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“NVIDIA Tesla: A Unified Graphics and Computing

Architecture”
Erik Lindholm, John Nicholls, Stuart Oberman, John Montrym 2008

Erik: Distinguished engineer => Senior Distinguished Architect
e Master Inventor, co-architected the first GPU. Just retired
John N: Director => Chief Compute Architect for GPUs
e Died2011: “Without John Nickolls, there'd be no CUDA”

Stuart: Design manager => VP GPU ASIC Engineering
* |EEE Fellow 2024

John M: Chief Architect




50 Years of Microprocessor Trend Data
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Road to Unification

e Vertex processors: low-latency, high-precision math operations
* Pixel processors: high-latency, lower-precision texture filtering
e 3:1ratio of Pixel to Vertex processors, but workload varies

e Unification advantages:
— Enables dynamic load balancing

— Intro new graphics shader stages (e.g., geometric shaders)

— New GPU parallel-computing capability




Tesla Architecture: GeForce 8800
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Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming
multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.




Texture/processor cluster (TPC)
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Single-instruction, Multiple-thread (SIMT)
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Warp is 32
parallel threads
of the same type

Performance issue: Branch divergence within a warp



General Compute: Memory Spaces
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Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming
multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

Virtual address space + page tables + hierarchy of TLBs



Cooperative Thread Array (Thread Block)

e An array of concurrent threads executing the same thread program
— Can cooperate to compute a result

— Eachthread has a unique TID (1D, 2D, or 3D)

— Share data in global or shared memory




Levels of Parallel Granularity
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Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.




Throughput Computing: Properties
e Extensive data parallelism
* Modest task parallelism
* Intensive FP arithmetic
e Latency tolerant
e Streaming data flow with little reuse

* Modest inter-thread synchronization/communication




C vs. CUDA

void addMatrix __global__ void addMatrixG
(float *a, float *b, float #*c, int N) (float *a, float *b, float #*c, int N)
{ {
int i, j, idx; int 1 = blockIdx.x*blockDim.x + threadIdx.x;
for (i = 0; i < N; i++) { int j = blockIdx.y*blockDim.y + threadIdx.y;
for (j = 0; j < N; j++) { int idx = i + j*N;
idx = 1 + J*N; if (1 < N & Jj < N)
clidx] = al[idx] + b[idx]; clidx] = al[idx] + b[idx];
} }
}
} void main()
void main() {
{ dim3 dimBlock (blocksize, blocksize) ;
- dim3 dimGrid (N/dimBlock.x, N/dimBlock.y) ;
addMatrix(a, b, ¢, N); addMatrixG<<<dimGrid, dimBlocks>>>(a, b, c, N);
} }

C code CUDA code




GeForce 8800 Ultra: Specs

* 681M transistors, 470 mm~”2in 90-nm CMOS

* 128 SP cores in 16 SMs

* 12,288 processor threads

e 1.5 GHz processor

* Peak 576 Gflops

e 768 MB GDDR3 DRAM

e 384-pin DRAM interface, 1.08 GHz DRAM clock
* 104 GB/s peak DRAM BW

e Typical power: 150 W at 1.3V




Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.




“A Case for Speculative Address Translation with
Rapid Validation for GPUs”

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim,
Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024
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Fig. 1: The latency of page walks on memory access latency in
commodity GPUs [48], [53], [54]. On average, by using micro-
benchmarks, we see that commodity GPUs have up to 1.96x higher
memory access latency (nearly 1000 cycles) due to page walks.




“A Case for Speculative Address Translation with
Rapid Validation for GPUs”

Junhyeok Park, Osang Kwon, Yongho Lee, Seongwook Kim,
Gwangeun Byeon, Jihun Yoon, Prashant Nair, Seokin Hong 2024
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Fig. 6: An overview of Avatar.

CAST: Contiguity-aware Speculative Translation

CAVA: In-Cache Validation




To Read for Monday

“Tartan: Microarchitecting a Robotic Processor”
Mohammad Bakhshalipour, Phillip Gibbons 2024

Optional Further Reading:

“Agents of Autonomy: A Systematic Study of
Robotics on Modern Hardware”
Mohammad Bakhshalipour, Phillip Gibbons 2023

“RoboShape: Using Topology Patterns to Scalably
and Flexibly Deploy Accelerators Across Robots”

Sabrina Neuman, Radhika Ghosal, Thomas Bourgeat,
Brian Plancher, Vijay Janapa Reddi 2023
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