
Let’s Start With Some Questions…
1. Can graphs be easily processed by DNNs (Deep Neural Networks)?

No!

2. What is the solution to this problem?

Graph Neural Networks (GNNs)

Graphite: Optimizing Graph Neural
Networks on CPUs Through Cooperative

Software-Hardware Techniques

Zhangxiaowen Gong†*, Houxiang Ji†, Yao Yao†, Christopher W. Fletcher†,
Christopher J. Hughes*, Josep Torrellas†

†University of Illinois at Urbana-Champaign, *Intel Labs

Slides adapted from [2] and presented by Fiona Fisher and Maxence Cumer
March 26, 2025

The Authors

Zhangxiaowen Gong, UIUC & Intel Yao Yao, UIUC Christopher J. Hughes, Intel

Houxiang Ji, UIUC Christopher W. Fletcher, UIUC Josep Torrellas, UIUC

The Big Idea: Processing Graphs on Graph
Neural Networks with CPUs

Graphs

● Graphs are data structures notated by edges and nodes/vertices.
○ In practice, the nodes/vertices are objects (e.g., a online product) and their edges are

relationships (e.g., what a customer is most likely to buy after that product).

● Graphs have many use-cases in modern computing [3].
○ e.g., friend networks on social media platforms, citation networks for online research

paper repositories, flight routes and planning…

● Traditional Deep Neural Networks (DNNs) cannot compute with graphs, because
they are non-Euclidean.
○ Non-euclidean means graphs have “curvature”, unlike other data sets, like a

grid of pixels, that DNNs can handle [4].

GNN Characteristic: Alternating Phases

● Aggregation: each vertex gathers and
reduces features from neighbors/edges.
○ Sparse connections.

○ Irregular memory access patterns.
○ Poor locality.
○ Memory intensive.
○ Variable execution time for each vertex,

correlated with the vertex’s degree.

● Update: each vertex computes its
output features from the aggregation
outputs with a DL op (e.g. MLP).

○ Dense computation.
○ Regular memory access patterns.
○ Good locality.
○ Compute intensive.
○ Similar execution time for each vertex.

● Two alternating phases (per layer): Aggregation and Update.

GNN Characteristic: Activation (Feature) Sparsity

● Sparsity: zeros in the working sets.
○ ReLU: Layer activation function that sets

any negative number to 0.
○ Feature dropout: ML technique to reduce

overfitting. During training, some features
(usually 50%) are set at zero.

○ Graphs are also often inherently sparse.

● Feature sparsity is dynamic &
unstructured.
○ Costly to frequently compress.

● The problem: operating on zeros is
ineffectual.

Example: feature sparsity during 3-layer GraphSAGE
training on the ogbn-products dataset.

Other GNN Characteristics

● Long feature length.
○ Traditional graph analytics: often scalar feature.
○ GNN: often hundreds to thousands.

● Reuses input graphs in training.

Motivation: GNNs on CPUs

DNNs are typically run on GPUs or accelerators. Why switch to CPUs for GNNs?

1. CPUs are very common.
a. GNN tasks could be performed on the same machine as other tasks.

2. CPUs have terabyte-level memory capacity.
a. Real-world graphs are very large. Often millions to billions of vertices and edges.

● GNNs on CPUs are memory bandwidth bound.

And Finally: Graphite!

Graphite is a group of cooperative hardware and software techniques designed to
optimize running GNNs on CPUs.

● Software techniques that speedup inference by 1.8x & training by 1.9x:
○ Layer fusion to overlap compute and memory.
○ Feature compression to reduce memory traffic.
○ Input preprocessing to increase locality.

● HW-SW codesign techniques that speedup inference by 1.8x & training by 2.4x:
○ Enhanced DMA engine to offload aggregation.

Graphite Software Techniques

Basic Optimized Implementation

The aggregation vectors of all vertices are independent

Aggregation
Phase

Update
Phase

Regular,
compute-intensive

Irregular,
memory-intensive

Layer k, vertex v:
Wait for all
vertices

1

2

n

Basic Optimized Implementation

● Create different threads:
○ Each thread will process the

aggregation phase for a
subset of vertices

○ In the end of the aggregation
phase, the feature vectors of
each vertex will be updated

Why do we need a synchronization barrier before the update?

Basic Optimized Implementation

Aggregation
Phase

Update
Phase

Regular,
compute-intensive

Irregular,
memory-intensive

Layer k, vertex v: Wait for all
vertices

1

2

n

The feature vector of a vertex only depends on its aggregation vector

Layer Fusion

● Goal: overlap memory-bound
and compute-bound operations

● Fusion: interleave aggregation
and update of vertex batches

The feature vector of a vertex only depends on its aggregation vector

Overlapping Compute-Memory

● Prefetches the features needed by the aggregation of the
next batch

● Ongoing prefetch overlaps with the update

In multi-core systems, memory bandwidth is a shared resource

Feature Compression

● Goal: reduce memory traffic
● Avoid loading/storing zeros
● Fast vector compression and

decompression instructions

Increasing Locality in Aggregation

The cost of preprocessing the inputs is amortized in GNN training

● Goal: increase temporal reuse of vertex features
● Idea:

○ Compute a new processing order of vertices
○ Assign each vertex to the group of its highest-degree neighbor
○ Vertices in a group are processed temporally closely and reuse at lease one

feature vector

Increasing Locality in Aggregation

V2

V4 V1

V3

V5 V0

Increasing Locality in Aggregation

V2

V4 V1

V3

V5 V0

Group of V1:
V0, V2, V3, V4

Increasing Locality in Aggregation

V2

V4 V1

V3

V5 V0

● Original processing order: V0, V1, V2, V3, V4, V5
● New processing order: V0, V2, V3, V4, V1, V5

Group of V1:
V0, V2, V3, V4

Group of V4:
V1, V5

Linear complexity:
O(V+E)

Good scalability

The cost of
preprocessing the inputs

is amortized in GNN
training

Graphite HW-SW Co-design Techniques

GNN Aggregation and DMA

● Scatter-gather is a common Direct Memory Access (DMA) operation.
○ Aggregation is a gather and reduce operation.
○ Graphite enhances DMA to perform aggregation.

● Incompatible with feature compression.
○ Compression hardware is costly.
○ Only useful for GNNs which implement ReLU and/or feature dropout.

Graphite DMA Structure

● Each core has a DMA engine attached to the L2 cache.
○ Easy access to the STLB for virtual address translation.
○ Aggregation results can be quickly transferred.
○ Benefits from the locality of the shared L3.

● Graphite reuses function units in existing DMA.
○ Adds a narrow vector unit to perform reductions.

● Uses a descriptor-based programming model.
○ 64B descriptor encodes an aggregation.
○ Easily built from CSR encoded adjacency matrices.

DMA Aggregation

One DMA engine per processor, connected via the NoC.

DMA Aggregation: The Descriptor

● In a traditional DMA, the descriptor identifies the gather operation.
○ In GNNs, the data blocks (feature vectors) are small.

● In Graphite, the descriptor identifies the entire aggregation.

DMA Aggregation: The Operation

No cache coherency concerns with this design due to the read-only nature of the
input features.

DMA Aggregation: The Operation

At beginning of the aggregation phase, the relevant L2 lines are pre-fetched to avoid
miss latency when they are written back.

Putting It Together: DMA-Assisted Layer Fusion

● On each processor:
○ DMA handles aggregation stage.
○ Core handles update stage.

● The update of a vertex batch
overlaps with the aggregation of the
next vertex batch.

Evaluation

Evaluation Setup

● GNN Models:
○ 3-layer GCN and GraphSAGE

● Datasets:
○ 4 graphs with 2.5M-111M vertices and 45M-1.6B edges

● Baseline:
○ SOTA SpMM from DistGNN[6] + MKL GEMM

● Evaluation:
○ SW-only techniques: 28-core Cascade Lake server running 28 threads
○ HW+SW techniques: Sniper[7] multi-core simulator simulating the 28-core

server

Performance: SW-only techniques

Performance: HW+SW techniques

Conclusion

Conclusion

● GNNs on CPUs: memory bandwidth bound
● Graphite alleviates memory pressure by:

○ Fusing layers to overlap compute and memory
○ Compressing features to reduce memory traffic
○ Optimizing the vertex processing order to improve locality
○ Augmenting the DMA engine to offload aggregation

● Evaluated with 28 cores
○ SW-only techniques: inference 1.8x, training 1.9x speedup (native)
○ HW+SW techniques: inference 1.8x, training 2.4x speedup (simulated)

References

[1] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas. 2022.
Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques. In The 49th Annual
International Symposium on Computer Architecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 16
pages. https://doi.org/10.1145/3470496.3527403

[2] Gong, Z., Ji, H., Yao, Y., Fletcher, C., Hughes, C., & Torrellas, J. (2022). Graphite: Optimizing Graph Neural Networks on CPUs
Through Cooperative Software-Hardware Techniques. https://www.iscaconf.org/isca2022/slides/isca22-gong-graphite.pdf

[3] Real-Life Applications of Graphs. (2024, April 9). GeeksforGeeks.
https://www.geeksforgeeks.org/real-life-applications-of-graphs/

[4] Kurniadi, E. (2011, November 14). The Difference Between Euclidean and Non Euclidean Geometry. Elika Kurniadi.
https://elikakurniadi.wordpress.com/2011/11/14/the-difference-between-euclidean-and-non-euclidean-geometry/

[6] Vasimuddin Md, et al. 2021. DistGNN: scalable distributed training for large-scale graph neural networks. SC‘21

[7] Trevor E. Carlson, et al. 2011. Sniper: Exploring the Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulations. SC’11

Questions?

