18-742:
Computer Architecture & Systems

WaveScalar

Prof. Phillip Gibbons
Spring 2025, Lecture 12



Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data
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Out-of-Order Superscalars

e Exploit Instruction-level parallelism
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“Monsoon: An Explicit Token-Store Architecture”

Gregory M. Papadopoulos, David E. Culler 1990

Code-Block Activation Instruction Memory

e Dataflow architectures directly
execute dynamic dataflow graphs
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Instruction Text for
Code-Block

— Compiled from Id language

e Goal: Tolerate long unpredictable
communication delays, in HW
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Monsoon: Authors’ Retrospective (1998)

o “Clearly the paper did not establish dataflow as the dominant
principle in instruction set design.”

* One of Monsoon’s clear shortcomings was the lack of power in
its basic instructions.

* Modern microprocessors construct a small window of dynamic
dataflow execution on-the-fly.

e Split-phase memory references foreshadow a future where:
Memory reference are carried out asynchronously with some
probability of failure, and complete with a well-defined event.

e Future work: Branching on the result of a load being ‘not yet present’
or branching on a cache miss. Nondeterministic.




Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data
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“An Evaluation of the TRIPS Computer System”

Mark Gebhart, Bertrand Maher, Katherine Coons, Jeff Diamond,

Paul Gratz, Mario Marino, Nitya Ranganathan,
Behnam Robatmili, Aaron Smith, James Burrill, Stephen Keckler,
Doug Burger, Kathryn McKinley 2009

[First TRIPS paperis in 2001]

* Explicit Data Graph Execution (EDGE) atafiow Graph
— Block-atomic execution model RO R1

— Blocks are composed of dataflow instructions -

* Advantages over traditional architectures: fs /I___I-- ------
— Larger instruction window (up to 8 x 128)

— Increases concurrency (at cost of more instructions)

— Register & memory access => inst-to-inst communication

Single-thread performance matters even in multicore era. Why?



TRIPS Chip

¢ 130nm ASIC w/170M transistors

e Dataflow in a block. Blocks communicate via registers & memory

Processor 0

TRIPS Tiles

G: Global Control
(predict/fetch)

R: Register File

I: Instruction Cache

D: Data Cache

E: Execution
(ALU array)

TRIPS Controllers

DMA: DMA

SDC: SDRAM
C2C: Chip-to-Chip
EBC: External Bus y

On-Chip Network




TRIPS vs. Alpha RISC

(Simulator Results)

| Suite | Count | Benchmarks |

Kernels 4 transpose (ct), convolution (conv), vector-add
(vadd), matrix multiply (matrix)

VersaBench | 3 of 10 | bit and stream (fmradio, 802.11a, 8b10b)

EEMBC 28 of 30 | Embedded benchmarks

Simple 15 Hand-optimized versions of  Kernels,
VersaBench, and 8 EEMBC benchmarks

SPEC 2K Int | 9 of 12 [ All but gap. vortex and C++ benchmarks'

SPEC 2K FP| 9 of 14 | All but sixtrack and 4 Fortran 90 benchmarks!
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Figure 5. Storage accesses normalized to Alpha for compiled (C) and hand-optimized (H) benchmarks.

TRIPS cuts memory accesses in half.
TRIPS register accesses + direct ET-ET ~ Alpha register accesses.
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C = compiled code. H = hand-optimized code.
On average: 400 (C) and 600 (H) in-flight valid instructions.




Speedup (cycles)

Speedup Relative to Core 2 (gcc)

(Actual Hardware)

Issue | Proc | Mem |Proc/Mem|LI Cap.| L2 | Mem
System | Width | Speed | Speed Ratio (D/1) | Cap. | Cap.
(MHz) | (MHz) (KB) [(MB)|(GB)

TRIPS 16 366 200 1.83 32 /80 1 2

Core 2 41 1600 800 2.00 32732 2 2

Pentium 4 41 3600 533 6.75 16/ 150 2 2

Pentium III 3 450 100 4.50 16/16 0.5]0.256
8
/Y m Pentium3 | .. .

OO0 Pentium4
Ol il m Core2—icc |-
s s R e
4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
e e
2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
S NN B PN SN) N AN An N DUE RN REn RRE B DNE B ) NN | SRS | R II
L ¢

Geometric Mean

TRIPS is 2.9x fewer cycles on Simple, but slower on SPEC.
Core2-icc much faster than TRIPS on SPEC.



TRIPS: Lessons Learned

+ Large window, OO0 execution w/less complexity than Superscalar
- Needs operand broadcast support (many targets)

- Code overhead is too large: needs smaller block headers,
variable sized blocks

- Challenge: How to form large blocks in control-intensive code?

+ Distributed, tiled architecture can be effective & easy to validate
- Needs predicate prediction
- Needs better mapping to minimize inter-tile communication

- Increase memory BW by interspersing it with all the execution tiles

Authors: EDGE’s improvements will not justify deployment in
full-power desktop systems. May justify for low-power systems.



“WaveScalar”
Steven Swanson, Ken Michelson, Andrew Schwerin, Mark Oskin

2003

Steven: U.Washington PhD (WaveScalar was his dissertation),
UCSD prof since 2006

— Co-founder NVMW

e Andrew: UW PhD, now @MongoDB (VP-Engineering,
now Distinguished Engineer)

e Mark: UW prof, Co-founder Jakobia, Inc for SW defined HW

— Advisor for Brandon Lucia JAKOBIA
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Processor Scaling Wall

e Faster transistors but slow wires
e Circuit complexity: longer design times, schedule slips, more bugs

* Decreasing circuit technology reliability

Modern Superscalar designs will not scale

— Built atop slow broadcast networks, associative searches,
complex control logic, inherently centralized structures




Dataflow Locality

* Predictability in the dynamic data dependencies of a program
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e Static dataflow locality: producers & consumers of register values
are precisely known

* Dynamic dataflow locality: arises from branch predictability

e What about data values in Memory?




Superscalar Destroys Dataflow Locality

e By changing the physical registers an instruction uses, renaming
requires each instruction has fast access to the entire register file

* Consequences: Broadcast communication, bypass network,
complex instruction scheduling




von Neumann Serialization Points

e [nstruction fetch
— Linear sequence of operations for execution

e Memory reads/writes

— Must guarantee load-store ordering




Waves

e Each instruction in the wave executes at most once
e Instructions are partially ordered

 Single point of entry

;o r0 = i
iiorl =73
function s(char in[10], char out[10]) { s r2 = in
i=20; ;3 r3 = out
] =0; irord = t
do {
int t = in[i]; loop:
if (t) { add r6, r2, r0
out[j] = t; 1d rd, r6(0)
j++; bne r4, L1
} add r6, r3, rl
i++; st rd, r6(0)

} while (i < 10); addi rl, rl, #1

// no more uses of 1i

Ll:
// no more uses of in addi ro, ro0, #1
} subi r7, r0, #10

blt r7, loop




;s r0
sy rl
HE o)
;; r3
;7 r4

loop:
add
1d
bne
add
st
addi

Ll:
addi
subi
blt

2@
r4,
rd,
2@
rd,
izl

i)
£ 5
i

WaveScalar

1 1:
]
tn 2:
out
t
3:
122, a2l 4:
r6(0)
L1 —p 5
23}, azdl
r6(0)
rl, #1 6:
ro, #1 &
r0, #10
loop 8:
9:

' Loop Body

e /

Sub #10

Add #1] | [ Add |
. | —
|

lf-Then




WaveScalar Features

e Qutperforms Superscalar baseline by 3.1x

e Wave-ordered memory
— Wave number + BFS numbering

— Enables load-store ordering:
“traditional memory semantics”

e WaveCache
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Processing Element Data caches Cluster
and store buffers




Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.




WaveScalar Features

* No need for centralized tag structure

* 16 element clusters are the sweet spot

* Instruction misses are costly, since must load all instruction state
 Input queue for a load can overflow

e On termination, must forcibly flush WaveCache

* Dynamic instruction placement




WaveCache Speculation
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P4 Perfect branch prediction

[ Perfect memory order
d Perfect memory order & perfect branch predition
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Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.




Retrospective by Mark Oskin

The project 1tself was extremely exciting to do, but 1n the
end I learned something about ILP that has stuck with me to
this day: there are two points of sequentialization in a
superscalar processor, instruction fetch and memory
reads/writes. WaveScalar parallelized instruction fetch to the
absolute limit, but the memory interface was only
parallelized to the limit of what a compiler could express to
the hardware statically. This ultimately constrained
performance. The challenge i1s still out there for another day:
unlock the parallelism at the memory side.




To Read for Wednesday

“Pipestitch: An Energy-Minimal Dataflow Architecture
with Lightweight Threads”

Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann,
Brandon Lucia 2023

Optional Further Reading:

“The TYR Dataflow Architecture:
Improving Locality by Taming Parallelism”
Nikhil Agarwal, Mitchell Fream, Souradip Ghosh,

Brian C. Schwedock, Nathan Beckman 2024
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