
Speculative Taint Tracking
Jessie Fan
Kevin Zhu



Authors

Jiyong Yu: UIUC PhD, now Tenstorrent

Mengjia Yan: UIUC PhD, now assistant professor at MIT

Artem Khyzha: Tel Aviv University postdoc, now ARM

Adam Morrison: Tel Aviv University associate professor

Josep Torrellas: UIUC professor

- Harry H. Goode Memorial Award, ACM/IEEE Fellow 

Christopher Fletcher: UIUC assistant professor, now 
associate professor at Berkeley



Speculative Side-Channel Attacks: Two Components



Speculative Side-Channel Attacks: Two Components

This can be mispredicted "true"!



Speculative Side-Channel Attacks: Two Components

access instruction 
(here a load)



Speculative Side-Channel Attacks: Two Components

access instruction 
(here a load)

side channel 
(attacker can check 
if cache line loaded)



Access Instruction
Is usually a LOAD for the secret data (sometimes a read to a privileged register)

Transient (to be killed) Non-transient (to be retired)

More dangerous Less dangerous

Can be maneuvered to access data that 
correct execution would never access. 
(Universal Read Gadget)

Only accesses memory that would be part 
of correct program execution anyways.

this paper



Explicit Implicit

The data determines an instruction's usage 
of hardware resources, revealing its 
operands

The data indirectly influences how (or if) 
instructions execute, revealing the data

e.g. 

❏ memory instruction latency depends 
on cache hit/miss

❏ arithmetic instruction latency depends 
on operands

No instruction actually takes secret as an 
operand, yet it is still leaked

e.g.

❏ if (secret) can affect instruction 
cache footprint, program timing, etc.

Side Channel
Is a way the data can leak to the attacker



Visibility Point
When is it okay to disclose what secret is?

- instructions younger than the visibility point are called "unsafe"

- instructions reach visibility point (become safe) in program order

Attack Model Visibility Point of the Access Instruction

Spectre Model if all older control flow has resolved

Futuristic Model if it cannot be squashed (stronger)



How do you protect an load's value until 
its visibility point? (without sacrificing too much performance)



Speculative Taint Tracking
a "low-overhead" framework that protects data 

accessed under misspeculation



At design time

Based on microarchitecture, identify instruction types that need to be handled by 
the STT framework. Mark the instruction as a 

access instruction if it is a potential source of secrets under speculative execution

transmit instruction if its resource usage during execution depends on its operand



Access Instruction

Based on microarchitecture, microarchitects will classify instruction types as 
"access" instructions if they can access secrets.

❏ LOAD



Transmit Instruction

Based on microarchitecture, microarchitects will classify instruction types as 
"transmit*" instructions if they want to block the instruction from creating a side 
channel
*Note that this is not mutually exclusive being an "access" instruction

❏ LOAD (memory subsystem timing)
❏ MUL (latency can reveal operands)
❏ STORE (in some cases, causes cache invalidations before retirement)



Taint/Untaint Generation

The output register of unsafe access instructions are marked for 
protection — tainted.

Taint Generation: Taint the output of any unsafe access instruction.

Untaint Generation: Untaint the output when the access instruction becomes 
safe. (reaches its visibility point)



Taint/Untaint Propagation

Other instructions act as an OR gate for taint.

Taint propagation: taint an instruction's output if any of its inputs are tainted

Untaint propagation: untaint an instruction's output if all of its inputs are 
untainted

This is rather hard to keep track of (through dependencies); 
the authors come up with novel algorithm in hardware



Blocking Explicit Channels (Taint gen. and prop.)



Blocking Explicit Channels (Tainted transmit stalls)



Blocking Explicit Channels (Untaint gen. and prop.)



What did the paper get right?



Explicit Implicit

The data determines an instruction's usage 
of hardware resources, revealing its 
operands

The data indirectly influences how (or if) 
instructions execute, revealing the data

e.g. 

❏ memory instruction latency depends 
on cache hit/miss

❏ arithmetic instruction latency depends 
on operands

No instruction actually takes secret as an 
operand, yet it is still leaked

e.g.

❏ if (secret) can affect instruction 
cache footprint, program timing, etc.

Side Channel
Is a way the data can leak to the attacker



Implicit Side Channels
The data indirectly influences how (or if) instructions execute, revealing the data



Implicit Side Channels
The data indirectly influences how (or if) instructions execute, revealing the data



Prediction Time Resolution Time

Branch predictor can be trained on secret 
data such that it "remembers" the secret.

e.g. Branch predictor can be trained to 
predict "not taken"

Branch predictor makes future predictions 
based on the secret

then, if (secret) causes an observable 
pipeline squash => secret is 1

More on Implicit Side Channels
Anything that affects the PC (transient execution path) is an implicit side channel. 

E.g. branches, which can leak at



Blocking Implicit Channels

Make the PC not depend on tainted data!

❏ Predicted path can't reveal tainted data
❏ Squashes can't reveal tainted data



Blocking Implicit Channels

Prediction-based channels: Don't let tainted data update frontend 
predictor structures (branch predictor, etc.)

=> how the path is fetched independent of tainted data

Resolution-based channels: Don't show the effects of branch resolution 
until the branch predicate is untainted

=> how the path is squashed independent of tainted data



Blocking Implicit Channels → Explicit Branch Example

You can still predict what secret 
is and go ahead with execution,

with a few caveats...



Blocking Implicit Channels → Explicit Branch Example

Block the prediction-based 
channel: 

Don't update the branch predictor 
until secret is untainted!

i.e. whichever LOAD that accessed 
secret — let it resolve first before 
updating BP!



Blocking Implicit Channels → Explicit Branch Example

Block the resolution-based 
channel: 

Let's say the BP predicts that 
secret == 1 and executes the 
load. 

If we find out secret is actually 0, 
don't squash the load! Wait until 
secret is safe.



How are these alike?

store rX -> (secret)
load rY <= (rZ)

if (secret == rZ) 
rY <= rX;

else
load rY <= (rZ);



How are these alike?

Both can create a pipeline squash!

store rX -> (secret)
load rY <= (rZ)

if (secret == rZ) 
rY <= rX;

else
load rY <= (rZ);

Implicit Branch
memory dependency predictor 
can mis-speculate that 
secret != rZ

Explicit Branch
branch predictor 
can mis-speculate that 
secret != rZ



Implicit Branches
All hardware speculation — memory dependence, value, memory consistency — 
are branch predictions. 

These implicit branches are microarchitecturally generated and injected into the 
execution path. 



Blocking Implicit Channels → Implicit Branches



Blocking Implicit Channels → Implicit Branch Example

Block the prediction-based 
channel: 

Don't update the memory 
dependency predictor until 
secret is untainted!

i.e. whichever LOAD that accessed 
secret — let it resolve first before 
updating MDP!



Blocking Implicit Channels → Implicit Branch Example

Block the resolution-based 
channel: 

Let's say the MDP predicts that 
secret != rZ and issues the 
load (doesn't forward the store).

If we find out secret == rZ, don't 
squash the load! Wait until secret 
is safe.



What did the paper get wrong?



Microarchitecture

Visibility point:

● Program order
● To untaint arguments of an instruction, wait for youngest access instruction 

causing the taint to reach visibility point [Youngest Root of Taint (yrot)]
● No need to track def-use chains



Microarchitecture

Add logic to calculate visibility point (VP)

2 new field entries to rename table

1. YRoT → Youngest Root of Taint of 
last producer

2. Access instruction ROB index 
(AccessInstrIdx) → ROB index of 
last producer if access instruction 
(-1 otherwise)



Microarchitecture



Microarchitecture

Data-independent Arithmetic

instruction cannot create an explicit or 
implicit covert channel

- No changes to reservation station 
and yrot is dropped

- Can execute as soon as arguments 
are available (even if tainted)



Microarchitecture

Data-dependent Arithmetic

instruction can create explicit channels 
only

- If classified as transmitter, store yrot
- When VP changes, check 

YRoT < VP to execute



Microarchitecture

Branches

instruction can create implicit channels 
only

- store yrot for branches
- When VP changes, check 

YRoT < VP to execute



Microarchitecture

Loads and Stores

instruction can create explicit and implicit 
channels 

Load → record yrot

- store-load forwarding
- Perform load unconditionally

- memory dependence speculation
- Record PendingSquash
- Record YRoT_impSquash
- Squash if PendingSquash && 

(YRoT_impSquash < VP)

Store → record yrot



Evaluation



Evaluation - SPEC



Evaluation - PARSEC



Evaluation - SPEC



Evaluation 



What did the paper get wrong?

- Limited scope
- Only addresses more dangerous attacks involving transient access instructions (universal 

read gadget)
- Arbitrary speculative execution can still leak retired register file state

- Overhead still high
- Overhead of protecting data in memory 8.7, 44.5% (spectre, futuristic model)
- Overhead of protecting data in memory and registers 30.8, 63.4% (spectre, futuristic model)



What did the paper get wrong?

- Vulnerabilities still exist?
- STT assumes that stores in isolation don’t form covert channels

- Stores can still leak information via the TLB

- STT doesn’t consider partial hits for store-load-forwarding
- When a subset of the load’s address range is found in the store buffer
- store buffer nor lower levels of the memory hierarchy hold entire correct data



References

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher. Speculative Taint 
Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd Annual IEEE/ACM 
International Symposium on Microarchitecture (MICRO '52), pages 954–968, Columbus, OH, USA, 2019. Association for Computing 
Machinery, New York, NY, USA. DOI: 10.1145/3352460.3358274.

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish Narayanasamy, and Baris Kasikci. DOLMA: Securing 
Speculation with the Principle of Transient Non-Observability. In 30th USENIX Security Symposium (USENIX Security 21), pages 
1397–1414, August 2021. USENIX Association. https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin. 

https://doi.org/10.1145/3352460.3358274
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin

