18-742:

Computer Architecture & Systems

Back to the Future: Leveraging Belady's Algorithm for Improved Cache Replacement

Akanksha Jain and Calvin Lin

Presented by Mitchell Fream

Spring 2025, Lecture 24

Cache Replacement

The cache has a limited capacity

 We have to "evict" some items from the cache to make room for others

Cache replacement: Which item to evict?

Cache Replacement in Computer Systems

Whole throughout the hierarchy

Hardware managed and software managed

What Is The Best Algorithm?

- There is no one-fits-all algorithm
 - Different cache layers, different applications, different configurations favor different algorithms

- For hardware caches, LRU is the de facto algorithm
 - Why it works?

Belady's Algorithm

• If the goal is maximizing hit ratio, Belady's algorithm is the optimal cache replacement

- The algorithm: evict the block which will be used later than the others in future
 - Not practical ⊗

"Back to the Future: Leveraging Belady's Algorithm for Improved Cache Replacement"

Akanksha Jain, Calvin Lin 2016

- A novel cache replacement policy
- A practical implementation inspired by the Belady's algorithm

50 Years of Microprocessor Trend Data

Why LRU Is Not The Best?

Medium-term Reuse

Long-term Reuse

C1	C2	C3	C4

Short-term Reuse

Why LRU Is Not The Best?

This Paper

- Try to learn Belady's algorithm and mimic its behavior
 - A practical approximation for an impractical algorithm

Back to the future?

This Paper

- Try to learn Belady's algorithm and mimic its behavior
 - A practical approximation for an impractical algorithm

- Back to the future?
 - Yes

How Far Ahead Is Enough?

 OPTgen determines if the next access to the same address is likely to be a hit

Look back at previous accesses to see reuse distance

Figure 6: Example to illustrate OPTgen.

Hit or Miss Hawkeye Prediction	Cache Hit	Cache Miss
Cache-averse	RRIP = 7	RRIP = 7
Cache-friendly	RRIP = 0	RRIP = 0;
		Age all lines:
		if $(RRIP < 6)$
		RRIP++;

Miss Reduction

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations, interesting parts of the design, or clever parts of the implementation.

Performance Improvement

Performance Improvement

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly designed or the main idea had a narrow scope or applicability.

"P-OPT: Practical Optimal Cache Replacement for Graph Analytics"

Vignesh Balaji, Neal Crago, Aamer Jaleel, Brandon Lucia 2021

A replacement policy for graph analytics

Cache Replacement Policy Now

- Still an active area
 - Especially in industry!

- Modern processors typically use sophisticated replacement policies beyond LRU for their last-level caches
 - Mostly undocumented

• What if the cache is compressed?

What if the cache is compressed?

Base-Victim Compression: An Opportunistic Cache Compression Architecture

Jayesh Gaur, Alaa R. Alameldeen, Sreenivas Subramoney

Intel Corporation

Email: jayesh.gaur@intel.com, alaa.r.alameldeen@intel.com, Sreenivas.subramoney@intel.com

What if the cache is compressed?

Base-Victim Compression: An Opportunistic Cache Compression Architecture

Jayesh Gaur, Alaa R. Alameldeen, Sreenivas Subramoney

Intel Corporation
Email: jayesh.gaur@intel.com, alaa.r.alameldeen@intel.com, Sreenivas.subramoney@intel.com

Are all cache blocks equally important for <u>performance</u>?

What if the cache is compressed?

Base-Victim Compression: An Opportunistic Cache Compression Architecture

Jayesh Gaur, Alaa R. Alameldeen, Sreenivas Subramoney
Intel Corporation
Email: jayesh.gaur@intel.com, alaa.r.alameldeen@intel.com, Sreenivas.subramoney@intel.com

Are all cache blocks equally important for <u>performance</u>?

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering

The University of Texas at Austin

{moin, lynch, onur, patt}@hps.utexas.edu

What if the backing memory is non-volatile?

What if the backing memory is non-volatile?

WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System

ZHE WANG, Texas A&M University
SHUCHANG SHAN, Chinese Institute of Computing Technology
TING CAO, Australian National University
JUNLI GU and YI XU, AMD Research
SHUAI MU, Tsinghua University
YUAN XIE, AMD Research/Pennsylvania State University
DANIEL A. JIMÉNEZ, Texas A&M University

What if the backing memory is non-volatile?

WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System

ZHE WANG, Texas A&M University
SHUCHANG SHAN, Chinese Institute of Computing Technology
TING CAO, Australian National University
JUNLI GU and YI XU, AMD Research
SHUAI MU, Tsinghua University
YUAN XIE, AMD Research/Pennsylvania State University
DANIEL A. JIMÉNEZ, Texas A&M University

Is performance the only metric?

What if the backing memory is non-volatile?

WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System

ZHE WANG, Texas A&M University
SHUCHANG SHAN, Chinese Institute of Computing Technology
TING CAO, Australian National University
JUNLI GU and YI XU, AMD Research
SHUAI MU, Tsinghua University
YUAN XIE, AMD Research/Pennsylvania State University
DANIEL A. JIMÉNEZ, Texas A&M University

Is performance the only metric?

Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against Cache-Based Side Channel Attacks

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, Josep Torrellas University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

To Read for Wednesday

"A New Case for the TAGE Branch Predictor"
Andre Seznec 2011

Optional Further Reading:

"BranchNet: A Convolutional Neural Network to Predict Hard-to-Predict Branches"

Siavash Zangeneh, Stephen Pruett, Sangkug Lym, Yale Patt 2020