18-742:
Computer Architecture & Systems

WaveScalar

Prof. Phillip Gibbons
Spring 2025, Lecture 12

Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data

7
10 Y ! ' ! Transistors
108 F Pﬂynamiczw* C*V2f* A | (Thousands)
Single-Thread
10° b 9
: _gﬂﬁ“*ﬁPermrma nce
104 b o 1 (SpecINT x 10%)
1[}3 L] i [] A
Typical Power (W)
10° | “
1 Number of
Lt - | Logical Cores
-|D'l'.'l' = ‘ * . " ees -i—-q‘ =
1]]]]
1970 1980 1990 2000 ‘; 2010 2020

Year Dennard Scaling Fails in Here

We start here

Out-of-Order Superscalars

e Exploit Instruction-level parallelism

-t 21 mm -
e Limitations: } instructor
o . Fxemall Instruction ache
- Significant complexity " Feton [(2KD)
TLB &
. . . X
— High port requirements in g | Inst.Decode& [para 8
.] o Rename Cache =
register file & caches - (32 KB) s
21 mm g_. O
. . = N
— Branch prediction must be 8| incucion Qises, | = | =
eXtrem el.y 3 Ccurate and Out-of-Order Logic ?3 2
o O
)
— Inter-instruction dependencies Floating Point =
.. . . Unit
limit application ILP Y
From CMP paper

“Monsoon: An Explicit Token-Store Architecture”

Gregory M. Papadopoulos, David E. Culler 1990

Code-Block Activation Instruction Memory

e Dataflow architectures directly
execute dynamic dataflow graphs

Sharable, Relocatable
Instruction Text for
Code-Block

— Compiled from Id language

e Goal: Tolerate long unpredictable
communication delays, in HW

— (Tagged) Dataflow firing rule o S

Runtime-Allocated
5| Activation Frame
For Code Block

.,
- .
.

* Monsoon introduced & = s
Explicit Token Store L mease § N
T I

...............
..................
eaq .-

1 Ll Ll s | Ll]
— Compiler allocates Tokens — —
. . I " - ﬂ-ﬂﬂd. = g l ﬁnﬂ; A‘ﬂn;‘.‘ =5 [£5.004.
to Activation Frames ! _ 1 .
First Token Arrives Second Token Arrives

Value-part of token written into frame, Value-part read from frame,
Presence bits set; Presence bits reset;
No tokens generated. Operation performed and result tokens generated,

Monsoon: Authors’ Retrospective (1998)

o “Clearly the paper did not establish dataflow as the dominant
principle in instruction set design.”

* One of Monsoon’s clear shortcomings was the lack of power in
its basic instructions.

* Modern microprocessors construct a small window of dynamic
dataflow execution on-the-fly.

e Split-phase memory references foreshadow a future where:
Memory reference are carried out asynchronously with some
probability of failure, and complete with a well-defined event.

e Future work: Branching on the result of a load being ‘not yet present’
or branching on a cache miss. Nondeterministic.

Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data

7
10 ' ' ' Y Transistors
1[}5 i denamic =N* Ct VE f* A 4 I:T:']I:Jllhtifif..j-‘:'u]
10° k Single-Thread
Performance
104 b 1 (SpecINT x 10%)
10° | n i L -
Typical Power (W)
10° “
1 Number of
10' B i
- Logical Cores
1[}‘3-‘ : ' e B eee -*—.‘4‘ i
i L i] 1
1970 1980 1990 2000 ‘; 2010 2020

Year nnard Scaling Fails in Here

We move to here

“An Evaluation of the TRIPS Computer System”

Mark Gebhart, Bertrand Maher, Katherine Coons, Jeff Diamond,

Paul Gratz, Mario Marino, Nitya Ranganathan,
Behnam Robatmili, Aaron Smith, James Burrill, Stephen Keckler,
Doug Burger, Kathryn McKinley 2009

[First TRIPS paperis in 2001]

* Explicit Data Graph Execution (EDGE) atafiow Graph
— Block-atomic execution model RO R1

— Blocks are composed of dataflow instructions -

* Advantages over traditional architectures: fs /I___I-- ------
— Larger instruction window (up to 8 x 128)

— Increases concurrency (at cost of more instructions)

— Register & memory access => inst-to-inst communication

Single-thread performance matters even in multicore era. Why?

TRIPS Chip

¢ 130nm ASIC w/170M transistors

e Dataflow in a block. Blocks communicate via registers & memory

Processor 0

TRIPS Tiles

G: Global Control
(predict/fetch)

R: Register File

I: Instruction Cache

D: Data Cache

E: Execution
(ALU array)

TRIPS Controllers

DMA: DMA

SDC: SDRAM
C2C: Chip-to-Chip
EBC: External Bus y

On-Chip Network

TRIPS vs. Alpha RISC

(Simulator Results)

| Suite | Count | Benchmarks |

Kernels 4 transpose (ct), convolution (conv), vector-add
(vadd), matrix multiply (matrix)

VersaBench | 3 of 10 | bit and stream (fmradio, 802.11a, 8b10b)

EEMBC 28 of 30 | Embedded benchmarks

Simple 15 Hand-optimized versions of Kernels,
VersaBench, and 8 EEMBC benchmarks

SPEC 2K Int | 9 of 12 [All but gap. vortex and C++ benchmarks'

SPEC 2K FP| 9 of 14 | All but sixtrack and 4 Fortran 90 benchmarks!

2
B L8 b O Stores Committed | |
D= I B Loads Executed
QB LB e m ET_ET Operands
T I B .. O Writes Committed |
S 2 yol R I ___ W Reads Fetched
< 2 .1 _____________________________ ™ R R
LN
22 08--I R Y e
ISEE-EN(X S b B m N EIEEIEIEIRIEE 1 U E a¥ IR e B 1T
2O 04t----B-BBRuR-BN-TLE R Pl L BB R RIE TR BRI
Z .
~ 0.2} AR =
0 m—f =] - A= == || 1 =111
OCCZTVOIZTOVOIZTUVUIZDTOUOITOIZTUOIVOITOZTOZDOTOTOTOIO IO T
<
S I O I A SR R P T S ¢ & &K
o N & \o§ \\,\OQ N vt @/\ 050\0 S & C ®‘z>® @60@ & é& Q\% @Cﬁ
SR o & F¥ F L
9 S
Geometric Mean

Figure 5. Storage accesses normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.

TRIPS cuts memory accesses in half.
TRIPS register accesses + direct ET-ET ~ Alpha register accesses.

| Suite | Count | Benchmarks |

° ° Kernels 4 transpose (ct), convolution (conv), vector-add
[n - I g t (vadd), matrix multiply (matrix)

VersaBench | 3 of 10 | bit and stream (fmradio, 802.11a, 8b10b)

° EEMBC 28 of 30 | Embedded benchmarks
I n St r u Ct I 0 n S Simple 15 |Hand-optimized versions of Kernels,
VersaBench, and 8 EEMBC benchmarks

SPEC 2K Int| 9 of 12 | All but gap. vortex and C++ benchmarks'

(Simulator Results) SPEC 2K FP| 9 of 14 | All but sixtrack and 4 Fortran 90 benchmarks’
00 O Fetched but not executed |
- l= — B Executed but not useful
5 QOO b=] . S N o Moves |
= II I — I B Useful
Q
I I
Z S 600 I = 1
5=
-.E = 400 |- ‘Bl -
!
Z

200

& 5 s > D X >0 - 4 e Ve o & N FATD @ D ‘
ST TTE ST E O 0 ST S S8 E
< 4 Y 3 9 | B
¥ & & S ¥ $ ST FEL
& S

Average

C = compiled code. H = hand-optimized code.
On average: 400 (C) and 600 (H) in-flight valid instructions.

Speedup (cycles)

Speedup Relative to Core 2 (gcc)

(Actual Hardware)

Issue | Proc | Mem |Proc/Mem|LI Cap.| L2 | Mem
System | Width | Speed | Speed Ratio (D/1) | Cap. | Cap.
(MHz) | (MHz) (KB) [(MB)|(GB)

TRIPS 16 366 200 1.83 32 /80 1 2

Core 2 41 1600 800 2.00 32732 2 2

Pentium 4 41 3600 533 6.75 16/ 150 2 2

Pentium III 3 450 100 4.50 16/16 0.5]0.256
8
/Y m Pentium3 | .. .

OO0 Pentium4
Ol il m Core2—icc |-
s s R e
4 ,,
e e
2 ,,,
S NN B PN SN) N AN An N DUE RN REn RRE B DNE B) NN | SRS | R II
L ¢

Geometric Mean

TRIPS is 2.9x fewer cycles on Simple, but slower on SPEC.
Core2-icc much faster than TRIPS on SPEC.

TRIPS: Lessons Learned

+ Large window, OO0 execution w/less complexity than Superscalar
- Needs operand broadcast support (many targets)

- Code overhead is too large: needs smaller block headers,
variable sized blocks

- Challenge: How to form large blocks in control-intensive code?

+ Distributed, tiled architecture can be effective & easy to validate
- Needs predicate prediction
- Needs better mapping to minimize inter-tile communication

- Increase memory BW by interspersing it with all the execution tiles

Authors: EDGE’s improvements will not justify deployment in
full-power desktop systems. May justify for low-power systems.

“WaveScalar”
Steven Swanson, Ken Michelson, Andrew Schwerin, Mark Oskin

2003

Steven: U.Washington PhD (WaveScalar was his dissertation),
UCSD prof since 2006

— Co-founder NVMW

e Andrew: UW PhD, now @MongoDB (VP-Engineering,
now Distinguished Engineer)

e Mark: UW prof, Co-founder Jakobia, Inc for SW defined HW

— Advisor for Brandon Lucia JAKOBIA

Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data
107 T T T T

Transistors
| (Thousands)

Single-Thread
g~ ﬁPeﬂDrmance

Pﬂynamiczw*ct VEF*A

104 b | (SpecINT x 10°)
10° | E
Typical Power (W)

10° “

1 Number of
19°F | Logical Cores
100 ‘ ' . |

1970 1980 1990 2000A). 2010 2020

Year rd Scaling Fails in Here

We are here

Processor Scaling Wall

e Faster transistors but slow wires
e Circuit complexity: longer design times, schedule slips, more bugs

* Decreasing circuit technology reliability

Modern Superscalar designs will not scale

— Built atop slow broadcast networks, associative searches,
complex control logic, inherently centralized structures

Dataflow Locality

* Predictability in the dynamic data dependencies of a program

80

2 604 |
£

= 1

> 404

1

1
20/
1

e Static dataflow locality: producers & consumers of register values
are precisely known

* Dynamic dataflow locality: arises from branch predictability

e What about data values in Memory?

Superscalar Destroys Dataflow Locality

e By changing the physical registers an instruction uses, renaming
requires each instruction has fast access to the entire register file

* Consequences: Broadcast communication, bypass network,
complex instruction scheduling

von Neumann Serialization Points

e [nstruction fetch
— Linear sequence of operations for execution

e Memory reads/writes

— Must guarantee load-store ordering

Waves

e Each instruction in the wave executes at most once
e Instructions are partially ordered

 Single point of entry

;o r0 = i
iiorl =73
function s(char in[10], char out[10]) { s r2 = in
i=20; ;3 r3 = out
] =0; irord = t
do {
int t = in[i]; loop:
if (t) { add r6, r2, r0
out[j] = t; 1d rd, r6(0)
j++; bne r4, L1
} add r6, r3, rl
i++; st rd, r6(0)

} while (i < 10); addi rl, rl, #1

// no more uses of 1i

Ll:
// no more uses of in addi ro, ro0, #1
} subi r7, r0, #10

blt r7, loop

;s r0
sy rl
HE o)
;; r3
;7 r4

loop:
add
1d
bne
add
st
addi

Ll:
addi
subi
blt

2@
r4,
rd,
2@
rd,
izl

i)
£ 5
i

WaveScalar

1 1:
]
tn 2:
out
t
3:
122, a2l 4:
r6(0)
L1 —p 5
23}, azdl
r6(0)
rl, #1 6:
ro, #1 &
r0, #10
loop 8:
9:

' Loop Body

e /

Sub #10

Add #1] | [Add |
. | —
|

lf-Then

WaveScalar Features

e Qutperforms Superscalar baseline by 3.1x

e Wave-ordered memory
— Wave number + BFS numbering

— Enables load-store ordering:
“traditional memory semantics”

e WaveCache

A/

\Input Control\
{ L

(]
[
[

j Input Queuesl

Id <?,1,7>

T

ld<1,2,?7>

™

st<1,3,7>

ld<2,

|d<4,5,7>

4,5> nop<2,6,7>

N

st<?, 7,7>

]] [
ALU . :
' = Hash table in main memory maps
Qutput = e wave numbers to store buffers
ueue [e]
Output|| © [
Control - L]
TN
Processing Element Data caches Cluster
and store buffers

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.

WaveScalar Features

* No need for centralized tag structure

* 16 element clusters are the sweet spot

* Instruction misses are costly, since must load all instruction state
 Input queue for a load can overflow

e On termination, must forcibly flush WaveCache

* Dynamic instruction placement

WaveCache Speculation

646
19

10 -

vpr twolf mcfequake art adpcm mpeg fft

P4 Perfect branch prediction

[Perfect memory order
d Perfect memory order & perfect branch predition

[JBaseline

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.

Retrospective by Mark Oskin

The project 1tself was extremely exciting to do, but 1n the
end I learned something about ILP that has stuck with me to
this day: there are two points of sequentialization in a
superscalar processor, instruction fetch and memory
reads/writes. WaveScalar parallelized instruction fetch to the
absolute limit, but the memory interface was only
parallelized to the limit of what a compiler could express to
the hardware statically. This ultimately constrained
performance. The challenge i1s still out there for another day:
unlock the parallelism at the memory side.

To Read for Wednesday

“Pipestitch: An Energy-Minimal Dataflow Architecture
with Lightweight Threads”

Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann,
Brandon Lucia 2023

Optional Further Reading:

“The TYR Dataflow Architecture:
Improving Locality by Taming Parallelism”
Nikhil Agarwal, Mitchell Fream, Souradip Ghosh,

Brian C. Schwedock, Nathan Beckman 2024

	18-742:�Computer Architecture & Systems��WaveScalar�
	Moore’s Law w/o Dennard Scaling
	Out-of-Order Superscalars
	Slide Number 4
	Monsoon: Authors’ Retrospective (1998)
	Moore’s Law w/o Dennard Scaling
	Slide Number 7
	TRIPS Chip
	TRIPS vs. Alpha RISC
	TRIPS: In-flight Instructions
	Speedup Relative to Core 2 (gcc)
	TRIPS: Lessons Learned
	Slide Number 13
	Moore’s Law w/o Dennard Scaling
	Processor Scaling Wall
	Dataflow Locality
	Superscalar Destroys Dataflow Locality
	von Neumann Serialization Points
	Waves
	WaveScalar
	WaveScalar Features
	Discussion: Summary Question #1
	WaveScalar Features
	WaveCache Speculation
	Discussion: Summary Question #2
	Retrospective by Mark Oskin
	To Read for Wednesday

