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ABSTRACT

Technology companies reduce their datacenters’ carbon footprint
by investing in renewable energy generation and receiving credits
from power purchase agreements. Annually, datacenters offset their
energy consumption with generation credits (Net Zero). But hourly,
datacenters often consume carbon-intensive energy from the grid
when carbon-free energy is scarce. Relying on intermittent renew-
able energy in every hour (24/7) requires a mix of renewable energy
from complementary sources, energy storage, and workload sched-
uling. In this paper, we present the Carbon Explorer framework to
analyze the solution space. We use Carbon Explorer to balance trade-
offs between operational and embodied carbon, optimizing the mix
of solutions for 24/7 carbon-free datacenter operation based on
geographic location and workload. Carbon Explorer has been open-
sourced at https://github.com/facebookresearch/CarbonExplorer.
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1 INTRODUCTION

Carbon-free energy is essential for environmental sustainability.
The UN’s 24/7 Carbon-Free Energy Compact calls for an ambitious
goal: "Every kilowatt-hour of electricity consumption is met with
carbon-free electricity sources, every hour of every day, every-
where" [75]. In the US, the Department of Defense and the General
Services Administration seek strategies for "supplying 24/7 carbon
pollution-free electricity for the federal government" [76]. Comput-
ing must do its part to address this societal challenge. Electricity
consumed by datacenters is significant and growing rapidly. Data-
centers world-wide consumed 205 TWh in 2018 [58], exceeding the
annual consumption of countries such as Ireland and Denmark [67].
Information and communication technology may account for 7%
to 20% of global electricity demand by 2030 [3, 34].

Net Zero versus 24/ 7. At present, technology companies invest
in renewable energy generation to offset datacenter energy con-
sumption [18, 35, 39]. Amazon, Meta, and Google have collectively
invested in 22 GW of renewable energy generation to meet Net
Zero commitments. These investments align with broader efforts.
In the United States, renewable energy generation is projected to
increase from 20% in 2020 to 42% by 2050 as the nation pursues Net
Zero [73]. Solar and wind comprise 47% and 34% of this renewable
energy [77].

Yet 24/7 carbon-free computing remains challenging because
renewable energy supply fluctuates. The broad deployment of solar
and wind farms will lead to increasingly severe hourly and seasonal
supply fluctuations. Figure 1 highlights fluctuations when renew-
able generation comprises 33% of the total. At times, the grid’s
supply of renewable energy may exceed demand, forcing inefficient
curtailments that deactivate renewable energy generation in order
to match supply with demand [6, 10, 11, 48]. At other times, solar
and wind energy is scarce.
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Figure 1: Hourly wind and solar energy generation in Cali-
fornia grid during a week of time-frame.

Under these conditions, datacenters consume carbon-intensive
energy despite achieving Net Zero. Investments in wind and solar
farms issue a renewable energy credit for every MWh generated.
Annually, datacenters claim Net Zero by matching credits against
energy consumed by their computation. Hourly, however, datacen-
ters continue to emit carbon by consuming carbon-intensive energy
(from gas or coal) when carbon-free supply (from wind or solar)
is insufficient. Thus, more must be done to eliminate computing’s
hourly carbon emissions.

Sustainability Design Space. 24/7 carbon-free computing re-
quires re-visiting classic questions in datacenter architecture and
management. Architects have studied power infrastructure [20] to
maximize performance and utilization subject to power constraints
[19, 29, 69]. They have developed schedulers in which jobs request
resources and schedulers allocate them [33, 41], perhaps with fair-
ness and sharing incentives [22, 84]. Architects must rethink these
frameworks for carbon-free energy.

Architects must first define parameterized solutions for coping
with intermittent renewable energy. And they require tools that re-
veal carbon-efficient combinations of these solutions. One solution
is demand response, which schedules computation to align renew-
able energy supply and datacenter energy demand [5, 64, 79, 80, 86].
A second is energy storage, which reduces exposure to supply fluc-
tuations [50, 54]. Finally, further investment in wind and solar offers
more carbon-free energy.

These solutions have implications for infrastructure. Datacen-
ters will need additional servers that perform extra computation
when carbon-free energy is abundant [87], batteries much larger
than those in today’s power infrastructure, and investments in en-
ergy generation that reflect the datacenter’s location and relative
availability of wind and solar. All of this infrastructure incurs em-
bodied carbon costs, an important but under-explored aspect of
datacenter sustainability. Architects must pursue coordinated de-
sign and management—spanning hardware architecture, datacenter
systems, distributed software—to identify the carbon-optimal mix
of solutions.

Carbon Explorer. Carbon Explorer enables architects to op-
timize datacenters for 24/7 carbon-free computing (Section 2). It
consumes data about datacenter energy demands and renewable
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energy supplies across diverse geographic locations (Section 3).
Moreover, it estimates the effect of investments in renewable en-
ergy using grid data, in energy storage using physically accurate
battery models, and in server capacity needed for demand response
scheduling using production datacenter traces (Section 4).

Carbon Explorer takes a holistic approach to datacenter design,
balancing reductions in operational carbon against increases in
embodied carbon incurred when manufacturing servers, batteries,
and wind/solar farms. Although it seeks to maximize the number
of hours using carbon-free energy (i.e., coverage), Carbon Explorer
occasionally discovers that embodied carbon costs outweigh oper-
ational carbon reductions and identifies a solution that does not
achieve 100% coverage but is carbon-optimal. Specifically, we report
several key findings (Section 5).

e Site Selection. Among 13 regions where Meta sites data-
centers, Iowa and Nebraska (majorly wind) as well as hybrid
regions (wind and solar) such as Texas are best for mini-
mizing carbon costs because their supply valleys (days in
the year with lowest levels of renewable energy supply) are
shallowest.

e Renewables Only. Relying on renewable energy for cover-
age produces diminishing returns. Datacenters require 5X
more renewables to increase coverage from 95% to 99.9%
than from 0% to 95%. Accounting for embodied carbon in
wind/solar farms, carbon-optimal designs achieve 37% to
97% coverage.

e With Batteries. Batteries permit datacenters to reach 100%
coverage for four regions and 99% coverage for majority of
the rest. Batteries must be large enough for a few hours of
computation, but embodied carbon costs can be justified by
reductions in operational carbon.

e With Scheduling. Demand response increases coverage by
1%-22% depending on the region. Scheduling requires 6% to
76% additional servers to support deferred computation, but
their embodied carbon costs can be justified by reductions
in operational carbon when 40% of workloads are flexible.

o All Together. Demand response reduces battery capacity
required and makes 100% coverage optimal for five regions
and above 99% for rest of the regions except OR.

To further research in carbon-aware datacenter design and man-
agement, the Carbon Explorer framework has been made available
at https://github.com/facebookresearch/CarbonExplorer.

2 CARBON EXPLORER

Figure 2 illustrates Carbon Explorer, a design space exploration
framework that takes a holistic approach to achieve 24/7 carbon-free
computing. Carbon Explorer considers two important inputs: time-
series data that details the power demand of large-scale datacenters
and the intermittent nature of renewable energy generation at
specific geographic locations (Figure 2-left). Next, Carbon Explorer
characterizes a solution space that spans the following dimensions
(Figure 2-center):

o Investments in varied types of renewable energy,
e Investments in varied amounts of energy storage,
o Scheduling that shifts varied amounts of computation.
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Figure 2: Design Overview for Carbon Explorer. Carbon Explorer considers important characteristics, such as time-series
power demand of large-scale datacenters and renewable energy availability on the power grids, as inputs. Carbon Explorer
characterizes the design space across renewable energy investments, energy storage, and computation shifting. Carbon Explorer
provides quantitative measures for strategies to achieve carbon-minimum settings.

Finally, Carbon Explorer models the datacenter design space and
minimizes the carbon footprint, accounting for both operation and
embodied carbon (Figure 2-right).

Carbon Explorer’s inputs include two hourly time series. The
first details power consumed by each of Meta’s datacenters in vari-
ous locations across the United States. The second details energy
generation from the local grids in each datacenter location. Ta-
ble 1 summarizes these locations and Meta’s renewable energy
investments. Section 3 characterizes datacenter energy demand and
renewable energy supply, which has implications for a production
datacenter’s carbon footprint.

We evaluate three distinct solutions for 24/7 carbon-free datacen-
ters. First, datacenters could offset their energy consumption with
renewable energy generation. Operators invest in wind and solar
farms on the power grids that supply their datacenters. Moreover,
they implement power purchase agreements, which issue credits
for renewable energy generated from those investments and off-
set datacenter energy consumed. This state-of-the-art solution has
been central to hyperscale datacenters’ pursuit of Net Zero goals.

Second, datacenters could install energy storage and batteries to
handle the intermittent availability of renewable energy. Although
today’s datacenters do not yet deploy batteries to manage their
operational carbon footprint, they do deploy batteries to ensure
system resilience and shave power peaks [40, 56]. As lithium-ion
batteries mature, they become cost-effective for deployment at scale.
On-site energy storage enables a new strategy for 24/7 carbon-free
datacenters.

Finally, datacenters could schedule computation in response to
renewable energy supply. Such demand response likely requires
investment in additional servers. A datacenter that defers tasks
when renewable energy is scarce must compute for those tasks
when renewable energy is abundant, generating demand for servers
above and beyond typical loads. In effect, bursts of renewable energy
generate bursts of computation and demand for servers.
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The three solutions lead to trade-offs between operational and
embodied carbon footprints. Renewable energy permits carbon-free
operation but is constrained by energy availability and consistency,
which varies with geography. Large batteries store carbon-free
energy but incur carbon overheads from manufacturing. Additional
servers permit demand response and scheduling but also incur
carbon overheads from manufacturing [30].

Carbon Explorer defines a comprehensive design space for 24/7
carbon-free datacenters. Section 4 navigates trade-offs in the solu-
tion space with a quantitative approach. And Section 5 illustrates
the solution space for various geographic locations, highlighting
the impact of site selection for future datacenters.

3 OPERATIONAL GRID INPUTS: DEMAND
AND SUPPLY CHARACTERISTICS

Carbon-aware datacenter design requires understanding datacenter
energy demand and renewable energy supply, at fine granularity
and in every region. Table 1 lists the locations of Meta’s datacenters
and renewable energy investment, each identified by the balancing
authority for the electric grid [68]. Total investment in renewables
is nearly six Gigawatts.

Our energy supply analysis draws data from the U.S. Energy
Information Administration (EIA) Hourly Grid Monitor, which pro-
vides operating data for power grids in the lower 48 states [78].
Launched in 2019, the monitor provides hourly generation statis-
tics by collecting data from balancing authorities (BAs). Each BA
operates a grid and balances electricity flows, controlling electricity
generation and transmission within its own region and between
neighboring authorities.

3.1 Characterizing Datacenter Power Demand

Meta has built hyperscale datacenters across the globe with dif-
ferent capacities. These datacenters exhibit diurnal load patterns
due to variations in user activity and exhibit peaks due to special
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Figure 3: [left] Hourly DC CPU fluctuations of Meta and Google DCs. [right] Hourly CPU Utilization and Power correlation of

Meta DCs.

Table 1: Meta’s Datacenter Locations in the U.S. and Regional
Renewable Investments [68]

Location Balancing Renewable Investment [MW]

Authority |Solar | Wind Total
1. Sarpy County, Nebraska (NE) SWPP 0 515 515
2. Prineville, Oregon (OR) BPAT 100 0 100
3. Eagle Mountain, Utah (UT) PACE 694 | 239 933
4. Los Lunas, New Mexico (NM) PNM 420 | 215 635
5. Fort Worth, Texas (TX) ERCO 300 | 404 704
6. DeKalb, Illinois (IL) PIM
7. Henrico, Virginia (VA) PIM 840 | 309 1149
8. New Albany, Ohio (OH) PIM
9. Forest City, North Carolina (NC) DUK 410 0 410
10. Altoona, Iowa (IA) MISO 0 141 141
11. Newton County, Georgia (GA) SOCO 425 0 425
12. Gallatin, Tennessee (TN) TVA 742 0 742
13. Huntsville, Alabama (AL) TVA

Total | 1823 | 3931 5754

events and holidays. Figure 3 shows diurnal usage for Meta and
Google datacenters and illustrates how power usage correlates with
processor utilization. Google analysis is done using the open-source
Borg traces [26]. Meta’s CPU utilization and power is averaged over
three months. For Meta, CPU utilization swings by about 20% for an
average datacenter and can swing by even more for an individual
datacenter. For Google, the difference between the maximum and
the minimum CPU utilization is 15%, on average [74].

However, diurnal patterns from interactive computation do not
translate directly into power patterns. At datacenter scale, the dif-
ference between maximum and minimum energy demand is around
4%, on average, which is relatively insignificant compared to the
swings in renewable energy supply. Thus, in today’s datacenters,
power variations will arise primarily from supply but not demand.
Yet shifting computation to modulate datacenter power is possi-
ble because workloads exhibit different flexibility levels and come
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Table 2: Carbon Efficiency of Various Energy Sources

Type | gCOzeq/kWh |Type gC02eq/kWh
Wind 11 Natural Gas 490
Solar 41 Coal 820
Water 24 Nuclear 12
0il 650 Other (Biofuels etc.) 230

with distinct service level objectives (SLOs). The highest priority,
user-facing services require real-time response. Latency-tolerant
workloads, such as batch and Al training jobs [71, 82], target specific
SLO categories that include 4-, 8- and 24-hour completion times.
Google has reported that flexible jobs with 24-hour completion
SLOs make up about 40% of the Borg scheduler’s jobs [74]. This
flexibility permits carbon-aware workload scheduling.

3.2 Characterizing Datacenter Power Supply

In this section, we present two scenarios that describe how data-
centers could consume energy from rapidly evolving power grids.
In the first scenario, datacenter operators collaborate with utility
providers to invest in renewable energy on the grids that power the
datacenters by purchasing energy with sophisticated accounting
frameworks that track renewable energy credits. This represent
the state-of-the-art in reducing a datacenter’s operational carbon
footprint for Net Zero commitments [18, 35, 39]. In the second sce-
nario, datacenter operates on renewable energy 24/7 by optimizing
hourly supply and demand.

Net Zero. Datacenter operators invest in renewable generation,
such as wind and solar, and implement power purchase agreements
(PPAs) to reduce datacenter exposure to the grid’s carbon intensity.
PPAs link renewable energy credits (RECs) with a specific source of
energy and issue, e.g., one certificate for every MWh generated [17,
25, 36]. With RECs, the energy consumed is much greener than the
energy offered by the grid. Table 2 details the carbon intensity of
different electricity sources in the grid. The grid’s energy mix is
determined by the utility provider’s dispatch stack and portfolio of
generating assets [9]. But the datacenter’s energy mix is determined
by its pre-negotiated PPAs, which deliver carbon-free energy.
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Figure 4: Wind and solar curtailments have been increasing
with the renewables on the California grid [6].

With Net Zero matching, at the end of the month (or end of
the year), the total amount of energy generated and credits issued
is equal or greater than the total amount of energy consumed.
Although on an hourly basis, the carbon intensity of the energy
used can be as much as the grid’s carbon intensity during the times
when there is not enough renewable supply [27].

24/7 Carbon Free. In addition to installing renewable energy,
24/7 carbon-free datacenters must address variable, intermittent
generation. Figure 5 highlights variability across geography with
rows corresponding to three representative regions with distinct
renewable energy profiles: (a) Oregon BPAT with wind; (b) North
Carolina DUK with solar; (c) Utah PACE with a mix of wind and
solar. More broadly, of the ten balancing authorities in Table 1,
three offer primarily wind energy (BPAT, MISO, SWPP), three offer
primarily solar energy (DUK, SOCO, TVA), and four offer a mix
(ERCO, PACE, PJM, PNM).

Figure 5 also highlights variability across time with columns
corresponding to summary statistics calculated over the year: (a)
Yearly Average; (b) Histogram of Total Daily Generation [78]. On
average, wind and solar installations provide significant supply,
but averages obscure high variance across time. For BPAT, the best
ten days of the year offer approximately 2.5 times more renewable
energy than the average whereas the worst offer very little. His-
tograms quantify this variance and illustrate uncertainty in wind
and solar supply.

As solar and wind farms proliferate, peaks and valleys in en-
ergy supply will become increasingly extreme. Utility providers
will find it increasingly difficult to match its supply to consumer’s
demand. For example, California’s renewable sources can generate
much more electricity than needed in the middle of the day [6].
And curtailments are needed to manage excess supply and reduce
renewable energy generation [10, 11, 48]. Figure 4 indicates that,
since 2015 the curtailed gap between supply and demand has grown
steadily as wind and solar capacity has increased. In 2021, curtail-
ments reached 6% of the total generated renewable energy in the
California grid, which has deployed a significantly more renewable
electricity compared to the U.S. average (33% vs 20% in 2020 [7, 72]).

It is becoming increasingly complicated to fully consume peak
renewable energy generation due to the high variance. When sup-
ply exceeds demand, only generators with the lowest prices can
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supply energy to the grid. Prices can be zero or even negative
because inputs to wind/solar farms are free and generators often
receive government subsidies [15, 88]. As a result, grids may offer
lower time-of-use energy prices and incentivize datacenters to defer
computation to periods of abundant renewable energy.

Challenges in variable supply and curtailments require energy
storage and demand response scheduling during periods of scarcity.
Energy storage mitigates supply variations by providing carbon-
free energy when solar and wind cannot [60, 61]. Demand response
modulates datacenter demand for energy based on signals about
renewable energy supply. Signals could come in the form of utility
surcharges or credits when the datacenter consumes or reduces
its energy demand during various times of day [55]. Signals can
also come from utility providers’ generation statistics that describe
the mix of green and brown energy across time and geographic
locations.

In summary, the Net Zero scenario describes how renewable
energy investments significantly reduce the carbon intensity of dat-
acenter operations. And the 24/7 scenario describes how additional
investments in energy storage and demand response schedulers
could further reduce carbon intensity on an hourly basis. Figure 6
compares the carbon intensity of these scenarios with that of the
grid’s energy mix.

4 DATACENTER DESIGN: STRATEGIES FOR
CARBON FREE COMPUTING

A datacenter must implement a portfolio of complementary solu-
tions to achieve its goal of using 24/7 carbon-free energy efficiently
and robustly. Carbon Explorer considers renewable energy invest-
ments (Section 4.1), energy storage installations (Section 4.2), and
carbon-aware scheduling (Section 4.3). In this section, we model
and analyze these solutions and associated trade-offs in operational
and embodied carbon footprints.

4.1 Renewable Energy

Carbon Explorer determines the solar and wind investments re-
quired for datacenters in different geographic regions to increase
and achieve 100% hourly renewable coverage. We define renewable
coverage as the percentage of hours in the year where datacenter
power (Ppc) is covered by renewable power (Prep):

{1 - Z {Ppc - PRen}/Z PDC} X 100 Vhour € DateRange

hour hour

Carbon Explorer projects hourly wind and solar energy supply
by scaling EIA grid data in proportion to the desired renewable
investment level. It takes the maximum generated solar and wind
power throughout the year as the maximum capacity of the local
grid. Then, the hourly generation data is linearly scaled to the
desired renewable investment capacity. Finally, hourly renewable
supply data is matched against hourly datacenter demand for every
region to calculate renewable coverage. Figure 7 shows renewable
coverage (z-axis) with different wind (x-axis) and solar (y-axis)
investments from two regions served primarily by wind and solar,
respectively.

Figure 7 reports Meta’s existing renewable investments with
black lines. While these investments help Meta achieve Net-Zero
goals on a monthly or annual basis, coverage on an hourly basis is
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Figure 5: Figure shows hourly wind and solar generation of an average day in year 2020 (left) and histogram of daily sum to
highlight day-to-day fluctuations of wind and solar generation in BPAT (in OR), DUK (in NC) and PACE (in UT) balancing
authorities. The data is calculated over the entire year of 2020.
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Figure 6: Comparison of hourly operational carbon intensity
of different DC energy supply scenarios.

only 46% and 51% in the two regions. Each region tends to favor a
particular type of renewable energy generation on its local grids
and Meta’s investments generally align with those profiles. One
exception is Oregon, where Meta’s investments emphasize solar
despite the local grid’s emphasis on wind.

For regions served primarily by wind energy, like Oregon, high
day-to-day fluctuations increase the investment in wind generation
needed to satisfy minimum energy needs. For regions that rely
entirely on solar for renewable energy, it is impossible to increase
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24/7 coverage much beyond 50% because solar energy is available
only during the day. For regions that deploy a mix of solar and
wind generated renewables, the tail is shorter and diminishing
marginal returns in 24/7 coverage are less severe since wind and
solar availability can complement each other.

There is a long tail to reach 100% renewable coverage. As coverage
increases, curves flatten and indicate diminishing marginal returns
from further investment in renewable generation. Figure 8 high-
lights the full length of the tail for Oregon’s datacenter. It takes
more than 5X more investments in renewable energy generation
to go from 95% to 99.9% than to go from 0% to 95% coverage. Due
to space limitations, we are unable to show profiles of every data-
center location. But this representative analysis shows that other
solutions, such as energy storage and carbon-aware scheduling, are
essential to complement renewable energy generation.

Note that accurate hourly energy supply data is crucial when
making design decisions. Figure 8 shows that assuming wind and
solar output to be same as average output every day leads to overly
optimistic design conclusions. Under this assumption, achieving
100% coverage would require an order of magnitude less renewable
investments. Thus, Carbon Explorer requires fine-grained time
series supply and demand data when determining investments in
renewable energy generation.

4.2 Battery Storage

The Carbon Explorer framework is designed to include a modu-
lar battery model that supports different storage technologies to
be added through a simple API In this work, we analyze lithium-
ion batteries (LIB) as improvements in energy storage over the
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Figure 7: 24/7 coverage with varying amount of wind and solar investments. Black lines show Meta’s renewable investment

amount in the corresponding region.

last decade have led to LIB to offer high capacity and energy den-
sity [13]. As the technology has matured, LIB has become a common,
cost-effective storage medium for renewable energy [83]. There is
also emerging technologies such as sodium-ion (Na+) batteries, for
which materials are easier to obtain and come with lower environ-
mental impact [62]. For these reasons, batteries play an important
role in 24/7 carbon-free computing. This section describes how
Carbon Explorer evaluates the impact of batteries that are charged
by renewable energy and discharged by datacenter servers.
Datacenters already deploy batteries to prevent the interrup-
tion of services during maintenance or power failures. Batteries

Oregon, Majorly Wind Region

100

80

60

40

20

Renewable Coverage [%]

Actual
If every day was like an average day

2000 4000 6000 8000
Total Renewable Capacity (Solar + Wind) [MW]

Figure 8: 24/7 coverage with different renewable investments
highlighting the long tail. Each point represents a different
solar + wind capacity combination.

124

Utah, Solar and Wind Mixed Region =

AVG DC Power: 19 MW 'g

=

g pldr) 86 48 33 20 10 07 @)

~N A

— 40 ©
o bl 88 49 34 21 10 0.7 v

= 3 >
= S
> ogo EOR) 89 5.0 35 21 10 0.7 305
B 0 5.0 00 S
g g EEWd 90 5.0 3.5 22 1 5/ N
b 20 5
Y sEXJ92 51 36 23 10 07 o«
m b
S s oRENCo8 370 24 11 0.7 10-§
~ o

o 20.3 0.9 82 56 43 &

0

0 200 400 600 800 1000 1200 o

Wind Capacity [MW] I

[an]

Figure 9: How much battery needs to be deployed for 24/7
renewable energy?

distributed throughout racks and clusters permit continuous oper-
ation when utility power fails and the datacenter must switch to
diesel generator backups [57].

We envision batteries deployed on-site with the datacenter to
reduce its carbon footprint. Batteries will be charged when there is
excess renewable supply (i.e. when the amount of energy produced
by the renewable deployment is larger than datacenter’s demand).
Batteries will be discharged to power the datacenter when there is a
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lack of renewable supply (i.e. when the amount of energy produced
by the renewable deployment is smaller than datacenter’s demand).

The battery model used in Carbon Explorer is the C/L/C model [38];

it explicitly models several characteristics of lithium-ion batteries,
including energy content limits, efficiency loss, limits on the ap-
plied power with respect to the energy content, and linear charg-
ing/discharging rates with respect to battery capacity on minute
basis. The model also includes a parameter for controlling the depth
of discharge (DoD). Model parameters are tuned to represent a bat-
tery composed of Lithium Iron Phosphate cells (LFP) [1] — a cell
type found often in large stationary storage applications.

Figure 9 shows the amount of energy storage capacity required
to reach 24/7 renewable energy coverage at different solar and wind
capacities for Utah datacenter. Capacity is reported in terms of com-
putational hours (e.g., 2 hours for a 20MW datacenter corresponds
to 40MWh of battery capacity). Regions with mixed solar and wind
generation exhibit less variable, day-to-day fluctuations and can
achieve 24/7 carbon-free compute with less battery capacity. By
adding around five hours of battery capacity to its existing renew-
able investments in the region, Meta’s Utah datacenter can reach
24/7 carbon-free operational energy. A battery of this size would be
comparable to a utility-scale battery; the largest utility-scale energy
storage project so far can offer 300 MW of power and 1,200-MWh
of capacity [14].

In contrast, battery capacity requirements for 24/7 are great-
est for regions that rely majorly on wind. Oregon suffers from
extremely high day-to-day fluctuations and there are days with
almost no wind power. Requirements are also high for regions
that rely entirely on solar. For example, North Carolina datacenter
requires 14 hours of battery-based compute.

4.3 Carbon Aware Scheduling

Carbon-aware scheduling (CAS) exploits delay tolerant workloads
to achieve 24/7 carbon-free computing, shifting workloads from
times when the carbon intensity of electricity sources is high to
times when it is low. Hyperscale datacenter workloads are com-
monly organized into tiers based on their Service Level Agreements
(SLAs). Higher tier jobs are latency sensitive and require high avail-
ability.

On the other hand, lower tiers can tolerate delays. Examples tem-
porally flexible workloads include AI model training, data process-
ing pipelines, and offline video processing. Google traces indicate
a significant fraction of jobs submitted to the Borg scheduler are
in the free and best-effort-batch tiers with weak SLAs [74]. Jobs at
Meta exhibit similar characteristics. For example, the offline data
processing workloads constitute about 7.5% of all the workloads
in the fleet. Of these, about 87.4% of the workloads have SLOs that
are greater than 4-hours with a majority having 24-hour SLOs.
This provides great flexibility in workload time shifting to optimize
carbon.

Carbon Explorer estimates the potential benefits of carbon aware
workload scheduling using a greedy algorithm. The algorithm takes
two customizable input constraints: datacenter capacity and flexible
workload ratio for each hour of the day. Given these two constraints,
flexible workloads are moved from times of highest carbon intensity
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DC.

to times of lowest intensity until all flexible workloads have been
moved or all datacenter servers have been used for the given hour.

Input Constraint 1: Ppc,, , = Maximum DC Capacity
Input Constraint 2: FWR = Flexible Workload Ratio (%)
Goal: For each day, minimize:
> APpc(h) = Pren(h)}
hehour
where

PDc(h) < PDCMAX and
Ppc(h) X FWR is allowed to shift

Figure 11 illustrates an example of a carbon aware scheduling
over three days. The blue line shows how the grid’s carbon inten-
sity varies depending on the hour of the day. The red and orange
lines shows datacenter power draw when carbon aware schedul-
ing is and is not applied. In this example, the maximum allowed
power capacity of the DC is assumed to be 17.6 MW and 10% of the
workloads running every hour are flexible to finish within a day.

Additional Capacity. Shifting computation across time may
require additional server capacity for sustained increases in com-
putation when carbon-free/low-carbon energy is abundant. The
need for surplus capacity reveals an interesting trade-off between
operational and embodied carbon, which has not been considered
by any existing work in the literature [5, 64, 79].

From an operations perspective, increasing the number of provi-
sioned servers mitigates the data center’s carbon footprint by per-
mitting demand response and reducing the carbon intensity of its
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Figure 12: Scenario 3: Carbon aware scheduling for 24/7.

energy. However, from the embodied perspective, over-provisioned
servers increase embodied carbon emissions from hardware man-
ufacturing [30]. Therefore, there is a fine balance between opera-
tional and capital expenditures.

Energy-proportional design is essential when over-provisioning
datacenter servers [4]. Idle servers should draw little power, es-
pecially since hourly scheduling decisions provide ample time for
servers to switch between power models. Indeed, server power
can be accurately modeled as a linear function of utilization with
the y-intercept denoting a server’s idle power. Figure 3 illustrates
energy-proportionality and correlation between Meta’s datacenter
power and its CPU utilization.

Figure 12 shows how much server capacity is required to achieve
24/7 carbon-free computation. Additional capacity is measured as a
percentage of the datacenter’s existing capacity. In this example, all
workloads are assumed to be flexible to shift. Analysis shows that
the additional capacity required to reach to 24/7 varies between
19% to over 100% (i.e. doubling the number of servers). Note that, as
an alternative to deploying more servers, datacenters might Turbo
Boost their current servers to increase compute throughput without
increasing capital costs and embodied carbon.

5 CARBON MINIMIZATION: HOLISTIC
DESIGN EXPLORATION

Reaching 24/7 carbon-free computing comes with non-negligible
embodied carbon costs. Thus, Carbon Explorer must consider both
operational and embodied carbon when minimizing the overall
carbon footprint. Figure 13 presents the process of identifying an
optimal datacenter design point from the carbon footprint’s per-
spective.

First, Carbon Explorer requires inputs for its models of oper-
ational and embodied carbon. Operational inputs include hourly
datacenter power demand and renewable power supply. Embodied
inputs account for the carbon emissions from manufacturing and
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Figure 13: Carbon Explorer

the expected lifetimes of solar and wind farms, lithium-ion batteries,
and datacenter servers.

Carbon Explorer exhaustively searches the design space to mini-
mize the sum of operational and embodied carbon. The design space
includes the three solutions — renewable, battery, server invest-
ments — described in detailed in Section 4. Datacenter operators
specify the bounds of the design space. Finally, Carbon Explorer
outputs the carbon-optimal investments in renewable energy gen-
eration, battery capacity, and server capacity.

5.1 Embodied Carbon

Renewables. The manufacturing (or embodied) carbon footprint
for wind turbines ranges from 10-15 grams of CO2 per kWh whereas
the footprint for solar farms ranges from 40-70 grams of CO; per
kWh [31]. These numbers are derived from a life cycle analysis
and accounts for manufacturing costs and the expected amount of
energy generated over the asset’s lifetime. The average lifetime for
solar panels is 25-30 years and that for wind turbines is 20 years.

Batteries. The manufacturing footprint of lithium-ion batteries
ranges from 74 to 134 kilograms of CO, per KWh of battery capac-
ity [16, 66] and comprised of three major steps. (1) The majority of
this footprint comes from production of the upstream battery mate-
rials, which is 59 kg per KWh and 44-80% of the total footprint. (2)
Cell production and assembly is the part which uses the most elec-
tricity and hence the footprint ranges from 0-60 kg per KWh and is
0-44% of the total footprint depending on renewable energy usage
during production. (3) End-of-life processing/recycling, which is a
necessary and challenging task for batteries, generates 15 kg per
KWh and is 11-20% of the total footprint [83]. The lifetime of the
battery is calculated in terms of the number of discharge cycles.
Utility-scale batteries, such as Tesla’s Powerpack, last 3000-4000
cycles [70].

Lithium Iron Phosphate technology we model in this paper al-
lows a large number of charge/discharge cycles. Charging rate
(C-Rate) and Depth of Discharge are two of the important factors
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Figure 14: Operational and embodied footprint of the three
solutions. Pareto frontier shows how the long tail to reach
100% renewable coverage can be shortened with complemen-
tary solutions.

effecting the lifetime of the battery. In this work, we assume C-Rate
of 1C meaning full discharge or charge in one hour as our renewable
energy data is on hourly basis. DoD provides a maximum usage
limit over batter’s total energy capacity, to extend it’s lifespan. In
standard environment with proper temperature, humidity, and for
1C-rate cycles, life cycle estimation for LFP batteries are 3000 cycles
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at 100% DoD, and 4500 cycles at 80% DoD [63]. We studied these
two scenarios.

Servers. The manufacturing footprint of servers is estimated
to be 744.5 kg eq CO3 [32], using an HPE ProLiant DL360 Gen10
server as a proxy. This server includes a single-socket CPU with
48 GB DRAM and has Thermal Design Power (TDP) of 85 Watts.
Carbon measurements include its mainboard, SSD, daughterboard,
enclosure, fans, transport and assembly. We estimate server lifetime
of five years.

When demand response requires additional servers, to capture
additional cost for floor-space and other infrastructure required,
we added a parameterized surcharge cost. Even if new facility con-
struction were required, initial estimates suggest carbon from con-
struction is small compared to carbon from servers. For example,
of Meta’s 2019 Scope 3 carbon emissions, 42% and 7% is attributed
to hardware infrastructure and construction, respectively [30]. In
other words, construction’s carbon footprint is only 16% of hard-
ware’s. This large difference might be explained by the relatively
longevity of existing datacenters and rarity of new construction. A
hyperscale datacenter’s lifetime is 15 to 20 years whereas server
hardware is typically three to five years. Therefore, Carbon Ex-
plorer models total embodied carbon by applying the multiplier to
be 1.16x to server’s embodied carbon.

However, sustainability reports carry several caveats. Hardware’s
carbon accounts for both refreshing existing datacenters and pro-
visioning new ones. Construction’s carbon is reported in the year
incurred rather than amortized. Reports do not breakdown carbon
incurred by a datacenter and its hardware. Further analysis will
require better public data and carbon models for construction.

5.2 A Holistic Analysis

Figure 14 illustrates unique trade-offs between decreases in opera-
tional carbon (y-axis) and increases in embodied carbon (x-axis).
In this evaluation, we assume 40% of datacenter workloads are
delay-tolerant, a realistic flexible workload ratio [74], and can be
deferred for carbon-aware scheduling. We examine four strate-
gies: renewable energy generation alone, renewables with batteries,
renewables with carbon-aware scheduling, and renewables with
batteries and carbon-aware scheduling (Section 4).

The space includes solutions that can significantly reduce a data-
center’s overall carbon footprint. Reductions in operational carbon
incur increases in embodied carbon. Datacenter operators must be
careful in its pursuit of 24/7 coverage because some solutions incur
much higher embodied carbon costs than others. Renewable gen-
eration alone is insufficient and solutions that combine renewable
energy generation with batteries and scheduling are needed.

The Pareto frontier indicates that any solution for 24/7 carbon-
free operations (i.e., zero operational carbon) must include renew-
able energy and batteries. Moreover, as 24/7 coverage increases,
solutions that include batteries will incur smaller embodied carbon
costs than solutions that rely solely on renewable energy and/or
deploying additional servers to support carbon-aware scheduling.

Unfortunately, the Pareto frontier exhibits a long tail, which in-
dicates increasingly expensive solutions required to reach full 24/7
coverage. For example, in Oregon, investments in renewable energy
and batteries can quickly reduce operational CO; from 600 to 400
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Figure 15: The total footprint of the carbon-optimal setting of each solution per MW DC capacity.

kilotons with minimal embodied cost. But eliminating the remain-
ing 400 kilotons of operational carbon will require significantly
larger embodied carbon cost.

Figure 15 details the most effective strategy for 24/7 carbon-free
datacenter operation by geographic location and availability of
renewable energy. We show the total carbon footprint, breaking
down operational (solid) and embodied (cross-pattern) components.
The carbon footprint is normalized relative to datacenter sizes, mea-
sured in MW of power capacity. We annotate each bar, identifying
solutions that achieve full 100% 24/7 coverage (green stars) and
those that make partial progress (red percentages).

Renewables Only. Relying solely on renewable energy genera-
tion incurs the highest embodied carbon costs in every geographic
region. The 24/7 renewable coverage with renewables only ranges
from 37% to 97% depending on geographical regions. Because re-
newable energy generation is intermittent, datacenter operators
would need a large number of solar or wind farms to ensure suf-
ficient supply during supply valleys. Even with significant invest-
ment, however, renewable energy supply fundamentally depends
on weather and time of day, which leads to incomplete 24/7 cov-
erage and higher operational carbon footprints that dominate the
datacenter’s total carbon footprint.

Figure 15 indicates the most effective renewable solutions in-
clude wind farms. A combination of wind and solar farms provides
complementary generating assets and mitigates supply variance.
Hybrid geographic regions, which use both wind and solar, achieve
higher 24/7 coverage that ranges from 88% to 97%.

Regions that rely primarily on wind can also achieve high 24/7
coverage with careful datacenter site selection. Out of the thirteen
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locations, datacenters in Nebraska (a majorly-wind region), Utah
and Texas (wind and solar hybrid regions) stand out as the best
locations to minimize total carbon footprint and achieve highest
coverage. Valleys in energy supply are shallower in these windy
regions compared to those in others. In contrast, regions that rely
primarily on solar (i.e., NC, GA, TN, AL) struggle to achieve full
24/7 coverage and incur the highest carbon footprints since solar
energy is only available during parts of the day.

Renewables + Battery. The addition of batteries reduces the
total carbon footprint by an order of magnitude in all geographic
regions. The reduction is most pronounced in regions that rely only
on solar energy. For four of the thirteen datacenter regions (TN,
AL, TX, NM), the most carbon-efficient solution deploys enough
battery capacity to achieve 100% 24/7 coverage and completely
eliminate the datacenter’s operational carbon footprint. For the
other regions optimal renewable energy coverage ranges from 82%
to 99%. The battery capacity amount to achieve the optimal footprint
ranges from 200MWh - 1800MWh for different datacenters and it
would represent a utility scale battery capacity. Given hyperscale
datacenters cost billions of dollars [59], this battery investment
represents a small fraction of a data center’s overall cost at current
battery prices of $350/kWh [12].

Suppose we manage batteries such that the depth of discharge
(DoD) is 100%. Under the carbon-optimal battery configuration, Fig-
ure 16 indicates batteries are often fully charged or fully discharged.
Although this outcome arises naturally from our scheduling algo-
rithm, which maximizes the battery usage to avoid carbon-intensive
energy, high DoD can harm battery lifespan. Conversely, lower DoD
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may benefit lifespan but reduce the batteries’ usable capacities, re-
quiring larger batteries or using carbon-intensive energy. Thus, we
discover a trade-off between embodied and operational carbon.

For example, compare DoD of 100% and 80%. The lower DoD
of 80% increases battery lifespan and the number of (dis)charge
cycles by 50%. But because shallower discharges reduce the effec-
tive capacity of the battery, larger batteries are required and the
associated embodied carbon increases by 43% in the carbon-optimal
configuration. Evaluating the net impact, Carbon Explorer finds that
80% DoD lowers total carbon by 5% on average, across geographic
regions.

Lowering DoD further increases battery lifetime but requires
even larger batteries [63]. At some point, shallower DoD becomes
counterproductive. A 60% DoD implies 10,000 daily (dis)charge
cycles and 27-year battery lifespan. Other degradation factors would
come in to play before reaching the 27-year lifespan. Overall, tuning
DoD can lower total carbon by 3-9% across the DC regions.

Renewables + CAS. Carbon-aware scheduling provides an al-
ternative to batteries, increasing 24/7 coverage by 1% to 21% across
geographic regions. Carbon Explorer finds that deploying 6% to
76% additional server capacity allows the scheduler to move com-
putation from periods when renewable energy is scarce to periods
when it is abundant, thereby reducing the datacenter’s overall car-
bon footprint. However, carbon-aware scheduling is constrained by
the degree of workload flexibility and the number of provisioned
servers available to process deferred jobs. Due to these constraints,
scheduling alone is insufficient for full 24/7 coverage in regions
characterized by many days with near zero renewable energy (e.g.,
wind in Oregon) or regions that rely exclusively on solar energy.

Renewables + Battery + CAS. A combination of battery de-
ployments and carbon-aware scheduling offers additional improve-
ments. We use a heuristic based solution where the priority is given
to the workloads to minimize the runtime delays. Whenever there
is lack of renewable supply, the energy stored in the battery is used
first and workload shifting happens only if the energy stored in
the batteries are not sufficient (at maximum DoD level). Whenever
there is extra renewable supply, all available workloads are exe-
cuted to use the available power first and batteries are charged with
the remaining supply. This reduces the additional capacity required
to reach 24/7 coverage compared with a battery only solution or
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a CAS-only solution alone and makes 100% coverage the carbon-
optimal solution in five of the regions. For rest of the regions except
OR, carbon-optimal solution is at above 99%.

In summary, 24/7 coverage depends on renewable energy gener-
ation characteristics of the datacenter region, delay tolerance char-
acteristics of the workloads and the possibility of using batteries. In
several cases, achieving complete 24/7 coverage is neither feasible
nor the most carbon-efficient solution. Solutions that complement
investments in renewable energy are necessary. The addition of
batteries and carbon-aware scheduling can reduce a datacenter’s
total carbon footprint by 15-65% depending on the region. However,
there are other side-effects of using batteries and additional servers
such as environmental factors and construction limitations. When
designing carbon-aware solutions one must take the other factors
into account as well.

Looking forward, to achieve a sustainable future for datacenters,
understanding the design dimensions of carbon-free datacenter de-
sign is crucial. We expect the delay tolerance nature of computing to
increase. For example, recent research on carbon-aware datacenter
software for sustainability has started to emerge [2]. Delay-tolerant
computing, such as Al training, is becoming more prevalent as
well [81]. At the same time, the strong demand for a clean energy
future has propelled significant efficiency improvement for both
renewable infrastructures and energy storage technologies [8, 21].
Thus, in addition to computing’s delay tolerance, a carbon-optimal
datacenter design will also hinge on the trade-off between renew-
able energy utilization (as a result of operational efficiencies of
energy generation and storage) and the associated embodied car-
bon cost. This is exactly the design space and optimization that
Carbon Explorer enables.

6 DISCUSSION AND RELATED WORK

Renewable Energy. Prior academic research emphasizes renew-
able energy on-site at the datacenter [46]. Computation uses local,
solar energy and minimizes energy consumed from the grid [23, 24].
The datacenter’s power infrastructure is enhanced to switch be-
tween multiple types of local generators and microgrids [46, 47, 53].
And strategies are developed to deploy scale out servers and renew-
able generators in a modular fashion [43, 45]. These strategies seem
sensible for edge and fog servers [44]. However, the hyperscale data-
centers we study avoid many of these challenges. They do not need
to manage local power generation because they have invested in
renewable generation on the grid at scales that are unlikely on-site.
Yet they improve sustainability through power purchase agree-
ments. We study renewable energy across geographic locations and
coordinate their installation with battery and server provisioning
at scale.

Energy Storage. Batteries ensure datacenter availability but can
also modulate the datacenter’s demands for grid power [28, 29].
For datacenters that use renewable energy, batteries can mitigate
intermittent supplies of solar and wind [51, 52]. Performance and
efficiency vary with battery technology, motivating heterogeneous
solutions [50, 54]. Battery aging can be mitigated by managing
charge-discharge cycles and demand for stored energy [49]. We
quantify energy storage required for 24/7 carbon-free computing
and, without loss of generality, consider lithium-ion batteries for
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their attractive downward cost trajectory and acceptable ten-plus
year lifetimes under simulated usage.

Battery technologies will impact data center design and man-
agement. The price of lithium-ion batteries is falling significantly,
declining by 80% from 2015 to 2020 [60, 61]. These batteries have
been deployed at scale and, for example, can supply 28 MW for four
hours. Such operational parameters align with hyperscale datacen-
ters, which are provisioned for 20 to 40 MW. Four hours of battery
operation could significantly reduce demand response requirements
from job scheduling.

In terms of the implementation strategy of batteries, datacenter
operators could collaborate with utility providers to invest in batter-
ies on the grid just as they do for wind and solar farms. Alternatively,
they could deploy batteries on-site at the datacenter. Datacenter
may wish to implement custom battery charge-discharge policies,
which have previously been explored at much smaller scales for
uninterruptible power supplies [28, 29]. Whether these policies can
be implemented in the form of contracts with grid operators is to
be determined.

Finally, there are environmental and health risks associated with
extraction of lithium from either the sea or the soil and the disposal
of batteries. Spent LIBs contain toxic materials including heavy
metals and flammable electrolytes, and therefore they need to be
properly recycled and disposed in order not to cause contamination
of the soil, water and air [65, 85]. This is another aspect that needs
consideration when making large-scale battery deployments.

Carbon-Aware Scheduling. Time-series analysis accurately
forecasts renewable supplies and datacenter demands for energy.
Forecasts permit optimizing schedules of flexible jobs in response
to energy supply [86]. Optimization objectives have accounted
for electricity prices [55], carbon prices in cap-and-trade markets
[42], the carbon-intensity of grid energy [64], and service quality
[37]. Timely energy data is necessary for intelligent scheduling
[5, 79]. We perform offline analyses to defer flexible computation
and explore the design space for 24/7 carbon-free computing. A
future implementation would benefit from prior schedulers.

Other Considerations. Note that Carbon Explorer quantifies
the net impact on carbon emissions, the key contributor to climate
change, and leaves broader considerations in sustainability for fu-
ture work. Our view of lithium-ion batteries quantifies carbon from
manufacturing and recycling but neglects the impact of lithium
extraction or other side effects. Similarly, our view on servers and
power do not consider the impact of electronic waste and water us-
age for cooling. Although important, these broader environmental
impacts are beyond the scope of our study.

Moreover, Carbon Explorer emphasizes parameterized models
because our understanding of carbon emissions in computing is
still rapidly evolving. Operational emissions depend on the na-
ture of renewable energy investments, the financial agreements for
procuring this energy, and battery technologies. Embodied emis-
sions depend on accurate accounting and transparent reporting
throughout a massive supply chain. Carbon Explorer sets parame-
ters based on the best publicly available data and these parameters
can be tuned as better data becomes available.
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7 CONCLUSION

This paper presents Carbon Explorer — a design space exploration
tool to enable carbon-optimal investment strategies. Carbon Ex-
plorer determines carbon-optimal settings across the dimensions
of investments on various renewable energy types, the amount of en-
ergy storage, and carbon-aware computation shifting by considering
geographically-dependent renewable energy availability character-
istics and computation demand patterns at the data center scale.
Carbon Explorer demonstrates that, depending on graphical lo-
cations, carbon-optimal strategies vary and that when embodied
carbon footprint is considered, 100% 24/7 operational carbon-free
computing may not always be carbon-optimal. We hope Carbon
Explorer can guide future sustainability investments to achieve
operational and embodied carbon footprint optimality.
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