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Background & Motivation



Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for

1. Personalized medicine,

2. Outbreak tracing,

3. Understanding evolution

Nanopore Sequencing: A widely used sequencing technology

e

Nanopore Genome Analysis Pipeline

Basecalling D D E DRI DRI
in GPU

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]




Nanopore Genome Sequencing and Analysis Pipeline

Basecalling is

1. Accuracy-critical
2. Performance Bottleneck

Basecallers are just large DNNs




DNN Hardware Acceleration

DNN execution is dominated by:
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Vector-Matrix
Multiplication (VMM)
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4 N

Memristor-based
crossbars support VMM

Data movement
between memory and
accelerator

\_ )

(e.g., GPU or TPU)
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4 N

Computation in Memory
(CIM) minimizes data
movement
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Memristor-based Crossbars
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VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Accelerators

—

In Accelerators Wit Wiz Wis Wiz |

Accurate

. \ . . W21 W22 W23 W24
(i 2 is ) X = (01 02 O3 04)
W31 W32 W33 Was

W41 Wa2 Wa3 Wa4

In Memory 7V11 W12 Wi3 WI

. . . . W21 W22 W23 Wa4
(i 2 i ie) X = (010205 04)
W31 W32 Wais3 W3z

W41 Wa2 W43 Wa4




Non-idealities in Memristor-based Crossbars
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[ Non-idealities are everywhere ]




VMM in Memristor-based Crossbars

VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in Memristor-based Crossbars
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VMM in Memristor-based Crossbars

VMM in
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Our Goal

To realistically evaluate end-to-end basecalling

accuracy and throughput for memristor-based CIM




Key Idea

To account for the non-idealities in device, circuit and
architecture of memristor-based CIM and the
overhead of non-idealities mitigation techniques




Outline

Swordfish: Designh & Implementation




Swordfish vs Other Frameworks

ldeal Memristor-based CIM Frameworks for DNNs

User Input Traditional ideal Frameworks

DNN

*Architecture Partition & Map Kernel Chunks System Evaluator

*Weights . Layer 1 —_—
L : N : . . *Performance
ayer (i.e., ideal VMMs) «Area

CIM Hardware

*Architecture




Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

User Input

DNN
eArchitecture
*Weights

CIM Hardware
eArchitecture

*Circuit Params
*Device Params

Hyperparameters

(

Swordfish
Partition & Map Kernel System Evaluator
Layer 1 Chunks *Accuracy
5 *Performance
Layer N \ «Area
VMM Model Generator —/
Non-ideal
VMMs
Accuracy Enhancer
Updated
Weights
.




Swordfish Framework - Overview

Kernel
Chunks

N\

VMM Model Generator

Non-ideal
VMMs

Updated
Weights



VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities

Swordfish supports two approaches:
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VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities

Swordfish supports two approaches:
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Swordfish Framework - Overview

Accuracy Enhancer

Updated
Weights




Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents
and resistance of memristors based on non-idealities

Swordfish supports four techniques:

r1. Analytical Variation Aware Training (VAT) ‘
r2. Knowledge Distillation-based (KD) VAT 1
r3. Read-Verify-Write (R-V-W) Training 1
r4. Random Sparse Adaptation (RSA) Training 1




Accuracy Enhancement via Random Sparse Adaptation

Key idea? Map the weights that otherwise would map to error-prone
memristor devices to reliable SRAM cells.

RSA in 3 Steps:

1. Initial Training (one-time, on GPU) and distribution of weights
2. VMM operation using both memories

3. Retraining all weights and reload those on SRAM (only)

 Digital Labeled Input Squiggle |

Load Weights |
to Memrristors + SRAM 1
Initial Training Memrittor Array l

VMM/Layer Output

Retraining
*In Software
*e.g., using KD

Load Weights to SRAM

L VMM Output e y
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Evaluation & Key Results



Evaluation Methodology: Experimental Setup

 Authors evaluated

* Basecaller: Bonito [Oxford Nanopore 2023]
e CIM Architecture: PUMA [Ankit+, ASPLOS 2019]

* Infrastructure

* 2x AMD EPYC 7742 CPU with 500 GB DDR4 DRAM
* 8x NVIDIA V100

* Datasets and Workloads [Wick+ 2019, Zook+ 2019, CADDE 2020]

* 4 real read and reference genomes with various genome size (D1, D2,
D3, and D4)




Evaluated Non-idealities & Enhancement techniques
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Accuracy: All Non-idealities without Mitigation
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Combined non-idealities leads to significant accuracy loss (>18%)




Accuracy: Enhancement Techniques on All Non-idealities
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Accuracy: Enhancement Techniques on All Non-idealities
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Considerable accuracy loss (>6%) even with All
enhancement techniques.




Throughput Analysis
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Ideal CIM implementation improves the basecalling throughput over

Bonito-GPU by 413.6% on average
. J




Throughput Analysis

Throughput improvement at the high,

unacceptable accuracy loss of 18%




Throughput Analysis
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Realistic CIM designs significantly underperform ideal design




Throughput Analysis
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Some realistic CIM designs degrade throughput compared to
Bonito-GPU




Throughput Analysis
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Realistic CIM design using RSA+KD provides on average 25.7x%
higher throughput compared to Bonito-GPU
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Improvements & Takeaways




Opportunities for Improvement
o Explore variety of DNN applications
o Overhead introduced by Swordfish framework

o Power and execution analysis for training and inference



Takeaways

The target application for memristor-based CIM matters

Swordfish enables realistic evaluation of accuracy and performance
for DNN-based applications on memristor-based CIM

Non-idealities are detrimental to both accuracy and performance

HW/SW co-designed techniques mitigate inaccuracy the most
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PUMA Original Architecture

MVMU
DAC
Control Stall/Kill ADC

Matrix vector multiplication unit
Digital to analog converter
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Figure 1. Core Architecture
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