18-742:
Computer Architecture & Systems

NVIDIA Tesla: A Unified Graphics
and Computing Architecture

Prof. Phillip Gibbons
Spring 2025, Lecture 21

“NVIDIA Tesla: A Unified Graphics and Computing

Architecture”
Erik Lindholm, John Nicholls, Stuart Oberman, John Montrym 2008

Erik: Distinguished engineer => Senior Distinguished Architect
e Master Inventor, co-architected the first GPU. Just retired
John N: Director => Chief Compute Architect for GPUs
e Died2011: “Without John Nickolls, there'd be no CUDA”

Stuart: Design manager => VP GPU ASIC Engineering
* |EEE Fellow 2024

John M: Chief Architect

50 Years of Microprocessor Trend Data

' ' F ! 1
oL ISR N S S S— |
_ e Transistors
106 . SO . N ______________________ “:A‘AA _________________ - (thOUS&ﬂdS)
105 | , B\ :ﬁ‘ié“‘ o oo Single-Thread
_ahght o™ * Performance
o A ‘“‘} . (SpecINT x 107)

4 A
107 | NPV | 1
I L1y ‘ v F MH
10° | Ak ol ’.ciﬂli*“.‘ ||:-“.| requency (MHz)

o v ;
a aar \ * 3w Y| TYpical Power
102 B = A d = ;.- v v,'w;;' "' 'vvv"’} ‘:’3 0; (Watts)
A .:l v w7 ’0'§ * M N b f
L R S - vw YT ¥Y o & et A o DN O
1000 . s ® Ly g *3 **| Logical Cores
ol 2 = - ¥ S gF == § snace®
10 _‘,,,, e e B e WO SUD IO 4 o
| | | | |
1970 1980 1990 2000 ?01 0 2020
We are here

Road to Unification

e Vertex processors: low-latency, high-precision math operations
* Pixel processors: high-latency, lower-precision texture filtering
e 3:1ratio of Pixel to Vertex processors, but workload varies

e Unification advantages:
— Enables dynamic load balancing

— Intro new graphics shader stages (e.g., geometric shaders)

— New GPU parallel-computing capability

Tesla Architecture: GeForce 8800

| Host CPU H Bridge HSystemmemory|

GPU

| Host interface I I
! Viewport/clip/

|Input assembler setup/raster/zcull
I
Vertex work Pixel work Compute work
distribution distribution distribution
I l I | I I I
TPC TPC TPC TPC TPC TPC TPC TPC
[1|l L 1 |l 1l 11 1|l L]
[1| i 1{ |I | | 1 1| i]
SM SM SM SM SM SM SM SM S SM SM SM SM SM SM S
|] I NI | I (L | | I | I] I | I |
| | Il |L I | I |IL | | Il |L | Il |L | Il |L | Il |L |
10 (S| |IET | |) [| (I ||| T | | (| | | E) (I
Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared Shared
memory || [Lmemeory mermory memory memory memory memory memory memory memary memory || |Lmemory mermory memory memory memory
Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit

I [| [
Interconnection network

o s e s

DRAM DRAM DRAM DRAM DRAM DRAM

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming
multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Texture/processor cluster (TPC)

Ay

\
A}
N

~

TPC

Geometry controller

SM SM

| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
SFU | | SFU SFU | | SFU

Shared Shared

memory memory

Texture unit

!
\
N
N

Single-instruction, Multiple-thread (SIMT)

SM multithreaded
instruction scheduler

Time

Warp 8, instruction 11

YYVVVYVVYVVVYVYVVYY
111 | 1|

Warp 1, instruction 42

YVVVYVVYVVVYVYVVYY
L1 | |

Warp 3, instruction 95

YVVVYVVYVVVVYVYVYY

Warp 8, instruction 12

YVVVYVVYVVVYVYVYVYY
L1 | |

Warp 3, instruction 96

YVVVYVVYVVVVYVYVYY
T I I I W

Warp 1, instruction 43

YVYVVYVYVVVYVYVYY

Warp is 32
parallel threads
of the same type

Performance issue: Branch divergence within a warp

General Compute: Memory Spaces

| Host CPU H Bridge HSystem memory|

GPU
| Host interface i I
' Viewport/clip/
|Input assembler setupf%ster/z%ull
[[
Vertex work Pixel work Compute work
distribution distribution distribution
[[[
[I [I | [| |
TPC TPC TPC TPC TPC TPC TPC TPC
[1| | Il 1{ |I 1 |l][| 1| | Il]
[1| | 1L 1{ |I 1 |][{L 1| | 1L]
SM SM SM SM SM SM SM SM SM SM SM EX SM SM SM SM
[]]]|]]| I (Il ! I (L [l I]] [l] [l]
]] |]] I (I !] [l]]] (]] (]]
[10T | (O V(Y O | | T
Shared Sharad Shared Sharad Shared Sharad Shared Shared Shared Shared Shared Shared Shared Sharad Shared Shared Shared memory
QOOfE memorz memcr! memory memo[g mMamaol ! I’I’IQITIDW ME! r!!! memol ! memaot E QOOfE memorz memcrg memor! memcrg memor!
Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit
I [| |

Interconnection network

ke e e e

DRAM DRAM DRAM DRAM DRAM DRAM global memory

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming
multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Virtual address space + page tables + hierarchy of TLBs

Cooperative Thread Array (Thread Block)

e An array of concurrent threads executing the same thread program
— Can cooperate to compute a result

— Eachthread has a unique TID (1D, 2D, or 3D)

— Share data in global or shared memory

Levels of Parallel Granularity

Thread
Per-thread local memory

@ ¥ A GPU computing program

Cooperative thread array or thread block exeCUtes on any Size Of GPU

w/o recompiling
Per-CTA
E shared memory

(b)

Grid 0 Time
e || . (<S5 |
SRR || TRRReeeeeey | | PomneeRr s

---------- Inter-grid synchronization barrier --------- Global
Grid 1 Memory

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.

Throughput Computing: Properties
e Extensive data parallelism
* Modest task parallelism
* Intensive FP arithmetic
e Latency tolerant
e Streaming data flow with little reuse

* Modest inter-thread synchronization/communication

C vs. CUDA

void addMatrix __global__ void addMatrixG
(float *a, float *b, float #*c, int N) (float *a, float *b, float #*c, int N)
{ {
int i, j, idx; int 1 = blockIdx.x*blockDim.x + threadIdx.x;
for (i = 0; i < N; i++) { int j = blockIdx.y*blockDim.y + threadIdx.y;
for (j = 0; j < N; j++) { int idx = i + j*N;
idx = 1 + J*N; if (1 < N & Jj < N)
clidx] = al[idx] + b[idx]; clidx] = al[idx] + b[idx];
} }
}
} void main()
void main() {
{ dim3 dimBlock (blocksize, blocksize) ;
- dim3 dimGrid (N/dimBlock.x, N/dimBlock.y) ;
addMatrix(a, b, ¢, N); addMatrixG<<<dimGrid, dimBlocks>>>(a, b, c, N);
} }

C code CUDA code

GeForce 8800 Ultra: Specs

* 681M transistors, 470 mm~”2in 90-nm CMOS

* 128 SP cores in 16 SMs

* 12,288 processor threads

e 1.5 GHz processor

* Peak 576 Gflops

e 768 MB GDDR3 DRAM

e 384-pin DRAM interface, 1.08 GHz DRAM clock
* 104 GB/s peak DRAM BW

e Typical power: 150 W at 1.3V

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.

“A Case for Speculative Address Translation with
Rapid Validation for GPUs”

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim,
Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024

BLLC Miss + No Page Walk BmLLC Miss + Page Walk
1200
1000
0
800 96 /0(

(Cycles)
S
o
o

Memory Access Latency

RTX3090 A100 TITAN V Average

Fig. 1: The latency of page walks on memory access latency in
commodity GPUs [48], [53], [54]. On average, by using micro-
benchmarks, we see that commodity GPUs have up to 1.96x higher
memory access latency (nearly 1000 cycles) due to page walks.

“A Case for Speculative Address Translation with
Rapid Validation for GPUs”

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim,
Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024

Address Translation Flow=== Speculation Request Flow====* GPU cores ‘!‘
1
‘ Load Request ’ H
| 1
¥ 1 ;
L1 TLB o JLBAIL | 11D Cache (B)CAVA |
TLBmiss) = e,
i) | EAF |e{Rapid Validation
(@) cAST 5
MOD --S-p-ezzﬁlztt-zl Compressed Sector dfliﬁq
Physical -
v . Address L 2
Shared L2 TLB L2 Cache
! v ¥
PW system Main Memory

Fig. 6: An overview of Avatar.

CAST: Contiguity-aware Speculative Translation

CAVA: In-Cache Validation

To Read for Monday

“Tartan: Microarchitecting a Robotic Processor”
Mohammad Bakhshalipour, Phillip Gibbons 2024

Optional Further Reading:

“Agents of Autonomy: A Systematic Study of
Robotics on Modern Hardware”
Mohammad Bakhshalipour, Phillip Gibbons 2023

“RoboShape: Using Topology Patterns to Scalably
and Flexibly Deploy Accelerators Across Robots”

Sabrina Neuman, Radhika Ghosal, Thomas Bourgeat,
Brian Plancher, Vijay Janapa Reddi 2023

18

	18-742:�Computer Architecture & Systems��NVIDIA Tesla: A Unified Graphics�and Computing Architecture�
	Slide Number 2
	50 Years of Microprocessor Trend Data
	Road to Unification
	Tesla Architecture: GeForce 8800
	Texture/processor cluster (TPC)
	Single-instruction, Multiple-thread (SIMT)
	General Compute: Memory Spaces
	Cooperative Thread Array (Thread Block)
	Levels of Parallel Granularity
	Discussion: Summary Question #1
	Throughput Computing: Properties
	C vs. CUDA
	GeForce 8800 Ultra: Specs
	Discussion: Summary Question #2
	Slide Number 16
	Slide Number 17
	To Read for Monday

