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Moore’s Law w/o Dennard Scaling

We start here
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Out-of-Order Superscalars
• Exploit Instruction-level parallelism

• Limitations:
– Significant complexity

– High port requirements in 
register file & caches

– Branch prediction must be 
extremely accurate

– Inter-instruction dependencies
limit application ILP

From CMP paper
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• Dataflow architectures directly
   execute dynamic dataflow graphs

– Compiled from Id language

• Goal: Tolerate long unpredictable
communication delays, in HW
– (Tagged) Dataflow firing rule

• Monsoon introduced 
   Explicit Token Store

– Compiler allocates Tokens
to Activation Frames

“Monsoon: An Explicit Token-Store Architecture” 
     Gregory M. Papadopoulos, David E. Culler  1990
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Monsoon: Authors’ Retrospective (1998)
• “Clearly the paper did not establish dataflow as the dominant 
      principle in instruction set design.”

• One of Monsoon’s clear shortcomings was the lack of power in 
    its basic instructions.

• Modern microprocessors construct a small window of dynamic 
    dataflow execution on-the-fly.

• Split-phase memory references foreshadow a future where: 
   Memory reference are carried out asynchronously with some 
   probability of failure, and complete with a well-defined event.

• Future work: Branching on the result of a load being ‘not yet present’ 
   or branching on a cache miss. Nondeterministic.
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Moore’s Law w/o Dennard Scaling

We move to here
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“An Evaluation of the TRIPS Computer System” 
    Mark Gebhart, Bertrand Maher, Katherine Coons, Jeff Diamond, 
      Paul Gratz, Mario Marino, Nitya Ranganathan, 
      Behnam Robatmili, Aaron Smith, James Burrill, Stephen Keckler, 
      Doug Burger, Kathryn McKinley 2009

• Explicit Data Graph Execution (EDGE) 
– Block-atomic execution model

– Blocks are composed of dataflow instructions

• Advantages over traditional architectures:
– Larger instruction window (up to 8 x 128)

– Increases concurrency (at cost of more instructions)

– Register & memory access => inst-to-inst communication

[First TRIPS paper is in 2001]

Single-thread performance matters even in multicore era. Why?
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TRIPS Chip
• 130nm ASIC w/170M transistors

• Dataflow in a block. Blocks communicate via registers & memory
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TRIPS vs. Alpha RISC

TRIPS cuts memory accesses in half.
TRIPS register accesses + direct ET-ET ~ Alpha register accesses.

(Simulator Results)
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TRIPS: In-flight 
Instructions

C = compiled code.  H = hand-optimized code.
On average: 400 (C) and 600 (H) in-flight valid instructions.

(Simulator Results)
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Speedup Relative to Core 2 (gcc)

TRIPS is 2.9x fewer cycles on Simple, but slower on SPEC.

(Actual Hardware)

Core2-icc much faster than TRIPS on SPEC.
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+ Large window, OOO execution w/less complexity than Superscalar

 ̶   Needs operand broadcast support (many targets)

  ̶   Code overhead is too large: needs smaller block headers, 
         variable sized blocks

 ̶   Challenge: How to form large blocks in control-intensive code? 

 + Distributed, tiled architecture can be effective & easy to validate

 ̶   Needs predicate prediction

 ̶   Needs better mapping to minimize inter-tile communication

 ̶   Increase memory BW by interspersing it with all the execution tiles

TRIPS: Lessons Learned

Authors: EDGE’s improvements will not justify deployment in 
full-power desktop systems.  May justify for low-power systems.
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“WaveScalar” 
     Steven Swanson, Ken Michelson, Andrew Schwerin, Mark Oskin 
       2003

• Steven: U.Washington PhD (WaveScalar was his dissertation), 
UCSD prof since 2006

– Co-founder NVMW

 

• Ken: UW undergrad, now prof of Pediatrics @ Northwestern

• Andrew: UW PhD, now @MongoDB (VP-Engineering, 
now Distinguished Engineer)

• Mark: UW prof, Co-founder Jakobia, Inc for SW defined HW
– Advisor for Brandon Lucia
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Moore’s Law w/o Dennard Scaling

We are here
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Processor Scaling Wall

• Faster transistors but slow wires

• Circuit complexity: longer design times, schedule slips, more bugs

• Decreasing circuit technology reliability

Modern Superscalar designs will not scale
– Built atop slow broadcast networks, associative searches, 

complex control logic, inherently centralized structures
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Dataflow Locality
• Predictability in the dynamic data dependencies of a program

• Static dataflow locality: producers & consumers of register values 
    are precisely known

• Dynamic dataflow locality: arises from branch predictability

• What about data values in Memory?
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Superscalar Destroys Dataflow Locality

• By changing the physical registers an instruction uses, renaming 
    requires each instruction has fast access to the entire register file

• Consequences: Broadcast communication, bypass network, 
     complex instruction scheduling 
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von Neumann Serialization Points

• Instruction fetch
– Linear sequence of operations for execution

• Memory reads/writes
– Must guarantee load-store ordering
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Waves
• Each instruction in the wave executes at most once

• Instructions are partially ordered

• Single point of entry
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WaveScalar
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WaveScalar Features
• Outperforms Superscalar baseline by 3.1x

• Wave-ordered memory
– Wave number + BFS numbering

– Enables load-store ordering:
“traditional memory semantics”

• WaveCache

Hash table in main memory maps
wave numbers to store buffers
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Discussion: Summary Question #1

State the 3 most important things the paper says. 

These could be some combination of the motivations, observations, 
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right? 
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WaveScalar Features
• No need for centralized tag structure

• 16 element clusters are the sweet spot

• Instruction misses are costly, since must load all instruction state

• Input queue for a load can overflow

• On termination, must forcibly flush WaveCache

• Dynamic instruction placement
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WaveCache Speculation
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Discussion: Summary Question #2

What Did the Paper Get Wrong? 

Describe the paper's single most glaring deficiency. 

Every paper has some fault. Perhaps an experiment was poorly 
designed or the main idea had a narrow scope or applicability.
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Retrospective by Mark Oskin

The project itself was extremely exciting to do, but in the 
end I learned something about ILP that has stuck with me to 
this day: there are two points of sequentialization in a 
superscalar processor, instruction fetch and memory 
reads/writes. WaveScalar parallelized instruction fetch to the 
absolute limit, but the memory interface was only 
parallelized to the limit of what a compiler could express to 
the hardware statically. This ultimately constrained 
performance. The challenge is still out there for another day: 
unlock the parallelism at the memory side.
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To Read for Wednesday
“Pipestitch: An Energy-Minimal Dataflow Architecture
   with Lightweight Threads”
 

       Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, 
       Brandon Lucia 2023 

“The TYR Dataflow Architecture:
   Improving Locality by Taming Parallelism” 
     Nikhil Agarwal, Mitchell Fream, Souradip Ghosh, 
       Brian C. Schwedock, Nathan Beckman  2024

Optional Further Reading:
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