
Rethinking Prefetching for 
Intermittent Computing

Rayyan, Liam, David





Author Backgrounds
Gan Fang: Fourth-year Ph.D. candidate in 
Computer Science at Purdue University

Jianping Zeng: Assistant Professor at Purdue, 
ex-Samsung researcher in memory solutions lab, 
Ph.D. from Purdue

Aditya Gupta: Undergraduate at Purdue, currently 
working at Theom

Changhee Jung: Associate Professor at Purdue, 
NSF CAREER Award (2018) & MICRO Hall of Fame 
(2021)



EHS/Low Power Systems in General

- No batteries or constant power source
- Ex: Some wireless IoT, Solar powered, Energy-harvesting satellites, kinetic powered switches

- Finite energy in the system
- Maximize energy harvested usage for productive work
- Minimize wasted energy/work(even if potentially useful)

- Compute is intermittent
- Could lose state at any point
- Need to save current state to maintain program correctness

- Memory is non-volatile, meaning it has a much slower access time than 
traditional DRAM

- We can use volatile SRAM caches to make up for it



Low Capacity & Frequent Power Outages

Larger caches have higher leakage, leading to them being less 
performant for these EHS systems



Why Prefetching Is So Important In EHS 

- Memory is non-volatile
- Much slower than DRAM

- Cache is smaller than is traditional, leading to more misses
- Missing in volatile cache means expensive pipeline stalls while retrieving data
- These stalls cause the processor to consume precious leakage energy 

waiting for non-volatile memory to return a value
- Conventional way to reduce stalls caused by cache miss is to prefetch both 

instructions and data



The Problem

- Prefetching is has a greater opportunity 
cost for EHS systems vs traditional 
systems

- Smaller Caches leading to more potential to 
evict useful blocks

- Unstable power which prefetchers are 
consuming

- Prefetched data is in volatile memory, 
coupled with power failures means 
there’s a limited usage time period

- Energy is wasted if no data is prefetched 
on stalling

- More Energy is wasted if data is 
uselessly prefetched

- Leakage + prefetch energy



The Naive Solution

- Use 1 voltage threshold to predict 
incoming power failure

- Too simple to sufficiently reduce wasted 
energy

- Differentiate soon and very soon 
power failure

- Potentially need multiple levels of degree 
changes at different voltage levels



IPEX(Intermediate-aware Prefetching EXtension) Adaptation

● IPEX sets voltage thresholds for the 
capacitor and adjusts prefetching 
degree when VCap crosses one.

● After a reboot, IPEX adjusts its 
thresholds.

○ High throttle rate in previous cycle -> 
lower threshold

○ Low throttle rate in previous cycle -> 
raise threshold



IPEX(Intermediate-aware Prefetching EXtension) Adaptation

● Eager throttling
○ Missed performance opportunities
○ Increased cache misses

● Lazy throttling
○ Wasted energy on unused prefetches

● Energy conditions likely to vary



IPEX Bi-modal Operation

- Switch between two modes based on power failure likelihood
- Energy Saving Mode(Low Voltage)
- High Performance Mode(High Voltage)

- Use capacitor voltage level as proxy for 
power failure likelihood

- Reboot to higher performance mode
to avoid mode-lock



IPEX Degree Adjustment Algorithm

● Halves the prefetch degree when voltage drops below voltage threshold
● Double the prefetch degree when voltage rises above the voltage threshold
● Degree determines the number of blocks fetched from memory
● Exponential/aggressive scaling for more timely responses
● Finding the right threshold voltage:

○ Keep track of throttling rate(R_tr = throttled / total prefetches)
○ If throttling rate >= 5% -> decrease threshold by 0.05V
○ If throttling rate <= 5% -> increase threshold by 0.05V



Evaluation and Experimental Analysis

● IPEX requires 4 volatile registers per cache, resulting in a total overhead of 
.0018% of chip area.

● IPEX was implemented on top of GEM5 alongside other simple prefetchers
○ The paper makes the argument that more complex prefetchers would also benefit from IPEX 

(untested)
● IPEX outperforms the baseline by an average of 3.73% (DCache prefetcher) 

or 8.96% (both ICache and DCache prefetchers).
● IPEX reduces memory traffic by 2-5%.



Performance and Energy Analysis
● IPEX reduces overall energy consumption by 3.42% (DCache only) or 7.86% 

(Icache and Dcache).
● Prefetch accuracy, increases by 35% for ICache and 22.8% for DCache, while 

having only 3% and 5% reduction in the coverage for ICache and DCache, 
respectively.

● Performance improvements plateau at 3 voltage thresholds.
● Performance improvements were higher on more aggressive prefetchers.
● Performance improvement is higher for smaller cache sizes.



Known Limitations

● IPEX is sensitive to a lot of factors, and may not add performance
○ Cache size, capacitor size, main memory size.

● Little to no performance gain for systems with infrequent power interruptions.
○ Due to large capacitor or stable energy conditions. 
○ In practice, EHS systems frequently experience power outages.

● Overaggressive throttling can increase cache misses -> performance 
reduction

● If memory access is a proportionally low percentage of total energy usage, 
IPEX offers very little improvement.



Further Questions

● What are other potential factors that inhibit IPEX?

● IPEX uses capacitor voltage as a metric to judge proximity to power failure. What are 
some limitations to this?

● Why is exponential scaling a good approach for adjusting the voltage threshold? Why 
not use linear scaling?

● Other standard computer architecture optimizations that might need changes for 
intermittent computing beyond prefetching?

● How could IPEX be applied to non-intermittent systems?


