Let's Start With Some Questions...

Can graphs be easily processed by DNNs (Deep Neural Networks)?
 No!

2. What is the solution to this problem?

Graph Neural Networks (GNNs)

Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques

Zhangxiaowen Gong^{†*}, Houxiang Ji[†], Yao Yao[†], Christopher W. Fletcher[†], Christopher J. Hughes*, Josep Torrellas[†]

[†]University of Illinois at Urbana-Champaign, *Intel Labs

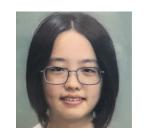
Slides adapted from [2] and presented by Fiona Fisher and Maxence Cumer March 26, 2025

The Authors

Zhangxiaowen Gong, UIUC & Intel

Houxiang Ji, UIUC

Yao Yao, UIUC



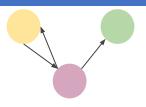
Christopher W. Fletcher, UIUC

Christopher J. Hughes, Intel

<u>Iosep Torrellas</u>, *UIUC*

The Big Idea: Processing *Graphs* on *Graph Neural Networks* with *CPUs*

Graphs



- Graphs are data structures notated by edges and nodes/vertices.
 - In practice, the nodes/vertices are **objects** (e.g., a online product) and their edges are **relationships** (e.g., what a customer is most likely to buy after that product).
- Graphs have many use-cases in modern computing [3].
 - e.g., friend networks on social media platforms, citation networks for online research paper repositories, flight routes and planning...
- Traditional Deep Neural Networks (DNNs) cannot compute with graphs, because they are **non-Euclidean**.
 - Non-euclidean means graphs have "curvature", unlike other data sets, like a grid of pixels, that DNNs can handle [4].

GNN Characteristic: Alternating Phases

- Two alternating phases (per layer): Aggregation and Update.
- Aggregation: each vertex gathers and reduces features from neighbors/edges.
 - Sparse connections.
 - Irregular memory access patterns.
 - Poor locality.
 - Memory intensive.
 - Variable execution time for each vertex, correlated with the vertex's degree.

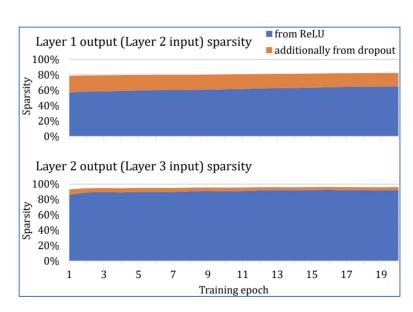
$$\mathbf{a}_{v}^{k} = AGGREGATE(\mathbf{h}_{u}^{(k-1)} \mid \forall u \in \mathcal{N}(v) \cup \{v\})$$

- **Update**: each vertex computes its output features from the aggregation outputs with a DL op (e.g. MLP).
 - **Dense** computation.
 - o **Regular** memory access patterns.
 - o **Good** locality.
 - Compute intensive.
 - Similar execution time for each vertex.

$$\mathbf{h}_{v}^{k} = \text{UPDATE}(\mathbf{a}_{v}^{k})$$

GNN Characteristic: Activation (Feature) Sparsity

- **Sparsity**: zeros in the working sets.
 - ReLU: Layer activation function that sets any negative number to 0.
 - Feature dropout: ML technique to reduce overfitting. During training, some features (usually 50%) are set at zero.
 - Graphs are also often inherently sparse.
- Feature sparsity is dynamic & unstructured.
 - Costly to frequently compress.
- The problem: operating on zeros is ineffectual.



Example: feature sparsity during 3-layer GraphSAGE training on the ogbn-products dataset.

Other GNN Characteristics

- Long feature length.
 - Traditional graph analytics: often scalar feature.
 - GNN: often hundreds to thousands.

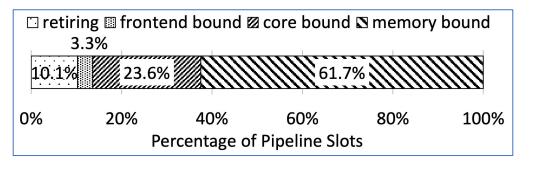
Dataset	Vertex feature length
Cora	1,433
Citeseer	3,703
Reddit	602
Ogbn-products	100

Reuses input graphs in training.

Motivation: GNNs on CPUs

DNNs are typically run on GPUs or accelerators. Why switch to CPUs for GNNs?

- 1. CPUs are very common.
 - a. GNN tasks could be performed on the same machine as other tasks.
- 2. CPUs have terabyte-level memory capacity.
 - a. Real-world graphs are very large. Often millions to billions of vertices and edges.
- GNNs on CPUs are memory bandwidth bound.



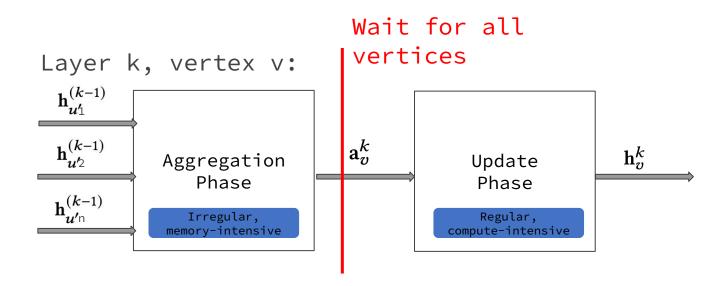
And Finally: Graphite!

Graphite is a group of cooperative hardware and software techniques designed to optimize running GNNs on CPUs.

- **Software techniques** that speedup inference by 1.8x & training by 1.9x:
 - <u>Layer fusion</u> to overlap compute and memory.
 - <u>Feature compression</u> to reduce memory traffic.
 - <u>Input preprocessing</u> to increase locality.
- **HW-SW codesign techniques** that speedup inference by 1.8x & training by 2.4x:
 - Enhanced DMA engine to offload aggregation.

Graphite Software Techniques

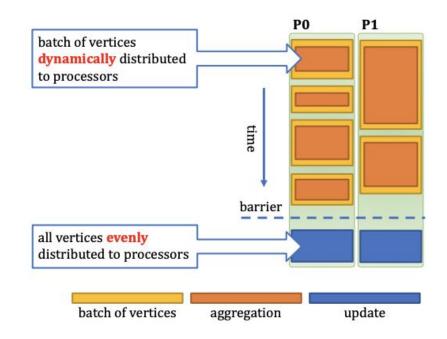
Basic Optimized Implementation



The aggregation vectors of all vertices are independent

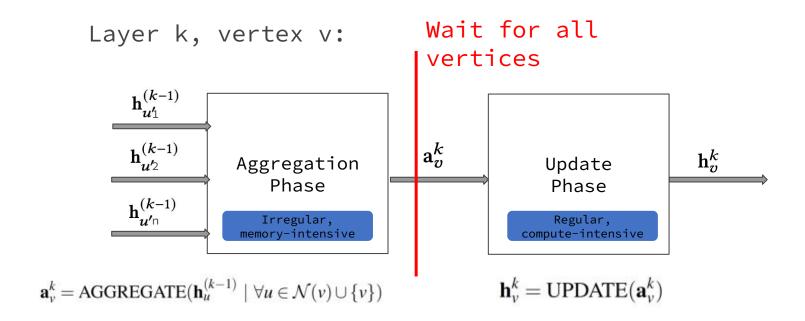
Basic Optimized Implementation

- Create different threads:
 - Each thread will process the aggregation phase for a subset of vertices
 - In the end of the aggregation phase, the feature vectors of each vertex will be updated



Why do we need a synchronization barrier before the update?

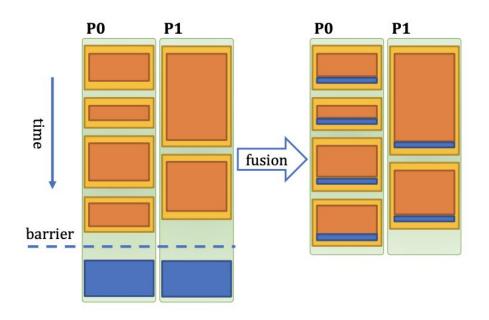
Basic Optimized Implementation



The feature vector of a vertex only depends on its aggregation vector

Layer Fusion

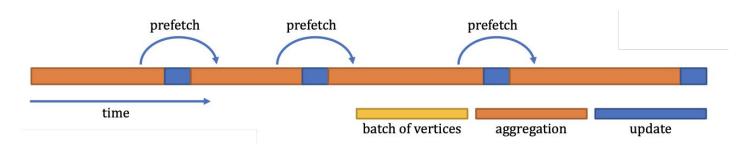
- Goal: overlap memory-bound and compute-bound operations
- Fusion: interleave aggregation and update of vertex batches

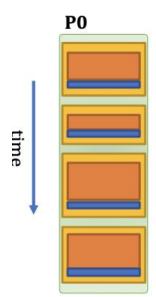


The feature vector of a vertex only depends on its aggregation vector

Overlapping Compute-Memory

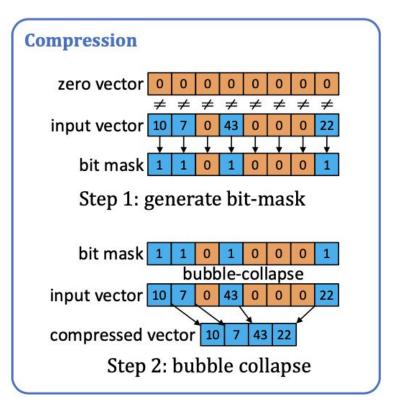
- Prefetches the features needed by the aggregation of the next batch
- Ongoing prefetch overlaps with the update



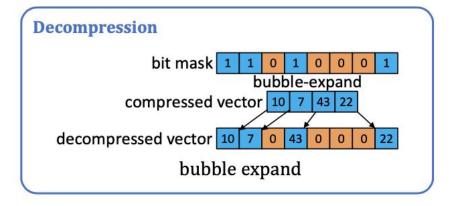


In multi-core systems, memory bandwidth is a shared resource

Feature Compression



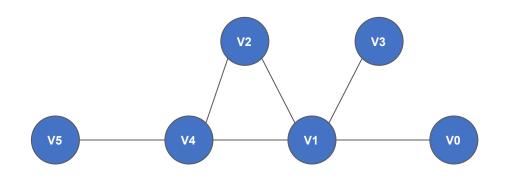
- Goal: reduce memory traffic
- Avoid loading/storing zeros
- Fast vector compression and decompression instructions

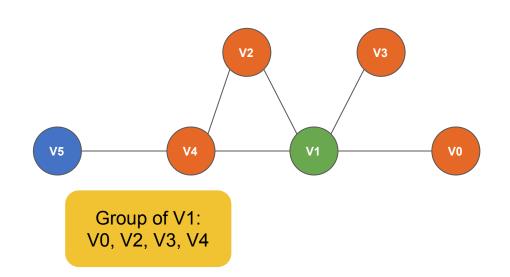


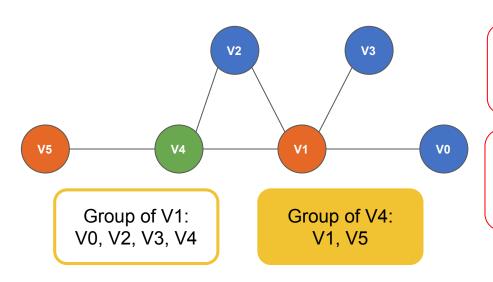
$$\mathbf{a}_{v}^{k} = AGGREGATE(\mathbf{h}_{u}^{(k-1)} \mid \forall u \in \mathcal{N}(v) \cup \{v\})$$

- Goal: increase temporal reuse of vertex features
- Idea:
 - Compute a new processing order of vertices
 - Assign each vertex to the group of its highest-degree neighbor
 - Vertices in a group are processed temporally closely and reuse at lease one feature vector

The cost of preprocessing the inputs is amortized in GNN training







Linear complexity: 0(V+E) Good scalability

The cost of preprocessing the inputs is amortized in GNN training

- Original processing order: V0, V1, V2, V3, V4, V5
- New processing order: V0, V2, V3, V4, V1, V5

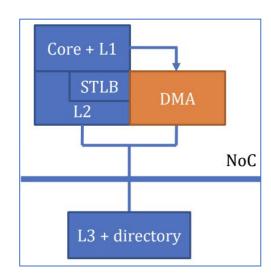
Graphite HW-SW Co-design Techniques

GNN Aggregation and DMA

- Scatter-gather is a common Direct Memory Access (DMA) operation.
 - Aggregation is a gather *and reduce* operation.
 - Graphite **enhances DMA** to perform aggregation.
- Incompatible with feature compression.
 - Compression hardware is costly.
 - Only useful for GNNs which implement ReLU and/or feature dropout.

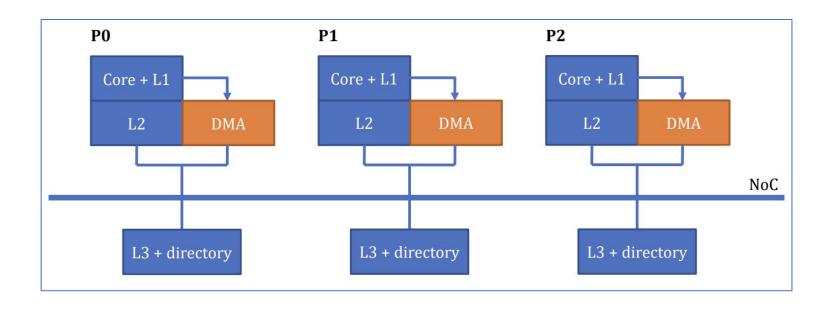
Graphite DMA Structure

- Each core has a DMA engine attached to the L2 cache.
 - Easy access to the STLB for virtual address translation.
 - Aggregation results can be quickly transferred.
 - Benefits from the locality of the shared L3.
- Graphite reuses function units in existing DMA.
 - Adds a narrow vector unit to perform reductions.
- Uses a descriptor-based programming model.
 - o 64B descriptor encodes an aggregation.
 - Easily built from CSR encoded adjacency matrices.



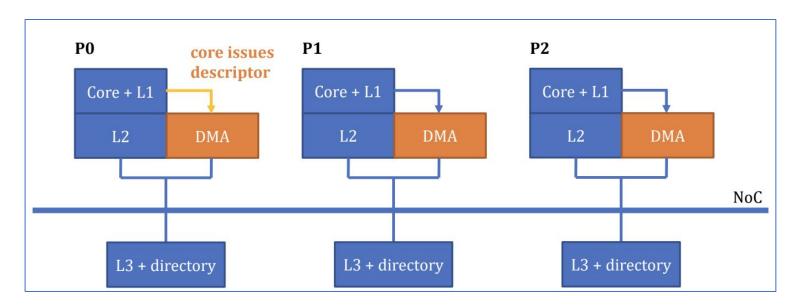
DMA Aggregation

One DMA engine per processor, connected via the NoC.



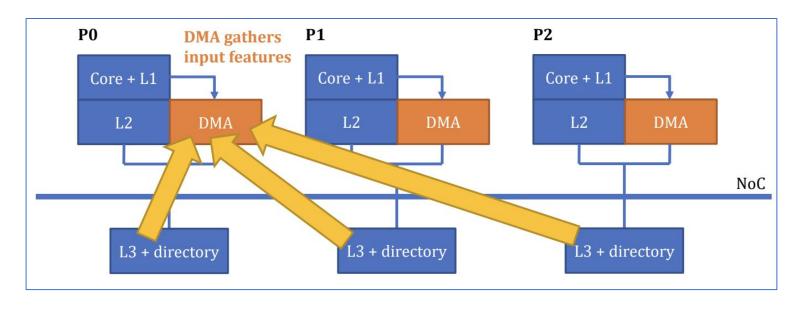
DMA Aggregation: The Descriptor

- In a traditional DMA, the descriptor identifies the gather operation.
 - In GNNs, the data blocks (feature vectors) are small.
- In Graphite, the descriptor identifies the entire aggregation.



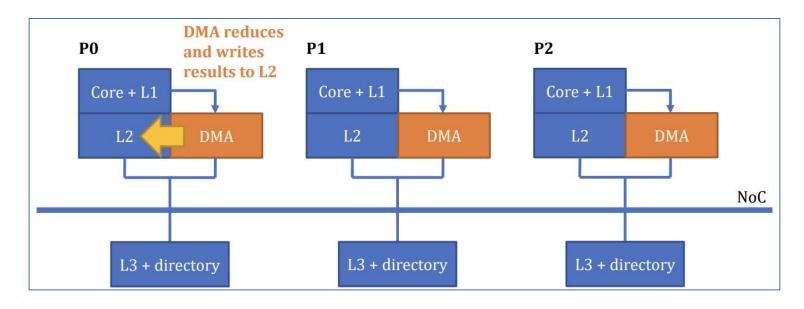
DMA Aggregation: The Operation

No cache coherency concerns with this design due to the read-only nature of the input features.



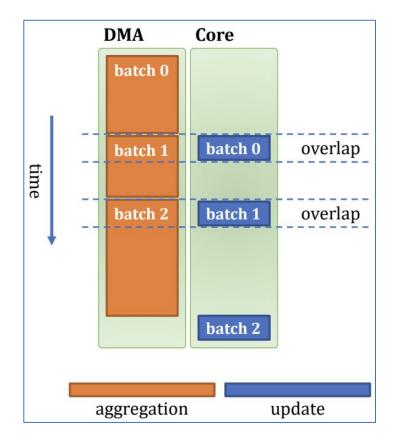
DMA Aggregation: The Operation

At beginning of the aggregation phase, the relevant L2 lines are pre-fetched to avoid miss latency when they are written back.



Putting It Together: DMA-Assisted Layer Fusion

- On each processor:
 - DMA handles aggregation stage.
 - Core handles update stage.
- The update of a vertex batch overlaps with the aggregation of the next vertex batch.

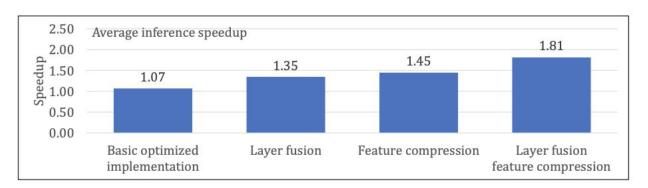


Evaluation

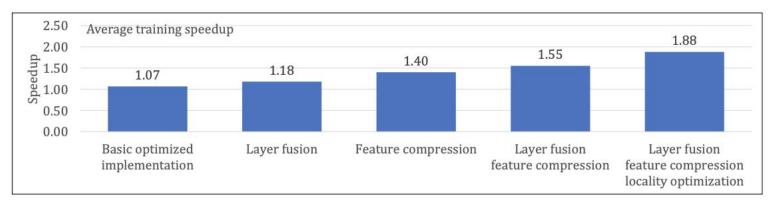
Evaluation Setup

- GNN Models:
 - 3-layer GCN and GraphSAGE
- Datasets:
 - o 4 graphs with 2.5M-111M vertices and 45M-1.6B edges
- Baseline:
 - SOTA SpMM from DistGNN[6] + MKL GEMM
- Evaluation:
 - SW-only techniques: 28-core Cascade Lake server running 28 threads
 - HW+SW techniques: Sniper[7] multi-core simulator simulating the 28-core server

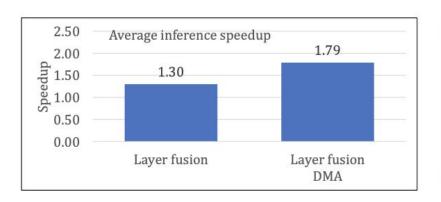
Performance: SW-only techniques



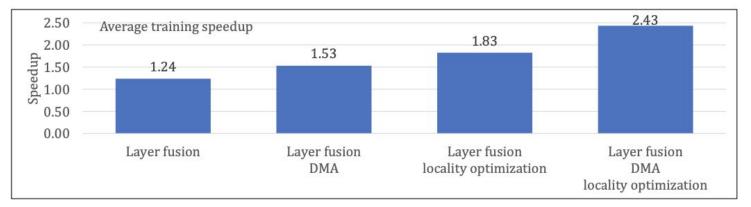
- Feature compression@ 50% sparsity
- Locality optimization only on training
- Techniques are synergetic



Performance: HW+SW techniques



- DMA aggregation is incompatible with feature compression
- DMA fusion is more effective than SW-only fusion



Conclusion

Conclusion

- GNNs on CPUs: memory bandwidth bound
- Graphite alleviates memory pressure by:
 - Fusing layers to overlap compute and memory
 - Compressing features to reduce memory traffic
 - Optimizing the vertex processing order to improve locality
 - Augmenting the DMA engine to offload aggregation
- Evaluated with 28 cores
 - SW-only techniques: inference 1.8x, training 1.9x speedup (native)
 - HW+SW techniques: inference 1.8x, training 2.4x speedup (simulated)

More in the paper:

- Algorithms of the techniques
- DMA descriptor design
- In-depth evaluation of individual techniques
- · And more...

References

- [1] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas. 2022. Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques. In *The 49th Annual International Symposium on Computer Architecture (ISCA '22)*, June 18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3470496.3527403
- [2] Gong, Z., Ji, H., Yao, Y., Fletcher, C., Hughes, C., & Torrellas, J. (2022). *Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques*. https://www.iscaconf.org/isca2022/slides/isca22-gong-graphite.pdf
- [3] *Real-Life Applications of Graphs*. (2024, April 9). GeeksforGeeks. https://www.geeksforgeeks.org/real-life-applications-of-graphs/
- [4] Kurniadi, E. (2011, November 14). *The Difference Between Euclidean and Non Euclidean Geometry*. Elika Kurniadi. https://elikakurniadi.wordpress.com/2011/11/14/the-difference-between-euclidean-and-non-euclidean-geometry/
- [6] Vasimuddin Md, et al. 2021. DistGNN: scalable distributed training for large-scale graph neural networks. SC'21
- [7] Trevor E. Carlson, et al. 2011. Sniper: Exploring the Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulations. SC'11

Questions?