18-742: Computer Architecture & Systems

Tartan: Microarchitecting a Robotic Procesor

Prof. Phillip Gibbons

Spring 2025, Lecture 22

"Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware"

Mohammad Bakhshalipour, Phillip Gibbons 2023

Architecture/Robotics gap: Only 3/150 papers in ISCA'22/Micro'22

"Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware"

Mohammad Bakhshalipour, Phillip Gibbons 2023

- Architecture/Robotics gap: Only 3/150 papers in ISCA'22/Micro'22
 - Quality benchmark suite needed to jump-start efforts

"Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware"

Mohammad Bakhshalipour, Phillip Gibbons 2023

- Architecture/Robotics gap: Only 3/150 papers in ISCA'22/Micro'22
 - Quality benchmark suite needed to jump-start efforts

Table 1. Feature comparison of related work and RoWild. More ✓ is better.

Paper/Repository	Scope	End-to -End	High- Perf.	Simulator -Friendly	Multi- Platform	Versatile & Modular	Open- Source	System. Study
Lin et al. [143] Yu et al. [208]	Self-Driving Cars	~	VV	Unknown	~	Unknown	×	~
MAVBench [74]	Drones	~	V	.	~	×	~	~
One-off [55, 80, 118]	Single Task	×	*	.	×	✓	~	×
ROS [51]	Broad	×	*	×	×	✓	~	×
Educational [14, 47]	Broad	×	X	:	×	×	~	×
RTRBench [68]	Broad	×	~	✓	×	✓	✓	×
RoWild	Broad	V	VV	V	VV	V	V	VV

[‡] Depending on the case (e.g., kernel, simulator), it can be ✗ or ✔. See Appendix §E.

RoWild Workloads

Stage	Task	Algorithm(s) in RoWild			
Perception	State Estimation	$\mathrm{MCL}^{\dagger \ddagger \Upsilon \P \eta \sigma}$ [210], AMCL^{ζ} [195]			
	Localization and Mapping	$\text{EKF}^{\Upsilon \& \tau \phi \Lambda}$ [197], Fast $^{\ddagger \P \zeta}$ [158], Graph $^{\vartheta \varphi}$ [187], ORB $^{\varsigma \varrho}$ [82]			
	Scene Reconstruction	Point-Based Fusion $^{\dagger \ddagger \Upsilon \kappa \upsilon}$ [205]			
	Grid Generation	Probabilistic Occupancy Map ^{†κϑ} [104]			
	Object Detection	MobileNet-SSD ^{‡Υ} _Q χΛ [207]			
Planning	(x, y) Search	$WA^{\star \dagger \P \zeta \eta \alpha \Pi \Lambda}$ [176], GA^{\star} [215], RA^{\star} [69], $IDA^{\star \varsigma}$ [129], DQN [157]			
	(x, y, z) Search	$WA^{\star \dagger \P \zeta \eta \alpha \Pi \Lambda}$ [176], GA^{\star} [215], RA^{\star} [69], $IDA^{\star \varsigma}$ [129], DQN [157]			
	(x, y, θ) Search	$\mathbf{W}\mathbf{A}^{\star\dagger} \mathbb{I}^{\zeta\eta\alpha\Pi\Lambda}$ [176], $\mathbf{G}\mathbf{A}^{\star}$ [215], $\mathbf{R}\mathbf{A}^{\star}$ [69], $\mathbf{ID}\mathbf{A}^{\star\varsigma}$ [129]			
	Timed Search	WA*†¶ζηαΠΛ [176] + Backward Dijkstra [71]			
	2D <i>n</i> -DoF Search	$RRT^{\dagger \ddagger \Upsilon \kappa}$ [103], $RRT^{\star \Upsilon \omega \gamma \delta}$ [105], $PRM^{\Upsilon \partial \psi}$ [191], Shortcut [107]			
	3D <i>n</i> -DoF Search	$RRT^{\dagger \ddagger \Upsilon \kappa}$ [103], $RRT^{\star \Upsilon \omega \gamma \delta}$ [105], $PRM^{\Upsilon \vartheta \psi}$ [191], Shortcut [107]			
	Reactive Planning	Behavior Tree $^{\dagger\lambda\partial\phi}$ [108]			
	Task Scheduling	Symbolic Planning $^{\S \partial \delta}$ [72]			
Ctrl.	Motion Control	$MPC^{\Upsilon\Pi\partial^{\dagger}\kappa\alpha\psi\varepsilon}$ [100] $PID^{\Upsilon\partial\zeta\theta\phi}$ [203], $PP^{\ddagger\Upsilon\kappa\phi}$ [170]			
	Parameter Learning	$\mathbf{DMP}^{\Upsilon \partial \xi \alpha \theta \iota}$ [131], CEM ^{§λ} [173], BO ^{ϱ} [119]			

Table 2. RoWild's workloads. Algorithms in **color** are characterized in this paper in the context of end-to-end robotic applications.

Real-World Robots:

†Spot [10] [‡]DJI Phantom [41] ^TLoCoBot [2] §Atlas [9] ¶AMR [48] II AscTec Pelican [7] ζRoomba 980 [49] ^vRoomba i7+ [50] η Husky [21] ^д YuMi [65] "Jackal [28] ⁵LBR [33] ^Q Pepper [53] σTurtleBot [60] STurtleBot3 [61] ⁷MiR [34] ϕ AG [31] [^]Pioneer 3-DX [43] φ UR10e [57] χ TALOS [54] ^ωGrizzly [13] YSkydio [52] $^{\delta}$ M-200iA/2300 [18] [€]PerceptIn [207] ^αBoxbot [11] θ UR5e [58] 'Franka Panda [19] ^λPAL TIAGo [59]

Robotic Software Pipeline

End-to-End Applications

Name	Mission	Resembling	Environment	
DeliBot	Delivery	Spot	Our Campus	
PatrolBot	Patrolling	Pioneer 3-DX	Our Campus	
MoveBot	Manipulation	LoCoBot	Synthetic	
HomeBot	Cleaning	Roomba i7+	Hypersim	
FlyBot	Photography	AscTec Pelican	FR Campus	
CarriBot	Transportation	Boxbot	Intel Lab	

Evaluated Compute Platforms

Table 3. The evaluated compute platforms. The prices are as of August 9, 2023.

Acronym	Platform	Cores	Freq. (GHz)	TDP (W)	Memory (GB)	Price (US \$)
LC	ARM Cortex A57 CPU	4	1.43	10	4	149
LG	Nvidia Maxwell GPU	128	0.92	10	4	149
НС	Intel Xeon Gold CPU	20 (×2)	2.10	125	384	1493
HG	Nvidia Titan X GPU	3584	1.41	250	12	999

Also: Avnet Ultra96-V2 FPGA (Verilog implementations)

FlyBot: Drone Performing Aerial Photography

FlyBot: Drone Performing Aerial Photography

Planning & Control dominate. Control benefits from GPU.

Planning requires high single-threaded performance

PatrolBot: Wheeled Robot Patrolling

Inference (object classification) is bottleneck for CPU-only platforms. LG (\$149) outperforms HC (\$1493).

Challenge: Poor Spatial Locality

Infinite Sized Cache, No HW prefetching, 64B cache lines

Challenge: Poor Spatial Locality

Infinite Sized Cache, No HW prefetching, 64B cache lines

Challenge: Prefetchers Inadequate

44% of fetched data never used. Existing prefetchers don't help much.

"Tartan: Microarchitecting a Robotic Processor"

Mohammad Bakhshalipour, Phillip Gibbons 2024

Slides are adapted from ISCA'24 conference talk

Executive Summary

- Architecting a domain-specific processor for robotics
- Extensive profiling of robotics workloads, finding main execution bottlenecks

- Architectural enhancements to address the bottlenecks in robotics workloads
 - Oriented vectorization
 - Approximate acceleration
 - Robot-semantic prefetching
 - Intra-application cache partitioning

Generality-Performance Spectrum

Generality-Performance Spectrum

Intel Core i5 General-Purpose **CPUs** Generality **Performance**

Generality-Performance Spectrum

Intel Core i5

General-Purpose

CPUs

RACOD [ISCA'22]

ASIC Hardware

Accelerators

Performance

Where on Spectrum?

Intel Core i5 Tartan! RACOD

General-Purpose Domain-Specific ASIC Hardware

CPUs Processor Accelerators

Generality

Performance

Domain-Specific Processors

- D. E. Shaw Anton
 - Molecular Simulation

- Cisco Silicon One
 - Networking

Tartan: A Robotic Processor

 Microarchitected based on extensive profiling of various robotics workloads

 Includes computational units and memory system extensions that excel robotics workloads

Methodology

- Simulation framework
 - ZSim [Sanchez+, ISCA'13]

- Baseline processor: Intel Core i7-10610U
 - 4 cores, 8MB L3 cache
 - Integrated in NASA's Valkyrie

Workloads

RoWild

• SIGMETRICS'24

MoveBot

HomeBot

CarriBot

Identifying Performance Bottlenecks

 In pursuit of performance bottlenecks

Executive Summary

- Architecting a domain-specific processor for robotics
- Extensive profiling of robotics workloads, finding main execution bottlenecks

- Architectural enhancements to address the bottlenecks in robotics workloads
 - Oriented vectorization
 - Approximate acceleration
 - Robot-semantic prefetching
 - Intra-application cache partitioning

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations, interesting parts of the design, or clever parts of the implementation.

Oriented Vectorization

 Tartan extends CPUs' vectorization unit to handle slanted-line address patterns

Oriented Vectorization

- Tartan extends CPUs' vectorization unit to handle slanted-line address patterns
 - Common in operations like ray-casting and collision detection

Traditional Vectorization: ISA

Traditional vector instruction:

MOVE %zmm, (%org)

```
O_MOVE %zmm, (%org), %orient
```

```
Base Address

O_MOVE %zmm, (%org), %orient
```


<u>%zmm</u>			
Α	В	C	D

Oriented Vector Address Generation

Results: Oriented Vectorization

- DeliBot
 - Ray-Casting

- CarriBot
 - Collision Detection

Results: Oriented Vectorization

- DeliBot
 - Ray-Casting

- CarriBot
 - Collision Detection

Approximate Acceleration

- Many robotic applications allow for approximation
 - Application-level: Cleaning
 - Algorithm-level: Pathfinding

Approximate Acceleration

- Many robotic applications allow for approximation
 - Application-level: Cleaning
 - Algorithm-level: Pathfinding

 Tartan replaces approximable, costly functions by a neural network

Approximate Acceleration

- Many robotic applications allow for approximation
 - Application-level: Cleaning
 - Algorithm-level: Pathfinding

- Tartan replaces approximable, costly functions by a neural network
 - The neural model runs on a hardware accelerator

Runtime Operations

Neural Processing Unit (NPU)

Neural Processing Unit (NPU)

Neural Processing Unit (NPU)

This highly-parallel hardware runs the neural model faster than the original code on CPU

Applications

 Compute intensive functions that can be replaced with "efficient" neural networks

- Efficient refers to
 - Computation
 - Accuracy

NPU Is Multimodal

 NPU can accelerate <u>native</u> neural networks

Also in The Paper

- Vectorized nearest-neighbor search
- Semantic-aware hardware prefetching
- Intra-application cache partitioning

- Engineering optimization
 - Cacheline sizing
 - Producer-consumer communications

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly designed or the main idea had a narrow scope or applicability.

Performance Altogether

Performance Altogether

Performance Altogether

"RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots"

Sabrina Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, Vijay Janapa Reddi 2023

Topology Traversal

Topology-based Matrix Computation Pattern

Latency of Dynamic Gradients

To Read for Wednesday

"In-Datacenter Performance Analysis of a Tensor Processing Unit"

Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. 2017

Optional Further Reading:

"Graphite: Optimizing Graph Neural Networks on CPUs Through Cooperative Software-Hardware Techniques"

Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher Fletcher, Christopher Hughes, Josep Torrellas 2022