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Cache Replacement

e The cache has a limited capacity

e We have to “evict” some items from the cache to make room for
others

e Cache replacement: Which item to evict?




Cache Replacement in Computer Systems

e Whole throughout the hierarchy

e Hardware managed and software managed

L3 cache
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What Is The Best Algorithm?

e There is no one-fits-all algorithm

— Different cache layers, different applications, different
configurations favor different algorithms

e For hardware caches, LRU is the de facto algorithm
— Why it works?




Belady’s Algorithm

e |f the goal is maximizing hit ratio, Belady’s algorithm is the
optimal cache replacement

e The algorithm: evict the block which will be used later than the
others in future

— Not practical ®




“Back to the Future: Leveraging Belady’s Algorithm

for Improved Cache Replacement”
Akanksha Jain, Calvin Lin 2016

e A novel cache replacement policy

e A practical implementation inspired by the Belady’s algorithm
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Why LRU Is Not The Best?
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This Paper

e Try to learn Belady’s algorithm and mimic its behavior
— A practical approximation for an impractical algorithm

e Back to the future?
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How Far Ahead Is Enough?
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The Design
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The Design

*OPTgen determines if the next access to the same address is likely
to be a hit

eLook back at previous accesses to see reuse distance
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The Design
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Miss Reduction
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Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations,
observations, interesting parts of the design, or clever parts of the
implementation.




Performance Improvement
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Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was
poorly designed or the main idea had a narrow scope or
applicability.




“P-OPT: Practical Optimal Cache Replacement for

Graph Analytics”

Vignesh Balaji, Neal Crago, Aamer Jaleel, Brandon Lucia 2021

e A replacement policy for graph analytics
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Cache Replacement Policy Now

e Still an active area
— Especially in industry!

e Modern processors typically use sophisticated replacement
policies beyond LRU for their last-level caches

— Mostly undocumented




Is Belady’s Algorithm Always The Best?

e What if the cache is compressed?
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e Are all cache blocks equally important for performance?
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e Are all cache blocks equally important for performance?

A Case for MLP-Aware Cache Replacement

Moinuddin K. Qureshi Daniel N. Lynch Onur Mutlu  Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
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Is Belady’s Algorithm Always The Best?

e What if the backing memory is non-volatile?
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e |s performance the only metric?

Secure Hierarchy-Aware Cache Replacement Policy (SHARP):
Defending Against Cache-Based Side Channel Attacks

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, Josep Torrellas
University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu




To Read for Wednesday

“A New Case for the TAGE Branch Predictor”

Andre Seznec 2011

Optional Further Reading:

“BranchNet: A Convolutional Neural Network to
Predict Hard-to-Predict Branches”

Siavash Zangeneh, Stephen Pruett, Sangkug Lym, Yale Patt 2020




