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• Architecture/Robotics gap: Only 3/150 papers in ISCA’22/Micro’22

“Agents of Autonomy: A Systematic Study of 
  Robotics on Modern Hardware” 
     Mohammad Bakhshalipour, Phillip Gibbons  2023 
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“Agents of Autonomy: A Systematic Study of 
  Robotics on Modern Hardware” 
     Mohammad Bakhshalipour, Phillip Gibbons  2023 



4

• Architecture/Robotics gap: Only 3/150 papers in ISCA’22/Micro’22
– Quality benchmark suite needed to jump-start efforts

“Agents of Autonomy: A Systematic Study of 
  Robotics on Modern Hardware” 
     Mohammad Bakhshalipour, Phillip Gibbons  2023 



5

RoWild Workloads
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End-to-End Applications

Robotic Software Pipeline
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Evaluated Compute Platforms

Also: Avnet Ultra96-V2 FPGA (Verilog implementations)
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FlyBot: Drone Performing Aerial Photography
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FlyBot: Drone Performing Aerial Photography

Planning & Control dominate. Control benefits from GPU.
Planning requires high single-threaded performance
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PatrolBot: Wheeled Robot Patrolling 
Campus

Inference (object classification) is bottleneck for CPU-only platforms.
LG ($149) outperforms HC ($1493).
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Challenge: Poor Spatial Locality
Infinite Sized Cache, No HW prefetching, 64B cache lines

44% of fetched data never used.  Existing prefetchers don’t help much.
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Challenge: Poor Spatial Locality
Infinite Sized Cache, No HW prefetching, 64B cache lines

44% of fetched data never used.  Existing prefetchers don’t help much.

Challenge: Prefetchers Inadequate
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“Tartan: Microarchitecting a Robotic Processor”
 Mohammad Bakhshalipour, Phillip Gibbons  2024 

Slides are adapted from ISCA’24 conference talk



Executive Summary
• Architecting a domain-specific processor for robotics

• Extensive profiling of robotics workloads, finding main
execution bottlenecks

• Architectural enhancements to address the bottlenecks in robotics workloads
• Oriented vectorization
• Approximate acceleration
• Robot-semantic prefetching
• Intra-application cache partitioning

Carnegie Mellon University 2



Generality-Performance Spectrum
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PerformanceGenerality



Generality-Performance Spectrum
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PerformanceGenerality

General-Purpose
CPUs

Intel Core i5



Generality-Performance Spectrum
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PerformanceGenerality

General-Purpose
CPUs

ASIC Hardware 
Accelerators

Intel Core i5 RACOD [ISCA’22]



Where on Spectrum?
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PerformanceGenerality

General-Purpose
CPUs

ASIC Hardware 
Accelerators

Domain-Specific 
Processor

Intel Core i5 RACODTartan!



Domain-Specific Processors

• D. E. Shaw Anton
• Molecular Simulation

• Cisco Silicon One
• Networking

Carnegie Mellon University 8



Tartan: A Robotic Processor

Carnegie Mellon University 10

•Microarchitected based on extensive
profiling of various robotics
workloads

• Includes computational units and
memory system extensions that
excel robotics workloads 



Methodology

• Simulation framework
• ZSim [Sanchez+, ISCA’13]

• Baseline processor: Intel Core i7-10610U
• 4 cores, 8MB L3 cache
• Integrated in NASA’s Valkyrie

Carnegie Mellon University 11



Workloads

• RoWild
• SIGMETRICS’24

Carnegie Mellon University 12



Identifying Performance Bottlenecks

Carnegie Mellon University 13

• In pursuit of performance
bottlenecks



Executive Summary
• Architecting a domain-specific processor for robotics

• Extensive profiling of robotics workloads, finding main
execution bottlenecks

• Architectural enhancements to address the bottlenecks in robotics workloads
• Oriented vectorization
• Approximate acceleration
• Robot-semantic prefetching
• Intra-application cache partitioning

Carnegie Mellon University 2
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Discussion: Summary Question #1

State the 3 most important things the paper says. 

These could be some combination of the motivations, observations, 
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right? 



Oriented Vectorization

• Tartan extends CPUs’ vectorization unit to handle slanted-line 
address patterns

Carnegie Mellon University 14



Oriented Vectorization

• Tartan extends CPUs’ vectorization unit to handle slanted-line 
address patterns
• Common in operations like ray-casting and collision detection

Carnegie Mellon University 15

Ra
y-

Ca
st

in
g

Co
llis

io
n 

De
te

ct
io
n



Traditional Vectorization: ISA

• Traditional vector instruction:

Carnegie Mellon University 16

MOVE %zmm, (%org)



Oriented Vectorization: ISA

• Tartan adds this instruction:
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O_MOVE %zmm, (%org), %orient



Oriented Vectorization: ISA

• Tartan adds this instruction:
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O_MOVE %zmm, (%org), %orient

Base Address



Oriented Vectorization: ISA

• Tartan adds this instruction:
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O_MOVE %zmm, (%org), %orient

Base Address

Orientation: (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)



Oriented Vectorization: ISA

• Tartan adds this instruction:

Carnegie Mellon University 20

O_MOVE %zmm, (%org), %orient

Destination Register

Base Address

Orientation: (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)



Oriented Vector Address Generation

Carnegie Mellon University 21



Oriented Vector Address Generation
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Oriented Vector Address Generation
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Oriented Vector Address Generation
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Oriented Vector Address Generation

Carnegie Mellon University 25

Do these fixed operations
in parallel in hardware



Results: Oriented Vectorization

• DeliBot
• Ray-Casting

• CarriBot
• Collision Detection

Carnegie Mellon University 26



Results: Oriented Vectorization

• DeliBot
• Ray-Casting

• CarriBot
• Collision Detection
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Approximate Acceleration

•Many robotic applications allow for approximation
• Application-level: Cleaning
• Algorithm-level: Pathfinding
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Approximate Acceleration

•Many robotic applications allow for approximation
• Application-level: Cleaning
• Algorithm-level: Pathfinding

• Tartan replaces approximable, costly functions by a neural 
network

Carnegie Mellon University 29



Approximate Acceleration

•Many robotic applications allow for approximation
• Application-level: Cleaning
• Algorithm-level: Pathfinding

• Tartan replaces approximable, costly functions by a neural 
network
• The neural model runs on a hardware accelerator

Carnegie Mellon University 30



Approximation Procedure
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Approximation Procedure
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Approximation Procedure
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Approximation Procedure
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Sample
Input

Output
Training is done offline



Runtime Operations

Carnegie Mellon University 35

Run



Neural Processing Unit (NPU)
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Neural Processing Unit (NPU)
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Neural Processing Unit (NPU)

Carnegie Mellon University 38

This highly-parallel hardware 
runs the neural model faster than 

the original code on CPU



Applications

• Compute intensive functions that can be replaced with 
“efficient” neural networks

• Efficient refers to
• Computation
• Accuracy

Carnegie Mellon University 39



Results: Approximate Acceleration 
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Results: Approximate Acceleration 
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𝑇 Prediction

Heuristic cost calculation



Results: Approximate Acceleration 
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𝑇 Prediction

Heuristic cost calculation

192 → 32 → 32 → 6	

6 → 16 → 16 → 1

NPU Layers



Results: Approximate Acceleration 
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NPU Is Multimodal

•NPU can accelerate native
neural networks

Carnegie Mellon University 44

4x



Also in The Paper

•Vectorized nearest-neighbor search
• Semantic-aware hardware prefetching
• Intra-application cache partitioning

• Engineering optimization
• Cacheline sizing
• Producer-consumer communications

Carnegie Mellon University 45
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Discussion: Summary Question #2

What Did the Paper Get Wrong? 

Describe the paper's single most glaring deficiency. 

Every paper has some fault. Perhaps an experiment was poorly 
designed or the main idea had a narrow scope or applicability.



Performance Altogether
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“RoboShape: Using Topology Patterns to Scalably 
  and Flexibly Deploy Accelerators Across Robots” 
     Sabrina Neuman, Radhika Ghosal, Thomas Bourgeat,
       Brian Plancher, Vijay Janapa Reddi  2023
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Topology Traversal
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Topology-based Matrix Computation Pattern
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Latency of Dynamic Gradients
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To Read for Wednesday

“In-Datacenter Performance Analysis of a
  Tensor Processing Unit”
 

       Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. 
       2017 

“Graphite: Optimizing Graph Neural Networks on 
  CPUs Through Cooperative Software-Hardware 
  Techniques” 
      Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher Fletcher, 
      Christopher Hughes, Josep Torrellas 2022 

Optional Further Reading:
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