
Load Value
Approximation
Rahul Prabhu
Sai Mittapalli

➔ A wide range of commercial, multimedia and scientific applications are inherently approximate

➔ They operate on noisy data and perform inexact computations (ex. Image processing, recognition,

and mining applications)

➔ Applications exhibit value locality; they tend to reuse common values

General Background

➔ Instead of waiting for data, the predictor generates a value and allows the processor to continue

executing instructions speculatively.

➔ The prediction is validated against the actual value. If no match, the processor must rollback

instructions.

➔ If the value is correct, the predictor increases its confidence for that value, same for the opposite

➔ In load value predictors, a load miss in the L1 cache still fetches the data from the next level of

memory.

Load Value Prediction

➔ Requires managing speculative values while risking costly rollbacks for inaccurate predictions

➔ Due to latencies of cache misses, processors need large buffers to store all speculative values for

further validation

➔ Upon a misprediction, the processor must be able to quickly restore its registers and undo all

speculative modifications

➔ Load value prediction typically performs poorly for floating-point values

➔ Possible for another thread to modify a speculative value, resulting in complications with the

memory consistency model

Problems with Existing Approaches

The Authors

Joshua San Miguel

- Associate Professor in the Department of Electrical and

Computer Engineering at the University of

Wisconsin-Madison

Mario Badr

- Assistant Professor in the Department of Computer Science

at the University of Toronto

Natalie Enright Jerger

- Canada Research Chair in Computer Architecture

- Professor in the Department of Electrical and Computer

Engineering at the University of Toronto.

1

Overall
Implementation

- A load misses in the L1 data cache at 1

- Load value approximator generates

X_approx at 2.

- The processor assumes this is the actual

value of X and proceeds with its execution

3a .

- A request is sent to the next level of the

memory hierarchy to fetch the cache

block containing the actual value of X at

3b .

Approximator Design
- Combine the computational and context based predictors into a single hardware

structure

- The approximator consists of a global history buffer and an approximator table

- GHB is a FIFO queue that stores the values accessed by the most recent load

instructions (Precise values not approximate)

- The hash value is the values in the GHB hashed together with the instruction address

using a hash function

- The hash value indexes the direct mapped approximator table

Approximator Design
cont.

- Each entry consists of a tag, a saturating confidence counter, a degree counter, and

the LHB

- LHB stores the values accessed only by the previous loads that match the entry’s tag

- LVA computes average of values for approximate values

- No rollbacks are needed since the actual value is used only to improve the accuracy

Overall Process Timeline

Request the Actual Value
from Memory

Initial Load Miss Generate Hash Find Approximate Value

Update Table Values

Relaxed Confidence Estimation
- The extent to which approximation can be tolerated is called the relaxed confidence

window

- When approximating, use the approximate if the confidence counter is greater than 0

- The confidence counter is incremented by one if x_approx is close enough to x_actual,

decremented by one otherwise

Approximation Degree
- If an approximation is made, it is possible to not fetch the data block at all.

- The actual value’s only purpose is to train the approximator for better accuracy

- Trades off approximation accuracy for better energy efficiency in the memory

hierarchy

- The approximation degree specifies how many times we reuse a value generated by

the approximator before we train it

Identifying Approximate Data
- Load value approximation requires programmers to annotate their code one should

not approximate

- Data that directly affects an application’s control flow

- Data used in the denominator of a division operation should not be approximated

- Memory addresses and pointers should never be approximated

- Identifying approximate data in frequently visited regions of code is the ideal scenario

Benchmarks

Blackscholes

Ferret

Fluidanimate

Swaptions

Bodytrack

Canneal

x264

Approximate
Floating-Point Data

Approximate Integer
Data

What did the paper get right?

Methodology
➔ Two-Phase Evaluation

◆ Design Space Exploration

◆ Full-system Multiprocessor Simulation

Design Space Exploration
➔ Uses Pin (dynamic binary

instrumentation framework) to model

private L1 data cache

➔ Pin simulator catches all load

instructors that access approximate

memory locations

➔ Pin allows rapid evaluation of

performance, energy, and output error

Full-System Multiprocessor Simulation

➔ Uses FeS2 cycle level x86 simulator

➔ Uses CACTI modeling tool to

measure the dynamic energy

consumptions of:

◆ Caches

◆ Main Memory

◆ Approximator Tables

Evaluation
➔ Design Considerations:

◆ Global History Buffer Size

◆ Relaxed Confidence

Thresholds

◆ Value Delay

◆ Approximation Degree

➔ Uses three metrics:

◆ Misses-per-kilo-instructions

(MPKI)

◆ Blocks fetched into the L1

cache (fetches)

◆ Output error

➔ Full-System Simulation:

◆ Performance

◆ Energy

Design Consideration: Global History Buffer
Size

➔ Baseline LVA vs LVP for varying GHB sizes

◆ On average, LVA achieves lower MPKI

◆ MPKI increase with size b/c hashing

more GHB values causes indexing

challenges

➔ Impact of GHB size on output error

◆ All <= 10% other than Ferret

Relaxed Confidence Threshold
➔ Infinite relaxed confidence = data is always approximated

according to values in LHB

➔ Key Takeaways:

◆ x264 has reduced MPKI and almost no error

● Integer values are more open to approximation

◆ Ferret has increased error

● Difficult to approximate vectors of

floating-point data

Value Delay
➔ LVA inherently tolerates inexactness

◆ No significant impact on MPKI or error

➔ When data becomes too stale, approximation

is rejected (blackscholes at delay-32)

➔ Output error is mostly constant except for

canneal

Approximation Degree
➔ Prefetching reduces MPKI at

expense of increase in fetches

and energy consumption

➔ LVA reduces both MPKI and # of

fetches at expense of output

error

◆ Less frequent training of

approximator

Full-System Simulation
➔ 8.5% performance improvement on average

➔ 41.0% reduction of L1 miss latency on average

➔ 12.6% energy saving on average

➔ Higher approximation degrees → greater

energy savings

What did the paper get wrong?

Drawbacks
➔ Not sustainable for all types of applications

➔ Weak memory consistency - “If consistency … is a critical concern, [the] application is

unlikely to be a candidate for approximation”

➔ High dependency on Approximation Degree

➔ Low chances of adoption

◆ Willingly sacrificing accuracy in exchange for speed and energy

Questions?

References

● J. S. Miguel, M. Badr and N. E. Jerger, "Load Value Approximation," 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, Cambridge, UK, 2014, pp.

127-139, doi: 10.1109/MICRO.2014.22.

● https://jsm.ece.wisc.edu/docs/sanmiguel-micro2014-presentation.pdf

https://jsm.ece.wisc.edu/docs/sanmiguel-micro2014-presentation.pdf

