Swordfish:

A Framework for Evaluating **Deep Neural Network-based Basecalling** using Computation-in-Memory with Non-Ideal Memristors

Taha Michael Shahroodi,

Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina, Stephan Wong, Onur Mutlu, Said Hamdioui

Authors

Tara Shahroodi PhD DUT Quant Researcher

Joel Lindegger
PhD Student @ ETH

Stephan Wong PhD DUT DUT Prof.

Gagandeep Singh
PhD ETH
UIUC Prof

Can Firtina
Senior Researcher @
PhD @ ETH

Onur Mutlu
PhD UT Austin
ETH/CMU Prof.

Mahdi Zahedi
PhD DUT
Hardware Engineer
@ CERN

Haiyu Mao
PhD Tsinghua
KCL Lecturer, Postdoc
@ ETH

Said Hamdioui PhD DUT DUT Prof.

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for

- 1. Personalized medicine,
- 2. Outbreak tracing,
- 3. Understanding evolution

Nanopore Sequencing: A widely used sequencing technology

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]

Nanopore Genome Sequencing and Analysis Pipeline

Genome Sequencing: Determining DNA sequence order for

- 1. Personalized medicine,
- 2. Outbreak tracing,
- 3. Understanding evolution

Nanonore Sequencing: A widely used sequencing technology

Basecalling is

- 1. Accuracy-critical
- 2. Performance Bottleneck

Basecallers are just large DNNs

DNN Hardware Acceleration

DNN execution is dominated by:

Vector-Matrix Multiplication (VMM)

Data movement between memory and accelerator (e.g., GPU or TPU)

Memristor-based crossbars support VMM

Computation in Memory (CIM) minimizes data movement

Memristor-based Crossbars

VMM in Accelerators

In Accelerators

$$(i_1 i_2 i_3 i_4)$$

W11 W12 W13 W14

Accurate

$$(O_1 O_2 O_3 O_4)$$

VMM in Memristor-based Crossbars

In Memory

$$(i_1 i_2 i_3 i_4)$$

W11 W12 W13 W14

$$=$$
 (O₁ O₂ O₃ O₄)

Non-idealities in Memristor-based Crossbars Variation in **Non-ideal DAC Synaptic Conductance V** V 23 Wire Resistance **V** / 32 Analog to Digital Converters (ADCs) **Non-ideal ADC**

Non-idealities are everywhere

O3

 \mathbf{O}_4

O2

O₁

VMM in Memristor-based Crossbars

VMM in Ideal Memristor-based Crossbars

VMM in Ideal Memristor-based Crossbars

VMM in Real Memristor-based Crossbars

Our Goal

To realistically evaluate end-to-end basecalling accuracy and throughput for memristor-based CIM

Key Idea

To account for the **non-idealities** in **device**, **circuit** and **architecture** of memristor-based CIM and the **overhead** of non-idealities **mitigation techniques**

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Swordfish vs Other Frameworks

Ideal Memristor-based CIM Frameworks for DNNs

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities **Swordfish** supports two approaches:

VMM Model Generator

Goal: Capture real output of VMM in presence of non-idealities **Swordfish** supports two approaches:

Swordfish Framework - Overview

Realistic Memristor-based CIM Frameworks for DNNs

Accuracy Enhancement

Goal: Enhance the accuracy of a VMM by adapting input currents and resistance of memristors based on non-idealities

Swordfish supports four techniques:

1. Analytical Variation Aware Training (VAT)

2. Knowledge Distillation-based (KD) VAT

3. Read-Verify-Write (R-V-W) Training

4. Random Sparse Adaptation (RSA) Training

Accuracy Enhancement via Random Sparse Adaptation

Key idea? Map the weights that otherwise would map to error-prone memristor devices to reliable SRAM cells.

RSA in 3 Steps:

- 1. Initial Training (one-time, on GPU) and distribution of weights
- 2. VMM operation using both memories
- 3. Retraining all weights and reload those on **SRAM** (only)

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Takeaways & Summary

Evaluation Methodology: Experimental Setup

Authors evaluated

- Basecaller: Bonito [Oxford Nanopore 2023]
- CIM Architecture: PUMA [Ankit+, ASPLOS 2019]

Infrastructure

- 2x AMD EPYC 7742 CPU with 500 GB DDR4 DRAM
- 8x NVIDIA V100

- Datasets and Workloads [Wick+ 2019, Zook+ 2019, CADDE 2020]
 - 4 real read and reference genomes with various genome size (D1, D2, D3, and D4)

Evaluated Non-idealities & Enhancement techniques

Non-idealities

Synaptic+Wires

Sensing+ADC Circuitry

Analytical Models
(Approach 2)

Combined

Measured

(Approach 1)

Accuracy Enhancement
 Techniques

Accuracy: All Non-idealities without Mitigation

Combined non-idealities leads to significant accuracy loss (>18%)

Accuracy: Enhancement Techniques on All Non-idealities

Accuracy enhancement techniques **mitigate** non-idealities, But differently.

Accuracy: Enhancement Techniques on All Non-idealities

Considerable accuracy loss (>6%) even with All enhancement techniques.

Ideal CIM implementation improves the basecalling throughput over Bonito-GPU by **413.6**× **on average**

26

Throughput improvement at the high, unacceptable accuracy loss of 18%

DI DZ D3 D4 AVELAGE

Ideal CIM implementation improves the basecalling throughput over Bonito-GPU by 413.6× on average

Realistic CIM designs significantly underperform ideal design

Some **realistic CIM designs degrade** throughput compared to Bonito-GPU

20

Realistic CIM design using RSA+KD provides on average 25.7× higher throughput compared to Bonito-GPU

40

Outline

Background & Motivation

Swordfish: Design & Implementation

Evaluation & Key Results

Improvements & Takeaways

Opportunities for Improvement

- Explore variety of DNN applications
- Overhead introduced by Swordfish framework
- Power and execution analysis for training and inference

Takeaways

The target application for memristor-based CIM matters

Swordfish enables **realistic** evaluation of accuracy and performance for DNN-based applications on memristor-based CIM

Non-idealities are detrimental to both accuracy and performance

HW/SW co-designed techniques mitigate inaccuracy the most

Swordfish:

A Framework for Evaluating **Deep Neural Network-based Basecalling** using Computation-in-Memory with Non-Ideal Memristors

PUMA Original Architecture

Figure 1. Core Architecture