.g., sparse versus

dense environmental areas) is relevant across a wide range

of robotic applications. This work represents the first effort

in the robotics field to leverage application semantic infor-

mation for hardware prefetching.

• Intra-Application Cache Partitioning: Tartan introduces

a cache management scheme to address intra-application

contentions in complex robotic scenarios (e.g., pathfinding

in unpredictable terrains). It seeks to implement a (soft)

partitioning of the cache space among semantic units (e.g.,

paths) to optimize cache performance. This work is the

first to explore cache partitioning for a singularly running

application to enhance its performance. It also represents

548

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00047

20
24

 A
C

M
/IE

EE
 5

1s
t A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
C

om
pu

te
r A

rc
hi

te
ct

ur
e

(I
SC

A
) |

 9
79

-8
-3

50
3-

26
58

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

C
A

59
07

7.
20

24
.0

00
47

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

the first exploration into partitioning private caches.

• Engineering Optimizations: Tartan incorporates engineer-

ing optimizations tailored for robotics, including adjust-

ments to cacheline size and selective caching policies to

enhance the performance of robotic workloads.

In addition to architectural enhancements, we propose

software-only techniques that leverage the features of modern

processors. Specifically, we introduce an aggressively vector-

ized implementation of the nearest neighbor search kernel

using locality-sensitive hashing.

Our evaluation of Tartan using six end-to-end robotic appli-

cations from RoWild [81], which are modeled after real-world

robots, shows substantial performance enhancements in all

tested scenarios. The observed performance gains span from

1.31× to 3.87×. Tartan’s area overhead is merely 0.001%.

II. MOTIVATION

A. The Need for Efficient Robotics CPUs

Tartan is a CPU architecture tailored for robotics. While

DSPs, GPUs, FPGAs, and ASICs are increasingly popular

in robotics [3], [19], [39], [72], CPUs continue to be an

indispensable element of every robot manufactured to date.

We believe CPUs will remain a critical component in robotics

for the foreseeable future, owing to the following attributes:

• General-Purpose Processing: Robotics encompasses a

broad array of algorithms, each exhibiting varied compu-

tational behaviors. While programmable accelerators like

DSPs, GPUs, and FPGAs excel in specific computation

models (e.g., SIMD), not all robotics tasks align with these

models. Conversely, CPUs are designed to manage a wide

spectrum of computation types, adeptly accommodating the

expanding computational diversity of robotics algorithms.

• Single-Thread Performance: Due to their aggressive archi-

tecture and high clock frequencies, CPUs deliver superior

single-thread performance compared to a GPU’s single core

or an FPGA’s individual logic block. This capability is

essential for providing real-time latency in robots, not only

for hard-to-parallelize algorithms, but also for gather-scatter

parallel algorithms where a main thread initiates multi-

ple worker threads and aggregates their results–both these

computation models are prevalent in robotics [81], [123].

For instance, RoWild [81] demonstrates that CPUs out-
perform GPUs in robotic workloads characterized by high

instruction-level but low thread-level parallelism. Along

with quick execution of sequential tasks, the CPU’s ability

for fast context switching renders it crucial for robots

requiring real-time decision-making and control.

• Reliability: CPUs, as a mature technology, undergo ex-

tensive testing at hardware and software levels, resulting

in robust error-handling capabilities and well-documented

failure modes. The extensive use of ECC memory and parity

checks further bolsters CPU fault-tolerance [87], [102]. This

reliability is critical for robots operating in inaccessible

or demanding settings, like space, where other platforms

like FPGAs struggle to offer as high reliability [160]. For

instance, Valkyrie, NASA’s robot for space exploration,

performs all its operations on three Intel Core-i7 CPUs [26],

with only error-tolerant sensor interpretation algorithms on

an NVIDIA Quadro 1000M GPU [23], and no FPGA [140].

• Price: Achieving widespread adoption of robots across

various applications hinges on their cost-effectiveness. The

inclusion of hardware accelerators like GPUs and FPGAs

can substantially elevate production costs; even applications

requiring real-time performance may not always justify the

heightened price [106]. As such, CPU may be the sole

computing platform in some robots, running the entire

robotics software, as is the case in real-world robots like

[2], [17], [46], [60], [68], [69].

Due to the extensive use of CPUs in various robotic appli-

cations and their pivotal role in robot performance, robotics

CPUs have undergone significant evolution over the past

decade, becoming markedly more powerful (e.g., increased

transistor count, higher clock frequencies, deeper pipelines,

larger caches). This evolution is illustrated by microcontroller-

based robots using Raspberry Pi, transitioning from a single-

core ARM11 CPU in the Raspberry Pi 1 [52] to a 4-core ARM

Cortex-A76 CPU in the Raspberry Pi 5 [53]; Qualcomm’s

robotics platform evolving from a Kryo 385 CPU in the

RB3 [51] to a Kryo 585 CPU with double the last-level cache

size in the RB5 [50]; NVIDIA robotics boards upgrading from

a quad-core ARM Cortex-A57 CPU with 2MB of total cache

in the Jetson TX1 [35] to a 12-core Arm Cortex-A78AE

CPU with 9MB of total cache capacity in the Jetson AGX

Orin [34]; and Intel’s NUC, which is extensively utilized in a

variety of robots such as [30], [38], [48], transitioning from a

Celeron 847 processor [25] with a maximum clock frequency

of 1.1GHz in its first generation [29] to a Core i9-12900

processor [27] with a maximum clock frequency of 5.1GHz

in its twelfth generation [28].

Nevertheless, as we show in this paper, substantial potential

for enhancement remains even beyond the capabilities of

state-of-the-art processors. We extensively explore the archi-

tectural implications for robotics and suggest architectural

improvements to a cutting-edge robotics CPU, aiming to boost

performance across a diverse range of robotic applications.

B. The Need for Efficient Memory Systems

Robotics are becoming increasingly data-intensive [1], [77],

[81], [153], fueled by the need to process large volumes of

data produced by more precise sensors (e.g., high-resolution

cameras and LiDARs, highly sensitive force sensors) and the

large number of model parameters necessary for robots to

function accurately in the wild. This trend underscores the role

of memory systems in processors for efficiently managing data

delivery to the processors [95], [142].

Unlike prior work that focused only on computational

acceleration, Tartan also provides enhancements to the mem-

ory subsystem, specifically improving the cache hierarchy to

alleviate memory bottlenecks in robotics [81].

549

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

III. PERFORMANCE STUDY

In this section, we perform a performance analysis to

identify bottlenecks within robotic workloads, aiming to tar-

get these areas for optimization. We begin by outlining our

methodology, then proceed to discuss the results of the study.

A. Methodology

System: Our methodology involves initially establishing a

baseline processor model, followed by the integration of our

proposed architectural enhancements. We model the baseline

processor after Intel Core i7-10610U Processor [26], which is

integrated into NASA’s Valkyrie [41]. The processor features

four OoO cores fabricated in 14nm. It includes L1-D, L2, and

a shared L3 cache with sizes of 32KB, 256KB, and 8MB,

respectively. The latencies for these caches are 4, 14, and

45 clock cycles. The chip includes two DDR4-2666 channels,

which offer a bandwidth of up to 45.8GB/s.

Upgraded Baseline: We apply engineering optimizations to

benchmark Tartan against an upgraded baseline.

• We upgrade the processor’s vector ISA and hardware from

AVX2 to the current leading standard, AVX-512.

• Recognizing that robotic workloads are adversely affected

by excessive unnecessary data movements (UDM) [81], we

shrink the cacheline size from 64B to 32B. This adjustment

leads to a 1.56× reduction in UDM and yields a slight

average performance enhancement.

• Data structures facilitating producer-consumer communica-

tions across stages of the robotics software pipeline are allo-

cated to memory regions managed by write-through policies,

through manipulation of memory type range registers [24].

This results in a 9%–43% reduction in L3 cache traffic and

a 2%–4% improvement in overall performance.

Framework: We use ZSim [146] to evaluate our proposal. We

run all applications until their completion and report execution

time for performance analysis.

Workloads: We evaluate all six robots from the RoWild

suite [81]. The workloads model the end-to-end functional-

ity of real-world robotics applications, containing the com-

putation of all software pipeline stages: perception (sens-

ing and interpreting environment), planning (decision-making

process), and control (executing planned actions). Table I

details the workloads with the algorithms used in their soft-

ware and the number of threads used in each stage of the

perception→ planning→ control pipeline of the robots.

TABLE I: Application parameters. Bold algorithms are time-dominant.

Robot Resembling Major Algorithms Pipeline Threads

DeliBot Spot [12] MCL [167], Greedy [139] 8→ 1→ 1

PatrolBot Pioneer 3-DX [47] MobileNet [164], EKF [157], PP [133] 1→ 1→ 1 ‖ 4†

MoveBot LoCoBot [73] RRT [117], CCCD [161], PID [162] 1→ 8→ 1
HomeBot Roomba i7+ [57] Point-Based Fusion [151], BT [105] 8→ 1→ 1

FlyBot Pelican [7] LT [126], WA� [139], MPC [100] 1→ 4→ 4
CarriBot Boxbot [13] POM [103], A� [139], DMP [115] 1→ 4→ 1

† Four threads run network inference in parallel with the robot’s software pipeline.

We tune software for the evaluated processor, leading

to a slightly different thread count compared to original

RoWild’s [81] evaluations on ARM Cortex A57 of NVIDIA

Nano board [33]. Although threads outnumber the cores,

empirical findings indicate these settings as optimal. This can

be largely attributed to the uneven distribution of work among

threads and the benefits of latency hiding [138].

B. Bottleneck Analysis
We conduct a thorough evaluation of RoWild’s robots on our

framework to identify bottlenecks and mismatches between

the demands of the workloads and the capabilities of the

architecture. The insights gained from this analysis are utilized

in designing Tartan . Fig. 1 summarizes the results.
Baseline presents the execution time breakdown for the

upgraded baseline processor, while Tartan illustrates how

Tartan , employing the techniques explained later, focuses on

and accelerates bottleneck operations. Below, we detail the

execution statistics of applications on the baseline processor.

0%

25%

50%

75%

100%

B T B T B T B T B T B T

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot
%
 E

x
e
c
.
T
im

e Bottleneck Operation Other

��
��

��
��
	

�
�

�

��

��
�

��
��

�
	

�

��
	�
��
��
	

��
��
	�
�

�	

Fig. 1: Execution time breakdown and bottleneck analysis.

DeliBot utilizes MCL for localization [167], heavily relying on

“ray-casting” operations that consume 74% of the end-to-end

time. Ray-casting matches laser data with the robot’s location

hypotheses by checking occupancy in the environment map

cell-by-cell. Despite proximity of memory checks, vectoriza-

tion is unfeasible on current processors due to misalignment

with vector loads (see §IV).
PatrolBot conducts object detection by feeding captured

images into a pre-trained neural network [164] to identify

suspicious objects. The neural network inference accounts for

93% of the total processing time.
MoveBot is tasked with moving its arm from one point to

another, employing RRT for planning [117]. It uses cuboid-

cuboid collision detection (CCCD) [161] to bound obstacles

and the robot’s body with cubes, checking for intersections

during movement planning. CCCD prioritizes speed over accu-

racy and is parallelized across eight threads, each responsible

for assessing collision possibilities with certain obstacles.

Without parallelization, CCCD emerges as the primary bottle-

neck [81]; yet, once parallelized, the major bottleneck shifts

to nearest-neighbor search (NNS) operations required by RRT,

consuming 45% of execution time. NNS results in irregular

memory accesses, challenging existing cache and prefetch

techniques in the architecture.
HomeBot uses point-based fusion for 3D reconstruction [151],

with 56% of execution time spent on transformation matrix

(T) prediction to track the robot’s movements. This involves

matching point clouds and solving a large linear equation

system, including many NNS operations. The irregular mem-

ory references from point cloud matching and the heavy

floating-point computations for the equations challenge the

architecture, stressing memory and processing capabilities.

550

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

FlyBot conducts aerial photography, requiring frequent relo-

cations in a 3D space. It uses the WA� algorithm for path

planning [139], utilizing a sophisticated heuristic function to

significantly narrow down its search scope. Yet, the computa-

tion of this heuristic function, discussed in §V-F, dominates

the process, consuming over 74% of the execution time.

CarriBot transports sensitive materials within a factory, em-

ploying the A� algorithm [139] with precise collision detection

in (x, y, θ) space. This collision detection process is time-

intensive, consuming over 81% of the execution time. Similar

to ray-casting, it requires verifying the occupancy status of

various cells in the environment map along oriented lines.

IV. ORIENTED VECTOR LOADS

Data accesses during intensive robotic kernels such as col-

lision detection [80] and ray-casting [82] manifest in oriented
patterns. Fig. 2.a illustrates this using ray-casting as an exam-

ple. A robot’s laser casts rays in different directions to gauge

the distance to the nearest obstacle in each direction. Ray-

casting is the process of integrating laser-generated distance

readings with the robot’s pre-existing knowledge (i.e., stored

state). During ray-casting, the algorithm scans the map along

trajectories that align with the orientation of each emitted ray.

��������	�
��
����������

��

����������������������

�
�������

�

���� ������	

� � � �

�� �� �� ��

�	�������

���
������
�	��	���

��
����

� � � �

� �

�

�

 � �

� �� ��
�

Fig. 2: Tartan’s oriented vectorization.

Fig. 2.b shows the process of ray-casting for a single ray. Let

O be the origin of the ray, which is the location of the laser in

the environment; let θ be the orientation of the ray with respect

to the x-axis; and let d be the step length. The algorithm starts

at the origin and iteratively extends the ray’s length until it

encounters the first obstacle. At step i, the algorithm evaluates

the location (Ox, Oy) + i · (dx, dy), where dx = d cos θ and

dy = d sin θ. All the (x, y) pairs generated during ray-casting

are floating-point numbers; these are rounded to integers for

mapping to the addressable memory grid. For instance, in a

16×16 environment, stored in env[256], the point (4.6, 8.5)
would be flattened to 4.6 × 16 + 8.5 = 82.1 and mapped to

env[82] in memory.

A. The Problem

In Fig. 2.b, the red dots denote the points checked during

a single ray-casting operation, with each check determining

whether a location is free or occupied. Current CPU vector-

ization approaches, including post-AVX2 gather instructions

(§VIII-A), fail to vectorize such operations: despite the mem-
ory locations checked being nearby and running the same
check, the operation cannot be vectorized.

Consequently, the software needs to sequentially traverse the

map on a cell-by-cell basis to perform these checks, leading to

excessive processing time. For example, RoWild [81] reports

that more than 80% of the end-to-end execution time in two of

the six modeled robots are attributed to ray-casting or collision

detection–kernels dominated with oriented memory accesses.

B. Vectorization of Oriented Loads
To address the issue, we propose Oriented Vectorization

(OVEC). We incorporate an extra operand into the vector

load instruction: a register containing the traversal orientation.

OVEC extends the ISA with the following instruction:

O_MOVE %zmm, (%org), %orient

zmm is the destination vector register for data loading. org
is the memory source operand, which is a register holding

the address of the starting point. In ray-casting, org initially

holds the origin of the ray. These two operands are similar to

conventional vector loads. orient is the new operand that

OVEC introduces, which is a scalar register encapsulating the

traversal orientation; the flattened representation of (dx, dy) in

2D or (dx, dy, dz) in 3D in number of bytes. For example, with

an N ×N occupancy grid [81], in which every cell stores the

occupation probability of an environment location in a float,

orient is (dy ×N + dx)× sizeof(float).
Finally, as in other x86 instructions, the data type is spec-

ified in the opcode; e.g., O_MOVEAPS and O_MOVEAPD for

single- and double-precision floating-point, respectively.

C. Implementation Details
Upon execution of the instruction, the needed addresses

must be generated and sent to the memory system. Conven-

tional vector load instructions send only the address of the

vector’s initial lane, stored in org. Addresses of the following

lanes are implicitly sequential (e.g., org+1, org+2, . . .).

However, in oriented vector loads, the addresses for each lane

within the vector require explicit generation.
Fig. 2.c shows the address generation process for a vector

comprising four lanes. For each lane i within the vector, the

address is computed by adding 1 the origin address to 2 the

product of i and the orientation. 3 The fractional parts of the

resulting addresses are omitted, and 4 the integral addresses

are enqueued into the load queue (LQ). Parallel address
generation via this hardware circuit, as opposed to serial

checking in software, substantially accelerates operations like

ray-casting and collision detection, as we show in §VIII-A.
A challenge in oriented vectorization is the accurate data

alignment within a vector register. The addresses from an ori-

ented vector load correspond to different lanes in the register.

Thus, when data are fetched from the memory hierarchy, its

designated lane within the vector register is unknown.
To tackle this issue, we adopt Intel’s approach for gather

operations: storing the designated lane for loads within LQ

(subscripts in Fig. 2.c). Consequently, when data arrive, it uses

the number in LQ to position itself in the intended lane.
Once data are fully loaded into the vector register, it engages

the vector ALU similar to conventional vector instructions,

implementing operations as directed by the software. The

vector ALU and register file remain unchanged.

551

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

D. Related Work

Prior work on augmenting vector unit capabilities en-

compasses speculative vectorization support for certain op-

erations [135], employing vector units for runahead execu-

tion [127], [128], and data streaming [96]. Tartan introduces

OVEC, a novel design markedly distinct from previous initia-

tives in terms of design, operation, and targeted applications.

V. APPROXIMATE-ACCELERATION

Prior work exploits error-tolerance in tasks like speech

recognition, proposing approximate execution to trade accu-

racy for performance. Both software and hardware can imple-

ment this approach. For example, NVIDIA’s TensorRT [44]

uses quantization, allowing neural networks to switch from

FP32 to INT8 representations, which results in faster opera-

tions, albeit with some accuracy loss. Similarly, EDEN [114]

lowers voltage for DRAM partitions hosting neural network

data, sacrificing some accuracy to save energy.

A. Approximate Execution Accurate Results

In this paper, we introduce a new paradigm: Approximate
Execution Accurate Results (AXAR). We find that certain com-

putations in robotics can be approximated without altering the

final outcome, thanks to algorithmic guarantees. We explain

and implement AXAR in the context of robot path planning.

Specifically, we approximate heuristic cost calculation in robot

path planning without affecting the final path.

Path planning refers to the process of finding an efficient

(e.g., short) path from a start to a goal point—a key operation

in every autonomous robot. A�, along with its derivatives [83],

[108], [119], [139], [168], is widely used in path planning in

robotics [81] and beyond (e.g., Google Maps [76]). Central to

A� is its heuristic cost function, which makes it an informed
search algorithm. For a given state S, the heuristic function,

h(S), estimates the cost to reach the goal from S. In practice,

h(S) can be for example the aerial or Manhattan distance of

S to the goal. Using the heuristic function drastically narrows

the search compared to uninformed algorithms (e.g., Dijkstra).

A�1 with any admissible heuristic outputs an optimal path.

An admissible heuristic function h satisfies h(S) ≤ h�(S) for

all S, where h�(S) denotes the optimal cost to the goal. This

means that an admissible heuristic never overestimates the
cost. An example heuristic h(S) = 0 for all S is technically

admissible, but not effective as it provides no insight into

the actual cost. Ideally, h(S) should be close to h�(S);
i.e., h(S) � h�(S)—the closer h(S) is to h�(S), the more

effectively A� narrows the search.

Calculating h(S) can be costly in robotic applications [83],

[147], [168]. For instance, it may require solving an optimiza-

tion problem at each step [83]. We propose AXAR-acceleration

of such cases by approximating heuristic cost calculation. We

1More precisely, A� with re-expansions permitted [166].

argue that as long as the heuristic admissibility is maintained,
the planning outcome will be unaffected.2

B. Traditional Approximation

Besides AXAR, robotics permits Traditional Approximation
(TRAP); trading off some accuracy for performance. For

example, while a vacuum robot [81] ideally covers every inch

of a floor, occasionally missing a spot does not significantly

affect the overall cleaning outcome. This means there is some

leniency in the execution of its scene understanding algorithm.

C. Hardware-Accelerated Neural Approximation

Both approximation schemes are important. We find that

as much as 74% and 56% of the execution time in our

workload suite could potentially benefit from AXAR and TRAP,

respectively (§VIII-B). This underscores the importance for

the processor to be compatible with both schemes.

To support both AXAR and TRAP, Tartan includes a Neural
Processing Unit (NPU) [99], [104] tightly coupled to its

pipeline. NPU is a spatial array of processing elements (PEs),

each with a multiply-accumulate (MAC) unit, a lookup table

implementing sigmoid-activation, and dedicated buffers for

inputs, weights, and outputs, as shown in Fig. 3.

PEInput Buffer

Config Buffer

Output Buffer

PE

PE PE

PE PE
��

Input

Weight

�
� �������

Output

Fig. 3: Tartan’s neural processing unit.

As in [99], the programmer marks certain functions as

“approximation-safe.” Then, a neural model is developed with

a focus on efficiency, which is indicated by its capability to

provide satisfactory accuracy in replicating the outputs of the

original function while maintaining a computational footprint

that does not far exceed the cost of the original function on

CPU. This model replaces the original function at the compile-

time, allowing the NPU to execute it efficiently during runtime.

At runtime, the CPU initially sends the configuration param-

eters (e.g., layers and weights) to the NPU. Then, the CPU

sends inputs to the NPU to initiate the inference process for

a particular input. Upon completion, the CPU retrieves the

inference results from the NPU for subsequent operations.

Leveraging the NPU’s highly-parallel architecture, an effi-

cient neural network can execute significantly faster than the

intensive original function on the CPU. Further details, like

interrupt handling and CPU-NPU communications, being akin

2We believe this behavior is not limited to robotics. For example, when
finding a graph’s minimum spanning tree, edge weights can be approximated;
as long as their relative order does not change, the approximation will not
affect the output. This concept is innovatively exploited by Tartan, but in fact,
it is not new to computer architecture. For example, in caching, in hardware or
software, LRU is sometimes approximated by Pseudo-LRU. However, since
LRU itself is a heuristic to the optimal policy and caching operates on a best-
effort basis, the approximation does not alter execution time significantly nor
the results at all. We leave explorations beyond robotics to future research.

552

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

to [99], are not explained further for brevity. However, their

quantification and significance are discussed in §VIII-B.

The NPU’s configuration, including the number of PEs, can

be set based on the available area in the host processor. In

§VIII-B, we evaluate various NPU configurations.

D. Why “Neural” Approximation?

The inclusion of the NPU and the use of neural models,

rather than table-based alternatives, serves a dual purpose:

(i) Versatility: neural models can learn a broad range of

functions, surpassing table-based methods in complex applica-

tions [121], and (ii) Multimodal: as robotics are increasingly

reliant on neural network algorithms [81], the NPU can

expedite both “native” neural networks (i.e., neural models

originally employed by the robot software) and “imported”

neural networks generated for approximate computing.

Notice NPU’s primary purpose is not to expedite native neu-

ral models; this is rather a secondary benefit. This advantage

becomes apparent in scenarios where a robot lacks a GPU

or a specific accelerator for neural models, and the NPU is

available, not being used for approximate acceleration. Thus, it

becomes suitable to offload native models to NPU. Essentially,

for applications that demand large native neural networks, such

as advanced perception in autonomous vehicles, the use of

GPUs or dedicated accelerators [165] is often necessary, and

is complementary to our use of NPU.

E. Software Workflow

Model training is offline, utilizing multilayer perceptrons

(MLPs) for their balance of performance and cost-efficiency in

robotics [158]. Network topology and parameters are tailored

to each application, considering the acceptable quality loss.

§VIII-B outlines the training data for each application, the

selected network topology, and an analysis of quality loss.

F. Training for AXAR

In AXAR, the inaccuracy of neural models necessitates a su-
pervisor to ensure outputs align with algorithmic requirements,

similar to quality controllers in [121], [144]. Unlike these

methods that need hardware changes and complex software-

hardware co-design, our approach implements supervision in

software, integrated within the algorithmic steps. Differing

from previous methods’ emphasis on predicting erroneous
invocations, our strategy reduces erroneous predictions using

recent training techniques (see §VIII-B).

We next detail AXAR in its application context, applying

it to AnyTime A� (ATA�) [119] within FlyBot [81], a drone

navigating in 3D. However, it is important to note that the

methods and discussions are also relevant to a wide range of

other applications.

ATA�: ATA�, widely used in real-time robotics, operates on the

principle that inflating the heuristic cost with a factor ε > 1
speeds up execution at the expense of generating ε-optimal

paths, costing up to ε times the optimal. It starts with a high

ε = 8 for a quick initial path, then progressively reduces ε by

step = 1 to enhance path quality, eventually reaching ε = 1

for the optimal path. Its resilience in unpredictable situations,

like delays from unexpected interrupts, makes it popular. In

such scenarios, ATA� quickly produces an initial path and

continually refines it, or delivers the best path so far, thereby

maintaining functionality despite disruptions.
Our method leverages a key aspect of the ATA� algorithm

to supervise AXAR: each step’s path cost does not exceed that

of the previous step. The first iteration, with a high ε, runs

entirely on the CPU (high ε runs quickly). From the second

iteration onward (with lower ε; slower), we offload heuristic

cost calculations to the NPU. After each iteration’s completion

(not after every NPU invocation), we assess if the current

path’s exact cost is higher than the previous, indicating NPU
overestimation. In such cases, the iteration is rerun on the

CPU. If not, the process moves to the next iteration. This

supervision method introduces minimal overhead, adding a

few CPU instructions at the end of each extensive iteration.
This approach ensures that AXAR consistently produces

outputs within an acceptable range, as the initial iteration

runs accurately on the CPU. Thus, AXAR maintains the path

cost guarantees inherent to the algorithm. Although, in the-

ory, AXAR might marginally extend the worst-case execution

time by the duration of one NPU-accelerated iteration, the

algorithm’s design and the fact that the first iteration is CPU-

based ensures a key feature: the availability of a viable path

even if unexpected events occur post the first iteration. This

mirrors the reliability offered by an AXAR-less execution.
Training for AXAR: FlyBot is a battery-powered drone. It

tries to find the shortest path to extend its operation range.

It relies on a sophisticated heuristic function to estimate the

cost to the goal. The heuristic function calculates the impact

of (i) aerodynamic drag, (ii) altitude change, and (iii) wind

influence to estimate the cost. Calculating (ii) is simple, but

computing (i) and (iii) involves integrating over the path,

which is computationally expensive.
In our approach, the heuristic function is substituted by a

neural model, with an emphasis on training to minimize CPU
rollbacks by minimizing overestimations. Our training involves

an asymmetric, piece-wise loss function which penalizes over-

estimations more significantly than underestimations:

L(ytrue, ypred) =

{
α · (ypred − ytrue)

2 if ypred > ytrue

(ypred − ytrue)
2 otherwise

Here, α = 8 is a constant that determines how much more
we penalize overestimations. Also, we employ L2 regulariza-

tion [131] to prevent overfitting by penalizing larger weights.

This regularization adds a term λ
∑

i w
2
i to the loss function,

where λ = 0.01 is the regularization strength, and wi denotes

the model weights. Lastly, we utilize gradient clipping [124],

capping the gradients at c = 2.5 during training. This limit

is crucial for preventing the model from making excessively

large updates, thus aiding in curbing overestimations.
In §VIII-B, we show that, through the employed training

techniques, overestimation does not occur during the entire

operational period of FlyBot, with more than a million infer-

ence operations (see Table II). Finally, it bears repeating that

553

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

the entire process specific to AXAR is conducted purely in

software. From a hardware standpoint, there is no distinction

between AXAR, TRAP, and native neural network executions.

G. Related Work

Approximation is a widely explored concept in

robotics [110] and other fields [99]. The innovations

of Tartan primarily lie in AXAR, proposing that certain

computations can be effectively approximated based on

algorithmic guarantees to yield reliably accurate results.

A secondary contribution of Tartan involves examining

hardware-based approximation for tasks such as T prediction,

detailed further in §VIII-B.

VI. EFFICIENT NNS IN HIGH-DIMENSIONAL SPACES

Nearest Neighbor Search (NNS) in high-dimensional spaces

is essential in key robotic tasks, including motion plan-

ning [82], scene reconstruction [169], object detection [81],

kinematics [134], and sensor data fusion [152].

Popular libraries like OMPL [62], integrated within

ROS [58] and MoveIt [40], implement NNS using k-d trees

and octrees. These data structures, however, present several

challenges: (i) They lead to inefficient memory access due to

scattered node locations, especially in deep octree structures.

(ii) They do no fully utilize application semantic information.

Sparse areas result in octrees having many underutilized nodes

and k-d trees developing long, data-sparse branches, both

leading to inefficient traversal. (iii) Octrees are not effective

beyond three dimensions, posing a challenge for industrial

robots with higher degrees-of-freedom (DoF), which often

require searches in higher dimensions (typically 6–7, with

cases like the 57-dimensional ASIMO robot [8]).

We implement NNS using Locality Sensitive Hashing

(LSH), a dimensionality reduction method. While not the first

to use LSH for NNS, our approach is unique in how it capi-

talizes on the architectural capabilities of modern processors.

A. Background on LSH

LSH is a technique for reducing dimensionality. It hashes

input items so that similar items tend to be mapped to the

same “buckets.” The fundamental aspect of LSH is its ability

to increase the likelihood of similar items colliding. In this

work, we implement LSH using random projections.

For a point x ∈ R
d (where d is the dimensionality, e.g., 5 for

a 5-DoF robot), the hash function is given by f(x) =
⌊
x·r
w

⌋
,

where r is a random d-dimensional vector, each element of

which is sampled from a Gaussian distribution N (0, 1), and

w controls the bucket sizes in the hash space.

The likelihood of two points x and y hashing to the same

value is linked to their Euclidean distance—the closer two

points are in Euclidean space, the higher the probability they

end up in the same bucket.

B. Approximate NNS using LSH

Fig. 4.a shows how NNS is performed using LSH. For 1 a

query point x, the hash function, f , 2 assigns it to a specific

bucket. This bucket 3 contains a set of points P1, P2, . . . , Pk,

likely to be near x in Euclidean space. The algorithm examines
these points and selects those within a predefined distance

threshold ε (i.e., ‖x−y‖2 ≤ ε) as the nearest neighbors. This

selection can include all or a specific number of points, based

on the implementation specifics.

� � �	���� � 	�
� �� �� � ��

Prospective Neighbors

Intermediary Buckets �� �����	 �
 �

���� �������	 �

���� �����
�� 	 	

� � � �

��������	
���
��	��

�������	��

�

�
�

�

�

����������	�
�
���������������

�����

Fig. 4: Nearest-neighbor search with LSH.

Notably, NNS via LSH is approximate, as it relies on

LSH’s probabilistic properties. Nonetheless, in the context

of robotic NNS within high-dimensional spaces, where the

utilized algorithms (e.g., RRT [82]) inherently accommodate

certain levels of error, LSH is an effective approach. For

example, RRT aims to find an efficient, rather than optimal,

path for planning. Its stochastic nature and reliance on random

sampling inherently absorb the imprecision of inexact NNS—

the algorithm’s success is not predicated on perfect accuracy

(optimal path) but on its ability to rapidly explore and connect

feasible paths through the space to output an efficient path.

C. Vectorization of NNS

Vector units are becoming increasingly potent, with AVX-

512 featuring 512-bit vector registers. However, the full po-

tential of these units is often underutilized, partly due to

limitations in compiler optimization capabilities [148].

We identify untapped potential for vectorization in LSH-

based NNS, a domain where existing implementations, in-

cluding the widely adopted FLANN [20] (integrated into

OpenCV [45]), fall short. We develop a highly-vectorized

version of LSH-based NNS, and show that it offers superior

performance (§VIII-C). Our approach focuses on vectorizing

the projection step (i.e., the dot-product calculation) and

aggressively vectorizing the examination process. We call this

implementation Vectorized LHS-Based NNS (VLN). VLN is a

software approach with no hardware modifications.

D. Adaptive Next-Line Prefetching

As Fig. 4.a suggests, access patterns within each bucket

are sequential, leading us to employ next-line prefetchers.

However, we observed notable variability in the number of ac-

cesses per bucket, correlating directly with their density. This

variance is linked to the state of the analyzed environment. For

instance, in motion planning, areas densely populated with

obstacles result in fewer viable pathfinding points, creating

less populated buckets. Conversely, obstacle-free zones yield

densely-filled buckets. This trend is observed beyond motion

planning, such as in point cloud manipulation for scene

554

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

understanding [82], where we note significant differences in

memory access patterns between dense and sparse areas.

To leverage this observation, we introduce an Adaptive Next-
Line Prefetching (ANL) prefetcher, depicted in Fig. 4.b. ANL
operates with two counters per PC+Region pair: current

degree (CD) and last degree (LD). PC is the program counter

of load instructions, and Region is the high-order bits of load

addresses. CD learns the prefetching degree (i.e., the number

of prefetches issued) for each PC+Region, while LD stores

the past observations to issue prefetches.

ANL employs a 16-entry table, tagged by the concatenation

of PC and Region bits. Upon a cache miss, the table is looked

up using the PC+Region bits of the load. If the table lookup

is a hit, we (i) prefetch the number of cachelines indicated

by LD, (ii) increment CD, and (iii) reset LD. If it is a miss,

we allocate a new entry, possibly evicting an existing one (see

below). New entries start with CD and LD set to 0. When

a region is terminated (a cacheline of it is evicted from the

cache), all ANL entries tracking that region (i) copy their CD

to LD and (ii) reset CD. This mechanism enables ANL to learn

distinct access patterns for each PC+Region.

Two details are important to the efficient performance of

ANL. Firstly, ANL needs to use small regions to minimize

overprediction. ANL bases its prefetching decisions solely on

the count of used cachelines. Therefore, in medium-density

environments, larger region sizes could lead to significant

overprediction. In this work, we utilize 1KB regions.3

Secondly, when ANL needs to evict an entry for a new one,

it chooses the entry with the lowest max(CD, LD) value.

This approach is hardware-implementable with small tables

like ANL’s (§VIII-C). The rationale behind this policy is to

keep entries with higher degrees, as these are responsible for

the majority of prefetch requests. This means that ANL is less

affected by missing prefetch opportunities in sparser regions,

whereas missing such opportunities in denser regions would

be more detrimental to its performance.

Finally, ANL is not designed merely to accelerate NNS.

Rather, it is designed as a general-purpose prefetcher for

robotic applications, adept at learning and adapting to the

density of references across different regions during runtime.

In §VIII-C, we evaluate the effectiveness of ANL for all six

robots. Also, ANL can prefetch into any cache level; in this

paper, we put the prefetch requests into the private L2 cache.

E. Discussion

Our approach addresses the challenges associated with k-d

trees and octrees (§VI). (i) Storing points in buckets facilitates

cache-friendly, sequential memory accesses. (ii) ANL leverages

semantic information (e.g., varying densities) within the appli-

cation. (iii) LSH scales well to higher dimensions due to the

dimensionality reduction in its projection phase.

3Notice, while the explanation of ANL draws parallels between LSH
“buckets” and prefetcher “regions”, and a correlation exists (different buckets
correspond to different memory addresses), it is important to differentiate
them: “buckets” are conceptual, at the algorithm level, while “regions” pertain
to hardware-level physical address granularities.

F. Related Work

NNS is vital for a broad range of applications and is

tackled through a variety of approaches including paralleliza-

tion [79], [88], compression [97], and application-specific

optimizations (e.g., for CNNs [163]). Tartan introduces a

novel hardware/software strategy that significantly enhances

performance (see §VIII-C). While Tartan’s NNS solution can

stand alone as a simple and effective method, it can also work

orthogonally with existing techniques. For instance, compress-

ing LSH data [97] boosts efficiency without compromising

the benefits of VLN. Alternatively, Tartan’s components, such

as ANL, can be synergistically combined with other methods

where its premise, like data heterogeneity, applies.

VII. INTRA-APPLICATION CACHE PARTITIONING

Graph search is crucial in tasks like pathfinding, motion

planning, and decision making. In graph search, the robot

seeks a path from a start to a goal point. This “path” varies by

context: in pathfinding, it is the sequence of locations to the

goal; in motion planning, it is the configurations for object

grasping; and in decision making, it is the set of actions

required to perform a task.

Graph algorithms employed across various robotic appli-

cations are varied, yet they share a key feature: concurrent
exploration of multiple paths to determine an efficient, or

the most efficient, path. The definition of efficiency varies

by application: for drones, it may be the shortest path; for

manipulator robots, the smoothest; and for self-driving cars,

the path that optimizes fuel efficiency.

Fig. 5.a illustrates a mobile robot’s concurrent exploration

of multiple paths in pathfinding, moving from start point S
to goal G. Due to two large obstacles, the route forks into

three paths: A, B, and C. The algorithm concurrently expands

these paths, ultimately choosing one as the final route. This

illustration omits two key aspects for clarity: (i) the actual

number of paths can exceed three, depending on the number

and proximity of obstacles; (ii) each graph node typically

involves extensive neighbor explorations, implying numerous

memory accesses to adjacent locations.

� ������ �		
��

������

� � �

�

�

�

���������	
�����
����������	�	����
���

��������

	�������

�

�

�������
��	��	���������

�

�

�

�
������ ������

����
�����	
 �

Fig. 5: Tartan’s FCP with an example application.

A. The Problem

When multiple paths are explored concurrently, they com-

pete for resources, notably hardware caches. This competition

leads to paths evicting each other’s data from the cache. This

issue arises even in private caches and is particularly prevalent

in widely-used algorithms like A� and RRT. The frequent

eviction of data from caches negatively impacts the hit ratio,

degrading performance.

555

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

Importantly, the concurrent exploration of multiple paths is

not a rare event in many applications. In the A� algorithm and

its variants, each iteration involves selecting the node with the

highest potential for the optimal path, leading to frequent time-

wise switches between paths in A→B→C→A→B→C→ · · ·
order. Therefore, each time C→A occurs, there is a possibility

that some of A’s data has been evicted from the cache,

resulting in a slowdown. Similarly, in the RRT algorithm, path

choices are based on random sampling, which leads to random

switches between paths and the same caching challenge.

B. Cache Partitioning

Partitioning the cache space among different paths can alle-

viate this issue. However, current cache partitioning solutions

like Intel’s CAT [32] are unsuitable for several reasons. Firstly,

they focus on partitioning across cores, which is not applicable

to single-thread executions. Secondly, they partition cache by

physical ways, an approach not feasible when dealing with

potentially tens of paths (> number of ways). Thirdly, these

methods often compromise performance to ensure fairness

or quality of service, which holds no value in this context.

Research proposals in this area [93], [94], [98], [145], [156],

[159] similarly encounter one or more of these issues.

In this work, we propose Fuzzy Intra-Application Cache
Partitioning (FCP). The key idea of FCP is the partitioning

of cache by manipulating replacement metadata. Specifically,

it prioritizes evicting cachelines associated with paths that

have excessively used cache capacity. Below, we detail the

operations of FCP. Unlike CAT [32], FCP does not enforce

strict cache partitioning but instead implements a “fuzzy”

partitioning approach, functioning on a best-effort basis.

FCP is predicated on the understanding that inter-path
cache contention becomes problematic when paths diverge

significantly, each exploring a distinct, distant memory region.

In other words, when paths traverse spatially close regions,

inter-path cache contention is not only unproblematic but also

beneficial for spatial locality. For instance, in Fig. 5.a, the

A→B→C→A traversals adversely affect A if both B and

C access memory regions far from A. Conversely, if either

is spatially proximate to A, the inter-path contention from

temporally-interleaved B→C→A traversals can be advanta-

geous. This is because it might (inadvertently) prefetch data

for A if that data resides in the cachelines of B or C.

To address the issue, FCP first aims to map some of the data
from individual regions to the same cache sets. It achieves

this by altering the cache’s indexing scheme. Considering

regions of 2O cacheline size, the incoming addresses (byte

offset excluded) comprise R bits for the region and O bits for

the offset within the region, as shown in 1 in Fig. 5.b. With

2S sets, the standard practice without FCP is to use the lower

S bits for indexing. When O < S, which is almost always

the case, cachelines from a region never map to the same set.
FCP seeks to modify this, increasing the likelihood that some
cachelines within a region map to the same set.

A naive solution could be to index the cache solely with the

R bits of the region, causing cachelines of a region to map to

the same set. However, this method is detrimental to regions

with good spatial locality. The cache’s limited associativity

prevents storing all or most cachelines from such regions

simultaneously, thus failing to exploit the spatial locality.

To strike a balance between locality and partitioning, our

approach involves XORing the low-order l bits of the region

with the high-order l bits of the offset when 2 indexing the

cache. This technique introduces some uniform entropy into

the indexing process, aiding in achieving a balance between

spatial locality and the objectives of FCP. Additionally, to

ensure compatibility with Tartan’s ANL prefetcher (§VI),

we exclude the low-order bits of the offset from the XOR

operation to prevent cache hotspots induced by the prefetcher.

In Section §VIII-D, we will present an experimental analysis to

determine the optimal values for l and the region size, thereby

choosing the most effective indexing scheme.4

The second component of FCP involves manipulating re-

placement metadata. When a cache fill occurs, either due to a

demand miss or prefetching of cacheline X , concurrently with

tag-checking, 3 cachelines that share the same region bits with

X are identified for manipulation. These selected cachelines

are then processed through an 4 update logic, which modifies

their LRU recency. The update unit executes the function m(x)
on each recency number, followed by 5 writing the updated

metadata back into the cache.

It is important to note that these operations occur con-

currently with the cache’s baseline functions and are fully-

implementable in hardware with minor modifications to exist-

ing circuitry. However, the function m(x), which manipulates

the recency counters, needs additional circuitry. It alters x to

expedite its eviction from the set, thus preventing the region

from occupying excessive cache capacity.

Applying the m(x) function to recency counters within a set

modifies the eviction probability of block xi to Pevict(xi) ≈
1 − F (m(xi)), where F (m(xi)) represents the cumulative

distribution function of the transformed recency counters.5 As

such, given the non-uniform access patterns typical in graph

processing [125], a non-linear function (e.g., quadratic), can

enhance performance by more distinctly differentiating the

eviction priorities of frequently versus infrequently accessed

blocks. We explore various manipulation functions in §VIII-D.

Finally, FCP is adaptable to any cache level; for this paper,

we focus on its implementation in the private L2 cache.

C. Related Work

To our knowledge, FCP is the first effort to partition cache

capacity within one application to enhance its performance.

Previous studies on hardware cache partitioning [98], [145],

[156], [159] have focused on partitioning cache space among

multiple applications, aiming to boost aspects such as fairness

or quality of service, but often degrade the performance.

4It is important to note that a bit-wise XOR with one input known is one-
to-one, meaning this indexing method does not alter the number of tag bits.

5We assume the baseline replacement policy priorities the eviction of lines
with larger recency counters.

556

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

VIII. EVALUATION

We evaluate Tartan using the methodology in §III-A, as-

sessing each component individually and then in combination.

A. Tartan Accelerates Ray-Casting and Collision Detection

Fig.6 shows the execution time (bars) and dynamic instruc-

tion count (dots) across different methods, normalized to the

Baseline processor. We evaluate OVEC, Gather, and RACOD

[80]. Results are shown only for robots affected by OVEC.

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

B O G R B O G R

DeliBot CarriBot

N
o
rm

.
In
st

u
c
ti
o
n
s

N
o
rm

.
E
x
e
c
.
T
im

e

Ray-Casting/Collision Check Other

Fig. 6: Oriented access patterns and different vectorization methods.

OVEC, a component of Tartan (§IV), is estimated to have a

latency of 5 cycles for address generation, based on numbers

published in [78], [154]. This estimation accounts for the

latency of one floating point addition and multiplication, with

the latter simplified in hardware due to (i) one constant integer

input and (ii) no need for the output’s fractional part.

Gather, a software implementation of OVEC using Intel’s

VGATHERDPS [71], serves as a reference. It involves calcu-

lating �i×orient� for each lane i (§IV-C) and arranging them

in a vector register in software, with VGATHERDPS fetching

data based on this index vector [24].

RACOD [80], designed for collision detection in mobile

robots, parallelizes address generation in hardware. RACOD

is not readily applicable to ray-casting. However, to project

the speedup that a RACOD-like accelerator can achieve for

ray-casting, we model a design that performs both address

generation and obstacle-checking in hardware.

Results indicate that OVEC substantially boosts ray-casting

and collision detection, with speedups of 1.64× and 1.69×,

respectively. This is because OVEC vectorizes memory fetch

operations and exploits the underutilized vector ALU. This not

only parallelizes the operations but also reduces the number

of executed instructions by an average factor of 1.8×, by

transferring the address calculation tasks to hardware, that

would otherwise be run by software.

Gather is less effective, as the added instructions for index

calculations outweigh the vectorization benefits, resulting in a

negligible average speedup of less than 1%. The inclusion of

instructions for index calculation (i.e., �i× orient� for differ-

ent lanes) leads to an increase in the total number of dynamic

instructions executed. This surpasses the baseline instruction

count, offsetting the advantages of vectorization by increasing

the processor’s workload. RACOD outperforms both due to

eliminating CPU back-and-forths; it fetches addresses and only

interacts with CPU for final outcomes. However, RACOD

requires integrating two separate ASIC units for ray-casting

and collision detection. In contrast, OVEC achieves 89%/82%

of RACOD’s benefits in ray-casting/collision detection, with

minimal overheads (§VIII-E).

Finally, Intel has fabricated a 10nm ray-casting accelera-

tor [112], which performs in-hardware trilinear interpolation,

a component of some ray-casting algorithms [137]. This

accelerator also includes specialized local voxel storage (LVS)
to exploit the locality of nearby 3D voxels during ray-casting.

However, it lacks any mechanism for vectorizing memory

accesses, a feature central to OVEC. Consequently, Intel’s

accelerator is fully orthogonal to our proposal.

To evaluate the effectiveness of this accelerator, we add in-

terpolation into the ray-casting implementation from RoWild.

Note that interpolation is not a component of every ray-

casting implementation; it is used when a very high level

of accuracy is needed. This modification introduces a new

bottleneck in ray-casting, which is what Intel’s accelerator

addresses. Given that the specific details of Intel’s accel-

erator are not available to us, we simulate an optimistic

implementation, assuming zero-cycle latency for interpola-

tion operations. Furthermore, we assume an unlimited LVS,

where memory references incur cache latency only once

before the data are stored in the LVS. Fig. 7 shows the

impact on ray-casting time, comparing Baseline (with inter-

polation), OVEC, Intel, and the combination of the latter two.

0.0

0.5

1.0

B O I O+I

N
o
rm

.
T
im

e

Fig. 7: Ray-casting time with
different techniques.

The speedup from OVEC de-

creases from 1.64× to 1.36× due

to increased time in what it does

not target, i.e., interpolation. In-

tel’s accelerator, by speeding up

interpolation and reducing mem-

ory references, achieves a 1.92×
speedup. When OVEC is combined with Intel’s accelerator, a

cumulative speedup of 2.56× over the baseline and 1.33×
over Intel’s accelerator alone is observed, reinforcing their

orthogonal functionality.

B. Tartan Significantly Accelerates Approximable Robotics

Table II details the functions we select for approximate

acceleration and their neural network replacements. Note that

these functions do not represent the entire spectrum of ap-

proximable tasks in robotics. There exist additional tasks (e.g.,

controlling velocity and acceleration) where exact computation

is not strictly necessary. However, for neural acceleration to be

beneficial, the tasks must meet two key criteria: (i) they should

be learnable by an efficient neural network, and (ii) they must

be computationally intensive enough to justify the CPU-NPU
communication overheads (see below).

TABLE II: The neural network workloads evaluated.

Type Robot Function Topology Error

AXAR FlyBot Heuristic Cost 6/16/16/1 0%
TRAP HomeBot T Prediction 192/32/32/6 6.8%
Native PatrolBot Classification 50/1024/512/1 1.3%

As discussed in §V-F, for FlyBot, we replace the costly

heuristic function with a neural model. The model features

557

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

a topology of 6/16/16/1, which means the network takes 6

inputs (x, y, z coordinates of start and goal), produces 1 output

(estimated cost), and has two hidden layers with 16 neurons

each. For training, we use a portion of the Freiburg map [21],

distinct from FlyBot’s operational area [81], and measure the

error by the increased size of the final path. We use the custom

loss function described in §V-F.

HomeBot employs a neural model for predicting trans-

formations, contrasting baseline’s ICP algorithm [81]. The

model’s training [107] and test [141] data are separate. The

error is the geometric mean of rotation and translation errors.

The loss function is MSE [116].

PatrolBot’s object detection uses a convolutional neural

network (CNN), but for the NPU, a multi-layer perceptron

(MLP) accelerator is used. Despite MLP’s limitations in image

classification due to input data flattening, their broad learning

spectrum led to their choice for NPU, aiming for a general-
purpose approximate-accelerator for various robotic tasks. To

showcase NPU’s effectiveness, PatrolBot’s object detection

task is implemented with an MLP. We employ principal

component analysis (PCA) [113] with k = 50 components

for dimensionality reduction, training the model with the

same dataset as the original CNN [15]. The loss function is

BCE [116]. This MLP model on NPU proves to be sufficiently

accurate and offers reduced execution time. compared to the

original CNN running on the CPU.

As detailed in §V-C, Tartan integrates NPU directly into

the CPU’s pipeline, ensuring close interaction. An alterna-

tive design involves treating NPU as a distinct co-processor,

similar to Tesla’s FSD chip [22], where two independent

neural processing units operate outside the CPU die. In such

a setup, every time CPU invokes NPU, it needs to manage

communication by sending messages off-die, launching the

NPU’s kernel, and collecting the results upon completion.

Fig. 8 compares execution times and dynamic instruction

counts across methods, normalized to the Baseline processor.

Results are shown only for robots affected by NPU. We

evaluate Hardware-accelerated and Software-executed neural

models, with the former running on a 4-PE NPU and the

latter implemented using [67] on the baseline processor. In

software-executed neural models, the target function is re-

placed with a neural network executed on software. We assume

a CPU-NPU communication latency of 4 clock cycles and

8 clock cycles for MAC operations. We also evaluate NPU
configured as a Co-processor. Optimistically, we project the

CPU-NPU communication delay to be 104 cycles, drawing

from insights into FSD’s architecture [22]. Also, we assume

zero-cycle inference latency for this arrangement, considering

that standalone, off-die NPUs might achieve more aggressive

performance compared to those integrated within the CPU.

The results indicate substantial target function speedups

with hardware-accelerated neural executions for PatrolBot,

HomeBot, and FlyBot (3.85×, 1.52×, and 2.7×, respectively,

communication time included). These speedups are achieved

while maintaining acceptable accuracy, as shown in Table II.

On the other hand, software-executed neural models suffer

N
o
rm

.
In
s
tr
u
c
ti
o
n
s

N
o
rm

.
E
x
e
c
.
T
im

e

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

B H S C B H S C B H S C

PatrolBot HomeBot FlyBot

Target Func. Communication Other
10.76.25.7 3.2

Fig. 8: Neural acceleration of robotics. ‘Target Func.’ refers to the function designated
for neural acceleration. ‘Communication’ denotes the time spent in CPU-NPU
communications. ‘Other’ signifies the execution time of the remaining program

components, i.e., those not selected for neural acceleration.

from significant slowdowns due to increased dynamic in-

struction counts over the original code, software-based MAC

operations that require calculating neuron weight addresses

and loading them, and overhead from library function calls.

Utilizing large NPUs as co-processors, akin to Tesla’s FSD,

proves highly advantageous for “native” neural network tasks

like object detection in PatrolBot, where infrequent CPU-NPU
interactions (milliseconds-scale) suffice. However, in scenarios

like the approximate computations in HomeBot and FlyBot,

where only segments of the code execute on the NPU and

results must be frequently relayed back to the CPU, the

benefits are negated by the high CPU-NPU communication

overhead in a co-processor architecture, leading to significant

performance degradation. This aligns with findings from the

original NPU study [99], emphasizing that CPU-NPU com-

munication latency should be minimal (e.g., 1–4 cycles) to

achieve meaningful performance gains. Contrary to FSD’s

approach, Tartan necessitates integrating NPU directly into the

CPU pipeline to effectively harness approximate acceleration.

Table III explores how varying the number of PEs

affects speedup. More PEs allow for increased paral-

lelism of operations, leading to further speed improvements.

TABLE III: Different NPU configurations.

PEs Memory GMean Speedup Area [μm2]

2 10.5KB 1.25× 920

4 18.8KB 1.58× 1661

8 35.3KB 1.68× 3144

Given these

outcomes, we

select a 4-

PE design for

the Tartan’s

NPU. Although

increasing PEs to

8 enhances speedup, the primary benefit accrues to PatrolBot,

with minimal gains for other robots.

A 4-PE NPU utilizes 18.8KB of SRAM, with 16.5KB

dedicated to PEs and 2.3KB for their interconnect [99]. Most

of the per-PE area is allocated for storing weights (2KB) and

the Sigmoid LUT (512×32 bits), while a smaller portion is

used for input/output buffers (64B). The interconnect com-

prises a bus scheduler (1.25KB), input/output buffers (1KB),

and a configuration FIFO (32B), as illustrated in Fig. 3. The

logic area, required for a 32-bit MAC per PE, occupies an

insubstantial part of the silicon area (§VIII-E).

Finally, integrating the NPU into every core is not necessary.

In this paper, we consider its integration into just one core.

This approach is similar to heterogeneous core architectures in

processors such as CELL-BE [90] and ARM Big.LITTLE [5],

where cores possess varying capabilities. The NPU is incor-

558

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

porated into a select core, with the runtime or programmer

directing tasks for NPU execution to that specific cores.

C. Tartan Accelerates Nearest Neighbor Search and Beyond

1) Hardware/Software Nearest Neighbor Search
We evaluate Tartan’s techniques for NNS in MoveBot and

HomeBot, both heavily reliant on NNS. Fig. 9 shows execution

time and L2 misses for various methods. We evaluate Brute-

force, VLN, FLANN, and K-d tree, with methods marked with

a ‘+’ using ANL in hardware. Results are normalized against

brute-force search without ANL.

N
o
rm

.
L
2
 M

is
s
e
s

N
o
rm

.
E
x
e
c
.
T
im

e

0.0

1.0

2.0

0.0

0.5

1.0

B B+ V V+ F F+ K K+ B B+ V V+ F F+ K K+

MoveBot HomeBot

NNS Other

Fig. 9: NNS with different approaches.

The brute-force search, serving as the baseline [81], iterates

over all points to identify those close to the query point.

Our VLN employs LSH and vectorization for NNS (§VI-C).

FLANN [20] also uses LSH, but without aggressive vector-

ization. We tune the bucket sizes (w) for each method to

ensure robotic operation accuracy within 1% of the brute-force

method (§VI-A). The k-d tree method uses [36].

Our results show that VLN, our software-only technique, not

only surpasses brute-force and k-d tree but also significantly

outperforms FLANN. The NNS performance gains of VLN
over brute-force, FLANN, and k-d tree are 5.29×, 1.7×,
and 2.43×, respectively. The NNS speedup of VLN with

ANL enabled over brute-force rises to 9.37×. The brute-force

approach is exhaustive, searching all nodes, while k-d tree,

though an improvement, suffers from costly cache misses. Its

misses are often dependent, causing full stalls [109].

The advantage of VLN over FLANN lies in its effective use

of processor vectorization capabilities. Compilers like GCC,

Clang, and ICC currently struggle to efficiently vectorize LSH-

based NNS computation patterns, as seen in FLANN, due to

conditional branches in each iteration (§VI-B) [75].

2) Adaptive Next-Line Prefetcher
Fig.10 evaluates ANL across all six robots. For context,

we also examine Next-Line and Bingo [84]. NL is not adap-

tive and serves to evaluate the significance of adaptiveness.

Bingo, a state-of-the-art spatial prefetcher, like ANL learns per-

page history, albeit with a different algorithm and structure.

‘Coverage’ is the fraction of L2 cache misses covered by the

prefetcher, and ‘Accuracy’ is the fraction of prefetch requests

used by the application.

ANL offers high coverage and accuracy across all work-

loads, showing its versatility in robotics. It effectively han-

dles the sparse-dense environmental heterogeneity in robots,

prefetching memory requests efficiently (§VI-D). In contrast,

Next-Line fails to provide high miss coverage due to the

untimeliness of its requests (one prefetch per invoke).

0%

50%

100%

0.0

0.5

1.0

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

N
o

A
N
L

N
L B
i

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot GMean

C
o
v
e
ra
g
e
/
A
c
c
u
ra
c
y

N
o
rm

.
E
x
e
c
.
T
im

e Norm. Exec. Time Coverage Accuracy

Fig. 10: Different prefetching approaches.

Although Bingo shows higher performance due to its so-

phisticated pattern learning capabilities, it incurs a significant

per-core area overhead of over 100KB for history pattern stor-

age. Conversely, ANL matches 85% of Bingo’s performance

improvement on average with 1000× less area overhead.

In some robots like PatrolBot, prefetchers’ high miss cov-

erage does not lead to significant end-to-end speedups. This

is typical in compute-bound robots [81], where the absolute

number of cache misses is low, rendering even a high coverage

of these misses insufficient for substantial performance gains.

Finally, ANL’s metadata table tracks 16 entries, with each

entry comprising 12 low-order bits from the program counter

plus 38 bits from region addresses for tagging, and 10 bits per

entry for recording the current and last degrees. This results in

a 120B per core overhead. Also, the logic for implementing the

table’s replacement policy incurs minimal overhead, requiring

only a few integer comparators (§VIII-E).

D. Tartan Effectively Mitigates Inter-Path Cache Contention

Fig. 11 assesses FCP across various manipulation functions

and R− l configurations, where R is the region size and l is

the number of bits used for XOR (see §VII-B). The results

are normalized to a baseline without FCP. The L2 cache is

8-way set-associative in the evaluated processor.

0.50

0.75

1.00

1.25

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

5
1
2
B
-2

b

5
1
2
B
-3

b

1
K
B
-2

b

1
K
B
-3

b

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot

N
o
rm

.
E
x
e
c
.
T
im

e

���� � � � ����

Fig. 11: FCP with different parameters. x + 1, 2x, and x2 are different manipulation
functions (m(x)) applied to the replacement counters with FCP (§VII-B).

The evaluation shows differing behaviors based on the

chosen parameters. For example, l = 3 is effective in graph-

search-intensive robots like MoveBot but incurs slowdowns

in certain scenarios where the underlying assumptions do not

apply. We select l = 2 bits, setting the region size to 1KB.

More, results shows the critical role of the manipulation

function, m(x). As expected, m(x) = x2 enhances perfor-

mance by creating more distinct eviction priorities, as dis-

cussed in §VII-B. The function m(x) = 2x also demonstrates

competitive performance, trailing x2 by only 2.9%. We opt for

m(x) = x2 in FCP due to its superior performance. Notably,

the full x2 logic need not be implemented in hardware; given

the known input range, a small lookup table can efficiently

559

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

realize this function. FCP achieves up to 8% in performance

improvement and a 18% reduction in L2 misses.

Some applications exhibit only modest gains, mainly be-

cause most L2 misses are serviced by the larger 8MB L3

cache, whose latency is somewhat tolerable by the employed

aggressive OoO cores. Our analysis indicates that FCP is not

warranted for L3 in our workloads. However, its general-

purpose nature suggests potential for more significant im-

provements in other scenarios. For instance, in less aggressive

robotic CPUs [43], private cache misses are less tolerable,

or in other graph-intensive applications with high L3 miss

rates [85], implementing FCP for L3 is more justifiable.

E. Putting It Altogether

So far, we evaluated components individually on modified
software. It is crucial that the components operate in harmo-

nious synergy. Fig. 12 shows the end-to-end speedup of Tartan
with all components enabled over the baseline processor.

0.0

1.0

2.0
3.0

4.0

5.0

DeliBot PatrolBot MoveBot HomeBot FlyBot CarriBot GMean

N
o
rm

a
liz

e
d

S
p
e
e
d
u
p

Baseline Tartan

Fig. 12: Tartan’s end-to-end performance. The variations in the results is primarily
attributed to the applications’ extensive use of random number generation.

The results confirm the seamless integration of Tartan’s

components, preserving their individual performance benefits.

An exception is noted in the combination of NPU and ANL
with the optimized software. Here, the integration of NPU
leads to substituting the T estimation in the ICP algorithm

with a neural approach, thereby removing the NNS operations

necessary in the baseline algorithm from the approximate

version. This change results in a diminished impact of ANL,

as the opportunities for speedup are reduced.

Fig. 12 shows the results for approximable, optimized-

for-Tartan software. The results show that Tartan achieves

an average speedup of 2.11× across all workloads. Tartan
achieves this speedup by providing architectural supports for

accelerating the key bottlenecks in robots (see §III-B).

When approximation is not allowed, Tartan offers a speedup

of 1.61×. The reduction in speedup comes from not utilizing

NPU. Also, Tartan enhances the performance of legacy soft-

ware (i.e., not optimized for Tartan) by 1.2×. The hardware-

only techniques, ANL and FCP, contribute to performance

improvements for both legacy and optimized software.

TABLE IV: Overhead breakdown.

Component Memory Area [μm2]

4 × OVEC — 258

1 × NPU 18.8KB 1661

4 × ANL 480B 30

4 × FCP 12B 1

Total 19.3KB 1949

Finally, Table IV shows

the estimated overheads for

each component, using data

from [78], [154]. Assum-

ing a mobile die area of

133mm2 in 14nm [31], the

overall overhead for Tartan
is merely 0.001%.

The overhead in OVEC
arises from the logic used for address generation. For NPU, the

overhead is attributed to its PEs and their interconnections. The

main source of overhead in ANL is its metadata table. Finally,

the overhead of FCP mainly stems from its 8-entry lookup

table per L2 cache, which facilitates the implementation of

the manipulation function.

IX. OTHER RELATED WORKS

Tartan belongs to the category of Domain-Specific Pro-
cessors—processors whose architectures are specifically op-

timized for certain types of workloads. Notable examples

include ARM’s Neoverse [136] and Cavium’s ThunderX [66]

for cloud computing; D. E. Shaw’s Anton [150] for molecular

dynamics simulation; Oracle’s SPARC M8 [61] for databases;

Cisco’s Silicon One [14] and Marvell’s ARMADA [6] for net-

working; Bitmain Antminer [10] for cryptocurrency mining;

and, SandForce’s SF [59] for SSD management. Each of these

processors is tailored to excel in their respective domains.
Robotic developer kits, such as Arduino [4], Rasp-

berry Pi [54], and others [9], [18], [37], [42], [55], [70],

are designed to provide a user-friendly platform for robotics

development. These kits are furnished with integrated pe-

ripherals, enabling interaction with a wide array of sensors

and actuators. However, unlike Tartan , which offers robot-

specific microarchitectural optimizations, these kits come with

general-purpose processors, such as the ARM Cortex series.
Custom hardware accelerators are developed to optimize

different robotic tasks. Qualcomm’s QCS610 SoC [49] fea-

tures dedicated SLAM hardware, a key robotic function. Texas

Instruments’ DRV8305 [16] includes hardware support for

motion control, and Bosch’s BMI085 [11] offers hardware-

accelerated robotic sensory data fusion. The scholarly realm

also sees a surge in related proposals [80], [89], [101], [122],

[129], [143], [149] and artifacts [91], [92], [111], [112],

[120]. These accelerators optimize specific operations, and

their application range remains narrow. In contrast, Tartan is

optimized for a broad spectrum of robotic workloads. More-

over, Tartan introduces methods to overcome the “memory

wall,” an issue often overlooked by hardware accelerators.

X. CONCLUSION

This paper introduces Tartan , a CPU architecture specifi-

cally designed for robotics. Tartan aims to rectify the limita-

tions of current processors by integrating targeted architectural

advancements for more efficient robotic task execution. While

currently focusing on performance enhancement, future itera-

tions of Tartan could extend its capabilities, improving aspects

like cyber-security, user privacy, and error resilience, thereby

advancing the development of real-time robotic systems.

ACKNOWLEDGMENT

This work was supported in part by National Science

Foundation grant CNS-2211882 and by the Parallel Data Lab

(PDL) Consortium (Amazon, Google, Hitachi, Honda, IBM,

Intel, Jane Street, Meta, Microsoft, Oracle, Pure Storage,

Salesforce, Samsung, Two Sigma, and Western Digital). Mo-

hammad Bakhshalipour was supported by the James Sprague

Presidential Fellowship from Carnegie Mellon University.

560

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. Abstract

This artifact comprises the implementation of all software

and hardware components of Tartan , as well as scripts for

replicating the final, end-to-end performance results (Fig. 12).

The software components within Tartan utilize x86 assembly

instructions, built upon the RoWild [81] benchmark suite’s six

end-to-end robotic applications. On the hardware side, Tartan’s

components are implemented in the ZSim [146] simulator.

This artifact is designed to facilitate the reproduction of our

results derived from hardware-software co-design, and to share

our implementations of various hardware and software com-

ponents with the research community for further exploration.

Two methods are provided for reproducing the results:

(i) Native Execution (NE) and (ii) Docker Execution (DE). NE

involves installing all necessary packages on the host machine

and running the experiments natively, which is considerably

faster than DE, where the experiments are run inside a Docker

container. Both methods produce equivalent results.

B. Artifact check-list (meta-information)

• Program: End-to-end robotic applications implemented in C++
and augmented by x86 assembly instructions for simulation
purposes. Plus the hardware processor model implemented in
the ZSim simulator.

• Compilation: GCC 11.1.0 or above.
• Data set: The environments for robots to function, all prepared

using the supplied scripts.
• Metrics: End-to-end speedup.
• Output: Plot with end-to-end speedup data.
• Experiments: Generate experiments using supplied scripts.
• How much disk space required (approximately)?: 5GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Less than an hour.
• How much time is needed to complete experiments (approx-

imately)?: 2 hours for NE or 6 hours for DE.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Archived (provide DOI)?: 10.5281/zenodo.10981770

C. Description

1) How to access
The artifact can be cloned from GitHub at

https://github.com/cmu-roboarch/tartan.git

or downloaded as a .zip file from

https://zenodo.org/doi/10.5281/zenodo.10981770.

2) Hardware dependencies
The artifact runs on any general-purpose CPU with at least

5 GB of free disk space. For optimal performance, a machine

with 16 or more cores is recommended.

3) Software dependencies
For NE, dependencies include OpenCV, Intel PIN, and

various Linux and Python packages, installed via the provided

setup.sh script, assuming a Debian-based OS.

For DE, all necessary software packages are pre-installed in

the Docker image.

4) Data sets
Utilizes the RoWild [81] benchmark suite data sets for

robotic modeling, with preparation handled by included

scripts.

D. Installation

1) Native Execution
To install, clone the repository and run the setup script:

$ git clone https://github.com/cmu-roboarch/tartan.
↪→ git

$./setup.sh
$ source ${HOME}/.bashrc

2) Docker Execution
For Docker installation and setup:

$ apt-get install docker.io
$ systemctl start docker
$ service docker status

E. Experiment workflow

1) Native Execution
Run the replicate.py script to execute all experiments:

$./replicate.py

2) Docker Execution
Set up a results directory and run the Docker container:

$ mkdir -p results
$ docker run --net=host -it --privileged --name

↪→ my_interactive_tartan -v "$(pwd)/results:/
↪→ tartan/results" kasraa/tartan:latest

F. Evaluation and expected results

In both NE and DE, execution of the scripts will generate a

results/ directory containing a .csv file and a .png file

depicting the performance results.

REFERENCES

[1] “3 New Chips to Help Robots Find Their Way Around,” https://
spectrum.ieee.org/3-new-chips-to-help-robots-find-their-way-around.

[2] “ABB IRB 1200,” https://new.abb.com/products/robotics.
[3] “An Unprecedented Edge AI and Robotics Platform,”

https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/.

[4] “Arduino Robot Kit,” https://www.arduino.cc.
[5] “ARM Big.LITTLE Architecture,” https://www.arm.com/technologies/

big-little.
[6] “ARMADA - Marvell,” https://en.wikichip.org/wiki/marvell/armada.
[7] “AscTec Pelican,” https://www.aeroexpo.online/prod/ascending-

technologies/product-181442-24426.html.
[8] “ASIMO Specifications,” https://asimo.honda.com/asimo-specs/.
[9] “BeagleBone Blue,” https://www.beagleboard.org/boards/beaglebone-

blue.
[10] “Bitmain Antminer S19 Pro,” https://www.asicminervalue.com/miners/

bitmain/antminer-s19-pro-110th.
[11] “Bosch BMI085 IMU,” https://www.bosch-sensortec.com/products/

motion-sensors/imus/bmi085/.
[12] “Boston Dynamics’ Spot Robot,” https://www.bostondynamics.com/

products/spot.
[13] “Boxbot Launches Last-Mile, Self-Driving Parcel Delivery System,”

https://www.roboticsbusinessreview.com/supply-chain/boxbot-
launches-last-mile-self-driving-parcel-delivery-system/.

561

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

[14] “Cisco Silicon One Q100 and Q100L Processors Data
Sheet,” https://www.cisco.com/c/en/us/solutions/collateral/silicon-
one/datasheet-c78-744214.html.

[15] “COCO Dataset,” https://cocodataset.org/#explore.
[16] “DRV8305 Three Phase Motor Driver,” https://www.ti.com/product/

DRV8305.
[17] “Dual-Arm YuMi - IRB 14000,” https://new.abb.com/products/robotics/

robots/collaborative-robots/yumi/dual-arm.
[18] “EZ-Robot Developer Kit,” https://www.ez-robot.com.
[19] “FANUC Robotics Products,” https://www.fanucamerica.com/products/

robots/.
[20] “FLANN - Fast Library for Approximate Nearest Neighbors,” https:

//github.com/flann-lib/flann.
[21] “Freiburg Campus 360 Degree 3D Scans,” http://ais.informatik.uni-

freiburg.de/projects/datasets/fr360/.
[22] “FSD Chip - Tesla,” https://en.wikichip.org/wiki/tesla (car company)

/fsd chip.
[23] “Https: //www.techpowerup.com/gpu-Specs/quadro-1000m.c1431,”

NVIDIAQuadro1000M.
[24] “Intel 64 and IA-32 Architectures Software Developer Manuals,”

https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html.

[25] “Intel Celeron Processor 847,” https://ark.intel.com/content/www/us/
en/ark/products/56056/intel-celeron-processor-847-2m-cache-1-10-
ghz.html.

[26] “Intel Core I7-10610U Processor,” https://www.intel.com/content/
www/us/en/products/sku/201896/intel-core-i710610u-processor-8m-
cache-up-to-4-90-ghz/specifications.html.

[27] “Intel Core I9-12900 Processor,” https://www.intel.com/content/www/
us/en/products/sku/134597/intel-core-i912900-processor-30m-cache-
up-to-5-10-ghz/specifications.html.

[28] “Intel NUC 12 Extreme / Pro X,” https://www.intel.com/content/
dam/support/us/en/documents/intel-nuc/NUC12DCM NUC12EDB
TechProdSpec.pdf.

[29] “Intel NUC Board DCP847SKE,” https://ark.intel.com/content/www/
us/en/ark/products/71620/intel-nuc-board-dcp847ske.html.

[30] “Intel NUC10i5 (Fully Configured),” https://roverrobotics.com/
products/intel-nuc.

[31] “Intel’s Broadwell-U Arrives Aboard 15W, 28W Mobile Processors,”
https://techreport.com/news/intels-broadwell-u-arrives-aboard-15w-
28w-mobile-processors/.

[32] “Introduction to Cache Allocation Technology in the Intel Xeon
Processor E5 V4 Family,” https://www.intel.com/content/www/
us/en/developer/articles/technical/introduction-to-cache-allocation-
technology.html.

[33] “Jetson Nano Developer Kit,” https://developer.nvidia.com/embedded/
jetson-nano-developer-kit.

[34] “Jetson Orin Technical Specifications,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/.

[35] “Jetson TX1 Module,” https://developer.nvidia.com/embedded/jetson-
tx1.

[36] “KDTree,” https://github.com/crvs/KDTree.git.
[37] “LEGO Mindstorms EV3,” https://www.lego.com/en-us/themes/

mindstorms.
[38] “LoCoBot,” https://www.trossenrobotics.com/locobot-base.aspx.
[39] “Modern Hardware Platforms Used in Robotics,” https://evergreen.

team/articles/how-to-create-robots.html.
[40] “MoveIt,” https://moveit.ros.org.
[41] “NASA Humanoid Robot to Be Tested As Remote Oil Rig Attendant,”

https://www.theregister.com/2023/07/10/nasa to test humanoid robot.
[42] “NVIDIA Jetson Nano,” https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-nano/.
[43] “NVIDIA Jetson Nano System-On-Module,” https://developer.nvidia.

com/downloads/embedded/dlc/jetson-nano-system-module-datasheet.
[44] “NVIDIA TensorRT,” https://developer.nvidia.com/tensorrt.
[45] “OpenCV: Open Source Computer Vision,” https://docs.opencv.org/4.

x/index.html.
[46] “PicoGo,” https://www.waveshare.com/wiki/PicoGo.
[47] “Pioneer 3-DX,” https://www.generationrobots.com/media/

Pioneer3DX-P3DX-RevA.pdf.
[48] “Powered by Intel Technology, Robot Helps Retail Customers

Find the Right Computer,” https://www.intel.com/content/
www/us/en/newsroom/news/with-intel-tech-robot-assists-retail-
customers.html#gs.5h69r1.

[49] “Qualcomm QCS610/615,” https://www.qualcomm.com/products/
technology/processors/application-processors/qcs610.

[50] “Qualcomm QRB5165 SoC for IoT,” https://www.qualcomm.com/
content/dam/qcomm-martech/dm-assets/documents/qrb5165-soc-
product-brief 87-28730-1-b.pdf.

[51] “Qualcomm Robotics RB3 Platform (SDA/SDM845),”
https://www.qualcomm.com/content/dam/qcomm-martech/dm-
assets/documents/robotics-rb3-platform-product-brief.pdf.

[52] “Raspberry Pi 1,” https://www.pololu.com/product/2760.
[53] “Raspberry Pi 5,” https://www.raspberrypi.com/products/raspberry-pi-

5/.
[54] “Raspberry Pi Robot Kit,” https://www.raspberrypi.org.
[55] “Robotis Bioloid Kit,” https://www.worthpoint.com/worthopedia/

robotis-programmable-humanoid-bioloid-468854112.
[56] “Robots and International Economic Development,” https:

//itif.org/publications/2021/01/25/robots-and-international-economic-
development/.

[57] “Roomba I7+ Self-Emptying Robot Vacuum,” https://www.irobot.
com/en US/roomba-vacuuming/robot-vacuum-irobot-roomba-i7-
plus/I755020.html.

[58] “ROS - Robot Operating System,” https://www.ros.org/.
[59] “SandForce SF2600 and SF2500 Enterprise,” https://www.seagate.com/

www-content/product-content/lsi-fam/enterprise-flash-controller/en-
us/docs/enterprise-fsp-sf-2500-ds1828-1-1409us.pdf.

[60] “SCARA Robot,” http://www.innovativerobotics.com/Downloads/
SCARA%20robot%20vs%20r-theta.pdf.

[61] “SPARC M8 Processor,” https://www.oracle.com/us/products/servers-
storage/sparc-m8-processor-ds-3864282.pdf.

[62] “The Open Motion Planning Library,” http://ompl.kavrakilab.org/.
[63] “The Rise of Robots in Defence,” https://www.rowse.co.uk/blog/post/

the-rise-of-robots-in-defence.
[64] “The (robotic) Doctor Will See You Now,” https://www.weforum.org/

agenda/2021/03/why-robots-can-be-beneficial-in-healthcare/.
[65] “The Role of Robotics in Agriculture,” https://www.challenge.org/

knowledgeitems/the-role-of-robotics-in-agriculture/.
[66] “ThunderX2 - Cavium,” https://en.wikichip.org/wiki/cavium/

thunderx2.
[67] “Tiny-Dnn: Header Only, Dependency-Free Deep Learning Framework

in C++14,” https://tiny-dnn.readthedocs.io/en/latest/.
[68] “TurtleBot3,” https://emanual.robotis.com/docs/en/platform/turtlebot3/

overview/.
[69] “UArm Swift & UArm Swift Pro Specifications,” http://download.

ufactory.cc/docs/en/uArm-Swift-Specifications-171012.pdf.
[70] “VEX Robotics Kit,” https://www.vexrobotics.com.
[71] “VGATHERDPS/VGATHERDPD - Gather Packed Single, Packed

Double with Signed Dword Indices,” https://www.felixcloutier.com/
x86/vgatherdps:vgatherdpd.

[72] “Yaskawa: Intel FPGA in Robot Controllers,” https://www.intel.
com/content/www/us/en/customer-spotlight/stories/yaskawa-customer-
story.html.

[73] “LoCoBot: An Open Source Low Cost Robot,” http://www.locobot.
org/, 2012.

[74] “How Robots Change the World,” https://resources.oxfordeconomics.
com/how-robots-change-the-world/, 2019.

[75] “C++ Vector Class Library Version 2,” https://www.agner.org/optimize/
vcl manual.pdf, 2022.

[76] “How Does Google Map Works?” https://www.geeksforgeeks.org/how-
does-google-map-works/, 2022.

[77] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, and E. Hossain,
“Resource Allocation and Service Provisioning in Multi-Agent Cloud
Robotics: A Comprehensive Survey,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 842–870, 2021.

[78] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal,
S. Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/s-
parse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Dat-
apath in 14nm Tri-Gate CMOS,” in 2018 IEEE Symposium on VLSI
Circuits. IEEE, 2018, pp. 39–40.

[79] F. André, A.-M. Kermarrec, and N. Le Scouarnec, “Accelerated Nearest
Neighbor Search with Quick Adc,” in International Conference on
Multimedia Retrieval (ICMR), 2017, pp. 159–166.

[80] M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhachev,
and P. B. Gibbons, “RACOD: Algorithm/Hardware Co-Design
for Mobile Robot Path Planning,” in International Symposium

562

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

in Computer Architecture (ISCA). IEEE/ACM, 2022. [Online].
Available: https://doi.org/10.1145/3470496.3527383

[81] M. Bakhshalipour and P. B. Gibbons, “Agents of Autonomy: A
Systematic Study of Robotics on Modern Hardware,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems
(POMACS), vol. 7, no. 3, dec 2023, https://cmu-roboarch.github.io/
rowild. [Online]. Available: https://doi.org/10.1145/3626774

[82] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “RTRBench:
A Benchmark Suite for Real-Time Robotics,” in IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2022, https://cmu-roboarch.github.io/rtrbench/. [Online].
Available: https://doi.org/10.1109/ISPASS55109.2022.00024

[83] M. Bakhshalipour, M. Qadri, D. Guri, S. B. Ehsani, M. Likhachev, and
P. Gibbons, “Runahead A*: Speculative Parallelism for A* with Slow
Expansions,” in International Conference on Automated Planning and
Scheduling (ICAPS), 2023.

[84] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo Spatial Data Prefetcher,” in International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2019, pp.
399–411.

[85] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark
Suite,” arXiv:1508.03619v4, 2017.

[86] B. Boroujerdian, H. Genc, S. Krishnan, B. P. Duisterhof, B. Plancher,
K. Mansoorshahi, M. Almeida, W. Cui, A. Faust, and V. J. Reddi,
“The Role of Compute in Autonomous Micro Aerial Vehicles:
Optimizing for Mission Time and Energy Efficiency,” ACM Trans.
Comput. Syst., vol. 39, no. 1–4, jul 2022. [Online]. Available:
https://doi.org/10.1145/3511210

[87] R. Canal, C. Hernandez, R. Tornero, A. Cilardo, G. Massari, F. Reghen-
zani, W. Fornaciari, M. Zapater, D. Atienza, A. Oleksiak et al.,
“Predictive Reliability and Fault Management in Exascale Systems:
State of the Art and Perspectives,” ACM Computing Surveys (CSUR),
vol. 53, no. 5, pp. 1–32, 2020.

[88] L. Cayton, “Accelerating Nearest Neighbor Search on Manycore Sys-
tems,” in International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2012, pp. 402–413.

[89] F. Chen, R. Ying, J. Xue, F. Wen, and P. Liu, “ParallelNN: A Paral-
lel Octree-Based Nearest Neighbor Search Accelerator for 3D Point
Clouds,” in International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 403–414.

[90] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell Broadband
Engine Architecture and Its First Implementation—a Performance
View,” IBM Journal of Research and Development, vol. 51, no. 5,
pp. 559–572, 2007.

[91] C. Chung and C.-H. Yang, “A Distributed Autonomous and
Collaborative Multi-Robot System Featuring a Low-Power Robot
SoC in 22nm CMOS for Integrated Battery-Powered Minibots,” in
International Solid-State Circuits Conference (ISSCC). IEEE, 2019,
pp. 48–50. [Online]. Available: https://doi.org/10.1109/ISSCC.2019.
8662463

[92] C. Chung and C.-H. Yang, “A 1.5-μJ/Task Path-Planning Processor
for 2-D/3-D Autonomous Navigation of Microrobots,” IEEE Journal
of Solid-State Circuits (JSSC), vol. 56, no. 1, pp. 112–122, 2020.
[Online]. Available: https://doi.org/10.1109/JSSC.2020.3037138

[93] S. Darabi, N. Mahani, H. Baxishi, E. Yousefzadeh-Asl-Miandoab,
M. Sadrosadati, and H. Sarbazi-Azad, “NURA: A Framework for
Supporting Non-Uniform Resource Accesses in GPUs,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 6,
no. 1, pp. 1–27, 2022.

[94] S. Darabi, M. Sadrosadati, N. Akbarzadeh, J. Lindegger, M. Hosseini,
J. Park, J. Gómez-Luna, O. Mutlu, and H. Sarbazi-Azad, “Morpheus:
Extending the Last Level Cache Capacity in GPU Systems Using
Idle GPU Core Resources,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 228–
244.

[95] S. Darabi, E. Yousefzadeh-Asl-Miandoab, N. Akbarzadeh, H. Falahati,
P. Lotfi-Kamran, M. Sadrosadati, and H. Sarbazi-Azad, “OSM: Off-
Chip Shared Memory for GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 3415–3429, 2022.

[96] J. M. Domingos, N. Neves, N. Roma, and P. Tomás, “Unlimited Vector
Extension with Data Streaming Support,” in International Symposium
in Computer Architecture (ISCA). IEEE, 2021, pp. 209–222.

[97] P. H. E. Becker, J.-M. Arnau, and A. González, “KD Bonsai: ISA-
Extensions to Compress KD Trees for Autonomous Driving Tasks,” in

International Symposium in Computer Architecture (ISCA), 2023, pp.
1–13.

[98] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A Hybrid Cache Partitioning-Sharing Technique
for Commodity Multicores,” in International Symposium on High-
Performance Computer Architecture (HPCA), February 2018.

[99] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Accel-
eration for General-Purpose Approximate Programs,” in International
Symposium on Microarchitecture (MICRO). IEEE, 2012, pp. 449–460.

[100] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-Time Motion Planning of Legged Robots: A Model Predictive
Control Approach,” in IEEE-RAS International Conference on
Humanoid Robotics (Humanoids). IEEE, 2017, pp. 577–584. [Online].
Available: https://doi.org/10.1109/HUMANOIDS.2017.8246930

[101] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi:
Architecture Support for Point Cloud Analytics Via Delayed-
Aggregation,” in International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1037–1050. [Online]. Available: https:
//doi.org/10.1109/MICRO50266.2020.00087

[102] W. Fornaciari, G. Agosta, D. Atienza, C. Brandolese, L. Cammoun,
L. Cremona, A. Cilardo, A. Farres, J. Flich, C. Hernandez et al.,
“Reliable Power and Time-Constraints-Aware Predictive Management
of Heterogeneous Exascale Systems,” in International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simula-
tion, 2018, pp. 187–194.

[103] C. S. Gadde, M. S. Gadde, N. Mohanty, and S. Sundaram, “Fast Ob-
stacle Avoidance Motion in Small Quadcopter Operation in a Cluttered
Environment,” in 2021 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT). IEEE,
2021, pp. 1–6.

[104] S. Ghodrati, S. Kinzer, H. Xu, R. Mahapatra, Y. Kim, B. H. Ahn,
D. K. Wang, L. Karthikeyan, A. Yazdanbakhsh, J. Park, N. S.
Kim, and H. Esmaeilzadeh, “Tandem Processor: Grappling with
Emerging Operators in Neural Networks,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 1165–1182. [Online].
Available: https://doi.org/10.1145/3620665.3640365

[105] R. Ghzouli, S. Dragule, T. Berger, E. B. Johnsen, and A. Wasowski,
“Behavior Trees and State Machines in Robotics Applications,” arXiv
preprint arXiv:2208.04211, 2022.

[106] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the
Edge: Inference on Intermittent Embedded Systems,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019, pp. 199–213.

[107] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A
Benchmark for RGB-D Visual Odometry, 3D Reconstruction and
SLAM,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 1524–1531. [Online]. Available: https:
//doi.org/10.1109/ICRA.2014.6907054

[108] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[Online]. Available: https://doi.org/10.1109/TSSC.1968.300136

[109] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Acceler-
ating Dependent Cache Misses with an Enhanced Memory Controller,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 444–
455, 2016.

[110] Y.-S. Hsiao, S. K. S. Hari, B. Sundaralingam, J. Yik, T. Tambe, C. Sakr,
S. W. Keckler, and V. J. Reddi, “VaPr: Variable-Precision Tensors
to Accelerate Robot Motion Planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2023,
pp. 6304–6309.

[111] D. Im, G. Park, Z. Li, J. Ryu, S. Kang, D. Han, J. Lee, and H.-J.
Yoo, “DSPU: A 281.6 MW Real-Time Depth Signal Processing Unit
for Deep Learning-Based Dense RGB-D Data Acquisition with Depth
Fusion and 3D Bounding Box Extraction in Mobile Platforms,” in 2022
IEEE International Solid-State Circuits Conference (ISSCC), vol. 65.
IEEE, 2022, pp. 510–512.

[112] M. Kar, A. Agarwal, S. Hsu, D. Moloney, G. Chen, R. Kumar,
H. Sumbul, P. Knag, M. Anders, H. Kaul, J. Byrne, L. Sarti,
R. Krishnamurthy, and V. De, “A Ray-Casting Accelerator in 10nm
CMOS for Efficient 3D Scene Reconstruction in Edge Robotics
and Augmented Reality Applications,” in IEEE Symposium on

563

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

VLSI Circuits (VLSIC). IEEE, 2020, pp. 1–2. [Online]. Available:
https://doi.org/10.1109/VLSICircuits18222.2020.9163067

[113] F. Kherif and A. Latypova, “Principal Component Analysis,” in Ma-
chine Learning. Elsevier, 2020, pp. 209–225.

[114] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi,
K. Kanellopoulos, and O. Mutlu, “EDEN: Enabling Energy-Efficient,
High-Performance Deep Neural Network Inference Using Approximate
DRAM,” in International Symposium on Microarchitecture (MICRO),
2019, pp. 166–181.

[115] L. Koutras and Z. Doulgeri, “Dynamic Movement Primitives for
Moving Goals with Temporal Scaling Adaptation,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
144–150.

[116] H. Koyuncu, “Loss Function Selection in NN Based Classifiers: Try-
Outs with a Novel Method,” in 2020 12th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). IEEE,
2020, pp. 1–6.

[117] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” 1998.

[118] J. J. Leonard, D. A. Mindell, and E. L. Stayton, “Autonomous Vehicles,
Mobility, and Employment Policy: The Roads Ahead,” Massachusetts
Institute of Technology, Cambridge, MA, Rep. RB02-2020, 2020.

[119] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm.” in Inter-
national Conference on Automated Planning and Scheduling (ICAPS),
vol. 5, 2005, pp. 262–271.

[120] I.-T. Lin, Z.-S. Fu, W.-C. Chen, L.-Y. Lin, N.-S. Chang, C.-P. Lin, C.-S.
Chen, and C.-H. Yang, “2.5 A 28nm 142mW Motion-Control SoC for
Autonomous Mobile Robots,” in 2023 IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2023, pp. 1–3.

[121] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and
H. Esmaeilzadeh, “Towards Statistical Guarantees in Controlling
Quality Tradeoffs for Approximate Acceleration,” in International
Symposium in Computer Architecture (ISCA), ser. ISCA ’16, 2016, p.
66–77. [Online]. Available: https://doi.org/10.1109/ISCA.2016.16

[122] V. Mayoral-Vilches, S. M. Neuman, B. Plancher, and V. J. Reddi,
“Robotcore: An Open Architecture for Hardware Acceleration in ROS
2,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 9692–9699.

[123] V. Mayoral-Vilches, J. Jabbour, Y.-S. Hsiao, Z. Wan, A. Martı́nez-
Fariña, M. Crespo-Álvarez, M. Stewart, J. M. Reina-Muñoz, P. Nagras,
G. Vikhe, M. Bakhshalipour, M. Pinzger, S. Rass, S. Panigrahi,
G. Corradi, N. Roy, P. B. Gibbons, S. M. Neuman, B. Plancher, and V. J.
Reddi, “RobotPerf: An Open-Source, Vendor-Agnostic, Benchmarking
Suite for Evaluating Robotics Computing System Performance,” in
Proceedings of International Conference on Robotics and Automation
(ICRA), 2024.

[124] A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar, “Can Gradi-
ent Clipping Mitigate Label Noise?” in International Conference on
Learning Representations (ICLR), 2019.

[125] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting Locality in Graph Analytics Through Hardware-
Accelerated Traversal Scheduling,” in International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 1–14.

[126] M. P. Muresan, I. Giosan, and S. Nedevschi, “Stabilization and Val-
idation of 3D Object Position Using Multimodal Sensor Fusion and
Semantic Segmentation,” Sensors, vol. 20, no. 4, p. 1110, 2020.

[127] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Vector Runahead,” in International Symposium in Computer
Architecture (ISCA). IEEE, 2021, pp. 195–208. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00024

[128] A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeck-
hout, “Decoupled Vector Runahead,” in International Symposium on
Microarchitecture (MICRO), 2023, pp. 17–31.

[129] S. M. Neuman, R. Ghosal, T. Bourgeat, B. Plancher, and V. J.
Reddi, “RoboShape: Using Topology Patterns to Scalably and Flexibly
Deploy Accelerators Across Robots,” in International Symposium in
Computer Architecture (ISCA), ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589104

[130] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and
V. J. Reddi, “Robomorphic Computing: A Design Methodology for
Domain-Specific Accelerators Parameterized by Robot Morphology,”
in International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), ser. ASPLOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 674–686. [Online]. Available: https://doi.org/10.1145/3445814.
3446746

[131] X. Ni, L. Fang, and H. Huttunen, “Adaptive L2 Regularization in
Person Re-Identification,” in 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, 2021, pp. 9601–9607.

[132] D. Nikiforov, S. C. Dong, C. L. Zhang, S. Kim, B. Nikolic, and Y. S.
Shao, “RoSÉ: A Hardware-Software Co-Simulation Infrastructure
Enabling Pre-Silicon Full-Stack Robotics SoC Evaluation,” in
International Symposium in Computer Architecture (ISCA), ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589099

[133] H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro, “Pure Pursuit
Revisited: Field Testing of Autonomous Vehicles in Urban Areas,” in
International Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA). IEEE, 2016, pp. 7–12.

[134] O. A. Osman, M. Hajij, P. R. Bakhit, and S. Ishak, “Prediction of Near-
Crashes from Observed Vehicle Kinematics Using Machine Learning,”
Transportation Research Record, vol. 2673, no. 12, pp. 463–473, 2019.

[135] A. Pajuelo, A. González, and M. Valero, “Speculative Dynamic Vector-
ization,” ACM SIGARCH Computer Architecture News, vol. 30, no. 2,
pp. 271–280, 2002.

[136] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The Arm
Neoverse N1 Platform: Building Blocks for the Next-Gen Cloud-To-
Edge Infrastructure Soc,” IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020.

[137] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The
Volumepro Real-Time Ray-Casting System,” in Proceedings of the 26th
annual conference on Computer graphics and interactive techniques,
1999, pp. 251–260.

[138] G. Pinto, F. Castor, and Y. D. Liu, “Understanding Energy Behaviors
of Thread Management Constructs,” in International Conference on
Object Oriented Programming Systems Languages & Applications,
2014, pp. 345–360.

[139] I. Pohl, “Heuristic Search Viewed As Path Finding in a Graph,”
Artificial intelligence, vol. 1, no. 3-4, pp. 193–204, 1970. [Online].
Available: https://doi.org/10.1016/0004-3702(70)90007-X

[140] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridg-
water et al., “Valkyrie: Nasa’s First Bipedal Humanoid Robot,” Journal
of Field Robotics, vol. 32, no. 3, pp. 397–419, 2015.

[141] M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista,
N. Paczan, R. Webb, and J. M. Susskind, “Hypersim: A Photorealistic
Synthetic Dataset for Holistic Indoor Scene Understanding,” in
International Conference on Computer Vision (ICCV), 2021. [Online].
Available: https://doi.org/10.48550/arXiv.2011.02523

[142] N. Rohbani, S. Darabi, and H. Sarbazi-Azad, “Pf-Dram: A Precharge-
Free Dram Structure,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2021, pp. 126–
138.

[143] J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh,
“RoboX: An End-To-End Solution to Accelerate Autonomous
Control in Robotics,” in International Symposium in Computer
Architecture (ISCA). IEEE, 2018, pp. 479–490. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00047

[144] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
Based Approximation for Data Parallel Applications,” in Proceedings
of the 19th international conference on Architectural support for
programming languages and operating systems, 2014, pp. 35–50.

[145] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-
Grain Cache Partitioning,” in International Symposium in Computer
Architecture (ISCA), June 2011.

[146] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,” in
International Symposium in Computer Architecture (ISCA), June
2013. [Online]. Available: https://doi.org/10.1145/2508148.2485963

[147] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig, and
H. Choset, “PRIMAL: Pathfinding Via Reinforcement and Imitation
Multi-Agent Learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378–2385, 2019.

[148] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey, “Can Traditional Programming Bridge
the Ninja Performance Gap for Parallel Computing Applications?”

564

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

ACM SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 440–
451, 2012.

[149] D. Shah, N. Yang, and T. M. Aamodt, “Energy-Efficient Realtime
Motion Planning,” in International Symposium in Computer
Architecture (ISCA), ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589092

[150] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell,
M. Bergdorf, J. Bhatt, J. A. Butts, T. Correia et al., “Anton 3: Twenty
Microseconds of Molecular Dynamics Simulation Before Lunch,” in
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2021, pp. 1–11.

[151] S. Shen, Y. Cai, J. Qiu, and G. Li, “Dynamic Dense RGB-
D SLAM Using Learning-Based Visual Odometry,” arXiv preprint
arXiv:2205.05916, 2022.

[152] Y. Shi, W. Zhang, Z. Yao, M. Li, Z. Liang, Z. Cao, H. Zhang, and
Q. Huang, “Design of a Hybrid Indoor Location System Based on
Multi-Sensor Fusion for Robot Navigation,” Sensors, vol. 18, no. 10,
p. 3581, 2018.

[153] J. Siderska, “Robotic Process Automation—a Driver of Digital Trans-
formation?” Engineering Management in Production and Services,
vol. 12, no. 2, pp. 21–31, 2020.

[154] T. Song, W. Rim, J. Jung, G. Yang, J. Park, S. Park, Y. Kim, K.-H.
Baek, S. Baek, S.-K. Oh et al., “A 14 nm FinFET 128 Mb SRAM With
VM IN Enhancement Techniques for Low-Power Applications,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 1, pp. 158–169, 2014.

[155] Statista Research Department, “Global Robotics Market Revenue
2018–2025,” https://www.statista.com/statistics/760190/worldwide-
robotics-market-revenue/, 2021.

[156] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and
B. Franke, “Cooperative Partitioning: Energy-Efficient Cache Partition-
ing for High-Performance CMPs,” in IEEE International Symposium
on High-Performance Comp Architecture. IEEE, 2012, pp. 1–12.

[157] I. Ullah, X. Su, X. Zhang, and D. Choi, “Simultaneous Localization
and Mapping Based on Kalman Filter and Extended Kalman
Filter,” Wireless Communications and Mobile Computing, vol.
2020, pp. 2 138 643:1–2 138 643:12, 2020. [Online]. Available: https:
//doi.org/10.1109/SIU.2009.5136492

[158] R. Vang-Mata, Multilayer Perceptrons: Theory and Applications. Nova
Science Publishers, 2020.

[159] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer,
S. Makineni, and D. Newell, “Molecular Caches: A Caching Structure
for Dynamic Creation of Application-Specific Heterogeneous Cache
Regions,” in International Symposium on Microarchitecture (MICRO).
IEEE, 2006, pp. 433–442.

[160] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu, “A Survey of FPGA-Based Robotic Computing,”
arXiv preprint arXiv:2009.06034, 2020. [Online]. Available: https:
//doi.org/10.48550/arXiv.2009.06034

[161] Y. Wang, L. Zhang, and G. Chen, “Optimal Sensor Placement for
Obstacle Detection of Manipulator Based on Relative Entropy,” in
2019 14th IEEE Conference on Industrial Electronics and Applications
(ICIEA). IEEE, 2019, pp. 702–707.

[162] J. T. Wen and S. H. Murphy, “PID Control for Robot Manipulators,”
1990.

[163] Z. Ying, S. Bhuyan, Y. Kang, Y. Zhang, M. T. Kandemir, and C. R.
Das, “EdgePC: Efficient Deep Learning Analytics for Point Clouds on
Edge Devices,” in International Symposium in Computer Architecture
(ISCA), 2023, pp. 1–14.

[164] A. Younis, L. Shixin, S. Jn, and Z. Hai, “Real-Time Object
Detection Using Pre-Trained Deep Learning Models MobileNet-SSD,”
in International Conference on Computing and Data Engineering
(ICCDE), 2020, pp. 44–48. [Online]. Available: https://doi.org/10.
1145/3379247.3379264

[165] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building
the Computing System for Autonomous Micromobility Vehicles:
Design Constraints and Architectural Optimizations,” in International
Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 1067–
1081. [Online]. Available: 10.1109/MICRO50266.2020.00089

[166] U. Zahavi, A. Felner, J. Schaeffer, and N. Sturtevant, “Inconsistent
Heuristics,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 7, 2007, pp. 1211–1216.

[167] Q.-b. Zhang, P. Wang, and Z.-h. Chen, “An Improved Particle Filter for
Mobile Robot Localization Based on Particle Swarm Optimization,”

Expert Systems with Applications, vol. 135, pp. 181–193, 2019.
[Online]. Available: https://doi.org/10.1016/j.eswa.2019.06.006

[168] Y. Zhou and J. Zeng, “Massively Parallel A* Search on a GPU,” in
Proceedings of the AAAI Conference on Artificial Intelligence, ser.
AAAI’15. AAAI Press, 2015, p. 1248–1254. [Online]. Available:
https://doi.org/10.1609/aaai.v29i1.9367

[169] Y. Zhu, “RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing,” in Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2022, pp. 76–89.

565

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 10,2025 at 21:55:44 UTC from IEEE Xplore. Restrictions apply.

