18-742:

Computer Architecture & Systems

NVIDIA Tesla: A Unified Graphics and Computing Architecture

Prof. Phillip Gibbons

Spring 2025, Lecture 21

"NVIDIA Tesla: A Unified Graphics and Computing Architecture"

Erik Lindholm, John Nicholls, Stuart Oberman, John Montrym 2008

- Erik: Distinguished engineer => Senior Distinguished Architect
 - Master Inventor, co-architected the first GPU. Just retired
- John N: Director => Chief Compute Architect for GPUs
 - Died 2011: "Without John Nickolls, there'd be no CUDA"
- Stuart: Design manager => VP GPU ASIC Engineering
 - IEEE Fellow 2024
- John M: Chief Architect

50 Years of Microprocessor Trend Data

Road to Unification

- Vertex processors: low-latency, high-precision math operations
- Pixel processors: high-latency, lower-precision texture filtering
- 3:1 ratio of Pixel to Vertex processors, but workload varies
- Unification advantages:
 - Enables dynamic load balancing
 - Intro new graphics shader stages (e.g., geometric shaders)
 - New GPU parallel-computing capability

Tesla Architecture: GeForce 8800

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Texture/processor cluster (TPC)

Single-instruction, Multiple-thread (SIMT)

Warp is 32 parallel threads of the same type

General Compute: Memory Spaces

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Cooperative Thread Array (Thread Block)

- An array of concurrent threads executing the same thread program
 - Can cooperate to compute a result
 - Each thread has a unique TID (1D, 2D, or 3D)
 - Share data in global or shared memory

Levels of Parallel Granularity

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations, interesting parts of the design, or clever parts of the implementation.

Throughput Computing: Properties

- Extensive data parallelism
- Modest task parallelism
- Intensive FP arithmetic
- Latency tolerant
- Streaming data flow with little reuse
- Modest inter-thread synchronization/communication

C vs. CUDA

```
void addMatrix
    (float *a, float *b, float *c, int N)
{
    int i, j, idx;
    for (i = 0; i < N; i++) {
        for (j = 0; j < N; j++) {
            idx = i + j*N;
            c[idx] = a[idx] + b[idx];
        }
    }
}
void main()
{
    . . .
    addMatrix(a, b, c, N);
}</pre>
```

```
__global___ void addMatrixG
    (float *a, float *b, float *c, int N)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    int j = blockIdx.y*blockDim.y + threadIdx.y;
    int idx = i + j*N;
    if (i < N && j < N)
        c[idx] = a[idx] + b[idx];
}

void main()
{
    dim3 dimBlock (blocksize, blocksize);
    dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
    addMatrixG<<<dimGrid, dimBlock>>>(a, b, c, N);
}
```

C code

CUDA code

GeForce 8800 Ultra: Specs

- 681M transistors, 470 mm² in 90-nm CMOS
- 128 SP cores in 16 SMs
- 12,288 processor threads
- 1.5 GHz processor
- Peak 576 Gflops
- 768 MB GDDR3 DRAM
- 384-pin DRAM interface, 1.08 GHz DRAM clock
- 104 GB/s peak DRAM BW
- Typical power: 150 W at 1.3 V

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly designed or the main idea had a narrow scope or applicability.

"A Case for Speculative Address Translation with Rapid Validation for GPUs"

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim, Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024

Fig. 1: The latency of page walks on memory access latency in commodity GPUs [48], [53], [54]. On average, by using microbenchmarks, we see that commodity GPUs have up to $1.96 \times$ higher memory access latency (nearly 1000 cycles) due to page walks.

"A Case for Speculative Address Translation with Rapid Validation for GPUs"

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim, Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024

Fig. 6: An overview of Avatar.

CAST: Contiguity-aware Speculative Translation

CAVA: In-Cache Validation

To Read for Monday

"Tartan: Microarchitecting a Robotic Processor"

Mohammad Bakhshalipour, Phillip Gibbons 2024

Optional Further Reading:

"Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware"

Mohammad Bakhshalipour, Phillip Gibbons 2023

"RoboShape: Using Topology Patterns to Scalably and Flexibly Deploy Accelerators Across Robots"

Sabrina Neuman, Radhika Ghosal, Thomas Bourgeat, Brian Plancher, Vijay Janapa Reddi 2023