Rethinking Prefetching for

Intermittent Computing
Rayyan, Liam, David

1 1 I & r y
10’ I End of Dennard Scaling =) s .
A LA
108 | A .
10* | apa i
M:A‘Ar
3 Aa
10 ™ :.c.'a, <
A * v
2 L A A B v Vo % Py V"d *
19 . s & 7 § 'f‘; Sabee
1 - " v oD Rad * ¥
W oo — T %o **
0 F - x: v v YvY vwvv
10 —‘ - ¢ 6 B eee wneumm wmwmenn o -
1 1 1 1
1970 1980 1990 2000 2010 2020
Year

50 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

New plot and data collected for 2010-2021 by K. Rupp

| Transistors

(thousands)

Single-Thread
Performance

| (SpecINT x 10%)
e ".'ﬂ.l Frequency (MHz)
s =]

Typical Power
(Watts)

Number of
Logical Cores

C. Batten

Author Backgrounds g
Gan Fang: Fourth-year Ph.D. candidate in : |
Computer Science at Purdue University ' I “

Jianping Zeng: Assistant Professor at Purdue,
ex-Samsung researcher in memory solutions lab,
Ph.D. from Purdue

Aditya Gupta: Undergraduate at Purdue, currently
working at Theom

Changhee Jung: Associate Professor at Purdue, s
NSF CAREER Award (2018) & MICRO Hall of Fame &
(2021)

EHS/Low Power Systems in General

- No batteries or constant power source
- Ex: Some wireless |oT, Solar powered, Energy-harvesting satellites, kinetic powered switches
- Finite energy in the system

- Maximize energy harvested usage for productive work
- Minimize wasted energy/work(even if potentially useful)

- Compute is intermittent

- Could lose state at any point
- Need to save current state to maintain program correctness

- Memory is non-volatile, meaning it has a much slower access time than
traditional DRAM
- We can use volatile SRAM caches to make up for it

Low Capacity & Frequent Power Outages

—@— Speedup —8— ICache and DCache Leak. %

NS
1.0 .
% V4
S 40 3
() |
D 0.5 20 ©
o
N S
((°)
2568 512B 1kB 2kB 4kB 8kB O

Figure 1: Speedup over baseline (2kB each for ICache/DCache)
and cache leakage energy (over total energy consumption);
the leakage percentage accounts for both ICache/DCache.

Larger caches have higher leakage, leading to them being less
performant for these EHS systems

Why Prefetching Is So Important In EHS

- Memory is non-volatile
Much slower than DRAM

- Cache is smaller than is traditional, leading to more misses

- Missing in volatile cache means expensive pipeline stalls while retrieving data

- These stalls cause the processor to consume precious leakage energy
waiting for non-volatile memory to return a value

- Conventional way to reduce stalls caused by cache miss is to prefetch both
instructions and data

The Problem

Prefetching is has a greater opportunity
cost for EHS systems vs traditional

systems
- Smaller Caches leading to more potential to
evict useful blocks
- Unstable power which prefetchers are
consuming

Prefetched data is in volatile memory,
coupled with power failures means
there’s a limited usage time period
Energy is wasted if no data is prefetched
on stalling

More Energy is wasted if data is

uselessly prefetched
- Leakage + prefetch energy

X80 —— Eeak=10p)

560 ——— Eleak = 20 pJ

o —— Eeak =30 p)
40

S ol —— Eteax =40 pJ

g —— Eieak =50 p)
0

0 20 40 60 80 100
E Prefetch (pJ)

Figure 4: Relationship between mini-
mum required P, E .. rorcp, and Ejg g

The Naive Solution

- Use 1 voltage threshold to predict

incoming power failure
Too simple to sufficiently reduce wasted
energy

- Differentiate soon and very soon

power failure
- Potentially need multiple levels of degree
changes at different voltage levels

Execution

[N

NVM Voltile Cache

High Performance Mode Energy Saving Mode

Prefetch B and
C are wasted!

Prefetch Prefetch Use A

X1~X6 AB,C (Hit)
S4dede 444 ‘
T1 T2 T3 T4

«-l
Reduce Cache Prefetch
degreeto 3 A,B,C

IPEX(Intermediate-aware Prefetching EXtension) Adaptation

e |PEX sets voltage thresholds for the 4
capacitor and adjusts prefetching V. —
degree when V__ crosses one. iaaf;h;:tstggsg

e After areboot, IPEX adjusts its Vinrest)
thresholds. Vinreso Lazy throttling)

- Avoid misses.)

o High throttle rate in previous cycle ->

lower threshold
o Low throttle rate in previous cycle ->

ise threshold
raise fhresho Figure 3: Varying prefetch degree
upon crossing one of V thresholds.

Vbackup

Time,_

IPEX(Intermediate-aware Prefetching EXtension) Adaptation

e Eager throttling 4
o Missed performance opportunities
| d h ; Vmax ;)
@) ncreased cacnhe misses Eager thrott“ng

e Lazy throttling

o Wasted energy on unused prefetches
e Energy conditions likely to vary Vinresz

- More misses.)

I/th'resl

§
Lazy throttling
- Avoid misses.)

Vbackup

Time,_

Figure 3: Varying prefetch degree
upon crossing one of V thresholds.

IPEX Bi-modal Operation

- Switch between two modes based on power failure likelihood

- Energy Saving Mode(Low Voltage) |] I
- High Performance Mode(High Voltage) S ——
. Energy Saving Mode High Performance Mode
- Use capacitor voltage level as proxy for

Prefetch Use A Prefetch UseB UseC

power failure likelihood B.C iy (Hit

. 2 (Hit) VY
- Reboot to higher performance mode h—d.n 1 ? - —
' -]
to avoid mode-lock

IPEX Degree Adjustment Algorithm

Halves the prefetch degree when voltage drops below voltage threshold
Double the prefetch degree when voltage rises above the voltage threshold
Degree determines the number of blocks fetched from memory
Exponential/aggressive scaling for more timely responses

Finding the right threshold voltage:
o Keep track of throttling rate(R_tr = throttled / total prefetches)
o If throttling rate >= 5% -> decrease threshold by 0.05V
o If throttling rate <= 5% -> increase threshold by 0.05V

Evaluation and Experimental Analysis

e |IPEX requires 4 volatile registers per cache, resulting in a total overhead of

.0018% of chip area.
IPEX was implemented on top of GEM5 alongside other simple prefetchers

)

o The paper makes the argument that more complex prefetchers would also benefit from IPEX
(untested)

e |PEX outperforms the baseline by an average of 3.73% (DCache prefetcher)

or 8.96% (both ICache and DCache prefetchers).
e |IPEX reduces memory traffic by 2-5%.

B NVSRAMCache (No Prefetcher) I NVSRAMCache [+ IPEX for Default Data Prefetcher [+ IPEX for Both Default Prefetchers

(\

Speedup
PO e
DOO=NW

ag\c((\ e 1,1‘\'6917“\‘6 qﬁﬁ\d QS«\ W Qegdqa'd C\s g‘“\f g\ﬂ\‘e ‘)0(:\\\-\63"*\6

0y
09500 8% S0 50 e re®

Figure 10: Normalized performance speed to NVSRAMCache (baseline) with RFHome power trace; default prefetchers are
enabled for NVSRAMCache.

Performance and Energy Analysis

e |PEX reduces overall energy consumption by 3.42% (DCache only) or 7.86%
(Icache and Dcache).

e Prefetch accuracy, increases by 35% for ICache and 22.8% for DCache, while
having only 3% and 5% reduction in the coverage for ICache and DCache,
respectively.

e Performance improvements plateau at 3 voltage thresholds.

e Performance improvements were higher on more aggressive prefetchers.
e Performance improvement is higher for smaller cache sizes.

I Cache 3 Memory I Compute I Bk+Rst

| NRNRENRERTRRRNANRNNN

d s @

Energy %

ocoooor
oNROO

Figure 14: Normalized energy breakdown to NVSRAMCache (baselme) with RFHome power trace. There are 3 bars for each
application. From left to right: NVSRAMCache, + IPEX for DCache prefetcher, and +IPEX for Both DCache and ICache prefetchers

Known Limitations

e |PEX s sensitive to a lot of factors, and may not add performance
o Cache size, capacitor size, main memory size.

e Little to no performance gain for systems with infrequent power interruptions.
o Due to large capacitor or stable energy conditions.
o In practice, EHS systems frequently experience power outages.

e Overaggressive throttling can increase cache misses -> performance
reduction

e If memory access is a proportionally low percentage of total energy usage,
IPEX offers very little improvement.

Further Questions

e \What are other potential factors that inhibit IPEX?

e |PEX uses capacitor voltage as a metric to judge proximity to power failure. What are
some limitations to this?

e \Why is exponential scaling a good approach for adjusting the voltage threshold? Why
not use linear scaling?

e Other standard computer architecture optimizations that might need changes for
intermittent computing beyond prefetching?

e How could IPEX be applied to non-intermittent systems?

