
NOMAD: Enabling Non-blocking OS-managed
DRAM Cache via Tag-Data Decoupling

Josh Rong, Siyuan Li

Y. Kim, H. Kim and W. J. Song, "NOMAD: Enabling Non-blocking OS-managed DRAM Cache via Tag-Data Decoupling," 2023 
IEEE International Symposium on High-Performance Computer Architecture (HPCA), Montreal, QC, Canada, 2023, pp. 

193-205, doi: 10.1109/HPCA56546.2023.10071016.



Authors

Youngin Kim

PhD Candidate @ Yonsei University

System Architect @ MangoBoost

Hyeonjin Kim

PhD student @ Yonsei University

William J. Song

Associate professor @ Yonsei University

PhD @ Georgia Institute of Technology



Background

Problem: 

Demands for larger memory bandwidth and capacity.

Solution:

Heterogeneous memory systems combining high-bandwidth 
on-package DRAM (DRAM Cache) and large-capacity off-package 
memory.



Existing DRAM Cache Designs (HW-based)

1. Tag lookup in On-package DRAM.

If Tag Hit, return data.

If Tag Miss, 

2. OS resumes. MSHR service the request.
3. Cache Fill. (Eviction, Data placement, Tag)



Existing DRAM Cache Designs (HW-based)

Pro:

Non-blocking Miss Handling: Uses Miss Status Holding Registers (MSHRs) to 
handle multiple misses simultaneously.

Con:

High Metadata Management Overhead: Metadata (tags, dirty bits, etc.) is stored 
in on-package DRAM.



Existing DRAM Cache Designs (OS-managed)

1. Check TLB for cached page.

If TLB Hit, access DRAM Cache and return data.

If TLB Miss, 

2. Miss handler allocates a new cache frame.
3. OS wait for Tag management and Data management.



Existing DRAM Cache Designs (OS-managed)

Pro:

Ideal DRAM Cache Access Time: Utilizes PTE stored in TLB, avoiding the need 
to transfer metadata between DRAM and the cache.

Con:

Blocking Miss Handling: When a DRAM cache miss occurs, the OS halts the 
application thread until the cache fill (thousands of cycles) is completed.



Benchmark Workload

Excess:

RMHB > Bandwidth

Tight:

RMHB = Bandwidth

Loose:

RMHB = ½ Bandwidth

Few:

RMHB << Bandwidth

Required Miss 
Handling Bandwidth

LLC Misses Per 
Microsecond



Motivation

IPC of OS-managed DC normalized to HW-based DC



NOMAD Overall Structure

Decoupled Tag-Data Management

Front-end: update tag

Back-end: cache-fill



Front-end OS Routine (Page Descriptor & PTE)

C: cached

NC: non-cacheable

V: valid

DC: dirty-cache

On a cache miss:

1. OS checks PTE , and find that the page is cacheable 
but not cached.

2. Miss handler allocate a cache frame, the CFN replaces 
the PFN in the PTE.

3. CPD is updated to store the original PFN.
4. The application resumes. Cache-fill in back-end.
On a cache eviction (in batch):

1. Skip frame referenced by 
TLB.

2. If dirty, schedule writeback.
3. Restore PTE to point to the 

original PFN in CPD.
4. Invalidate evicted frames.



Front-end OS Routine (Cache Frame Management)

FIFO Replacement Policy

Simplicity.

Fully-associative nature of OS-managed DRAM Cache.

23% less DC misses than 16-way set-associative HW-based DC with LRU.

Prior work of HW-based DC can only scale up to 4-way set-associative.



Back-end Hardware



Back-end Hardware

Interface:

Memory-mapped device register

S: whether the interface is busy or not

T: Specifies whether the command is cache-fill or 
write back execution

PFN, CFN, Offset: address information

Front-end request -> allocate PCSHR -> idle



Back-end Hardware

PCSHR: Page Copy Status/Information Holding 
Register

Handles multiple page copy commands

V: Valid command or not

T: Command type (obtained upon allocation)

R: Read-issued

B: In-buffer

W: Partial-write



Back-end Hardware

Sub-blocks of a page is fetched sequentially

P: Prioritize sub-block

PI: Index of prioritized sub-block

V (sub-entries): valid bit

SI (sub-entries): sub-block index



DRAM Cache Access

TLB hit - > CFNs of PCSHR compared

No match: Page is available in DRAM cache (data hit)

Match: pending request from DRAM (data miss)



DRAM Cache Access



Evaluation of NOMAD
Baseline: no on-package DRAM

TiD: HW-based Cache with tag management

TDC: State-of-the-art OS-managed design

Ideal: OS-managed DRAM cache with no latency penalties for miss handling





Evaluation of NOMAD
TDC (OS-managed) TiD (HW-managed) NOMAD

Excess Stall 43% of runtime Substantial DRAM 
bandwidth

- Reduce stall via non-block 
cache
- Reduced metadata transfer

Tight Stall 29%. No 
performance gain for 
workload with less spatial 
locality

Suffer from non-ideal 
memory access time

Best.
- Tolerate tag misses
- Near-ideal access time

Loose Stall level of 15% Suffer from high LLC 
MPMS benchmark

Less than 5% stall
Near ideal performance (few tag 
misses and less contention)

Few Negligible stall time Large bandwidth 
consumption bottlenecks 
performance

Near ideal performance



Further Optimization: Area

- Number of PCSHRs



Further Optimization: Area

- Size of page copy buffers



Further Optimization: Centralized vs Distributed

Previous observation: Imbalanced accesses would cause frequent lockups and 
require greater hardware resources.

NOMAD: Sequential cache frame allocation guarantees uniformly distributed 
commands



Thanks


