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● Multi-core LLC miss requests
● On-chip interconnect
● DRAM bus scheduler
● #cores increases contention



DRAM

FR-FCFS (first ready, first come 
first served) Scheduling Policy

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate 
→ maximize DRAM throughput

18-447 Spring 2015 L21



Dependent Cache Miss

● Result in cache miss & address depend on data from a prior cache miss
● Pointer-chasing (create linked-list)
● LLC miss → DRAM → core compute address → DRAM …
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Scaling at 2016



Motivation

On-chip contention is 
a substantial portion 
of memory access 
latency in multi-core 
systems

MPKI > 10



Motivation

Dependent cache 
misses are 
latency-critical 
operations that are 
hard to prefetch.

Prefetch ~20% of 
dependent miss



Motivation

The number of 
instructions between 
a source cache miss 
and a dependent 
cache miss is often 
small



Related Work

● Independent cache misses
○ Correlation prefetching: stream/stride prefetcher & temporal prefetcher

■ oblivious to control flow, bandwidth limited
○ Content-directed prefetching

■ greedily prefetches by dereferencing values that could be memory addresses
○ Runahead execution & continual flow pipelines

■ execute ahead of the demand access stream, generating independent cache misses
● Enhancing memory controller

○ Move computation close to memory
○ 3D-stacked DRAM with computation

● This paper
○ Target dependent cache misses
○ Add compute capability to memory controller



Out-of-Order Processor Review

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

EMC



Implementation

EMC sits in the memory 
controller, close to 
DRAM.

What it does:

● Offloads dependent 
instructions from 
the core.

● Reduces memory 
latency.

● Issues requests 
faster than the 
core.



Implementation

EMC has just enough 
hardware to process 
dependent instructions.

Key parts:

● Front-end: Holds small 
buffers for instructions.

● Back-end: Two ALUs 
and a small data cache.

● No fetch/decode logic 
(saves area & power).



Generate Dependence Chain

● Full-window ROB stall due to an LLC 
miss blocking retirement

● 3-bit saturating counter to determine 
if a dependent cache miss is likely

● Dataflow walk to track dependencies 
until end or micro-ops reaches 16 
(the size of EMC register file)



Cycle 1
ROB

Core instruction EMC micro-ops

MEM_LD C8 -> C1 MEM_LD C8 -> E0

(independent instruction)

MOV C1 -> C9 MOV E0 -> E1

(independent instruction)

ADD C9, 0x18 -> C12

MEM_LD C12 -> C10

ADD C10, C3 -> C16

MEM_LD C16 -> C19

RRT

C1 C9

E0 E1

Live-In



Cycle 2
ROB

Core instruction EMC micro-ops

MEM_LD C8 -> C1 MEM_LD C8 -> E0

(independent instruction)

MOV C1 -> C9 MOV E0 -> E1

(independent instruction)

ADD C9, 0x18 -> C12 ADD E1, L0 -> E2

MEM_LD C12 -> C10

ADD C10, C3 -> C16

MEM_LD C16 -> C19

RRT

C1 C9 C12

E0 E1 E2

Live-In

0x18



Cycle 3
ROB

Core instruction EMC micro-ops

MEM_LD C8 -> C1 MEM_LD C8 -> E0

(independent instruction)

MOV C1 -> C9 MOV E0 -> E1

(independent instruction)

ADD C9, 0x18 -> C12 ADD E1, L0 -> E2

MEM_LD C12 -> C10 MEM_LD E2 -> E3

ADD C10, C3 -> C16

MEM_LD C16 -> C19

RRT

C1 C9 C12 C10

E0 E1 E2 E3

Live-In

0x18



Cycle 4
ROB

Core instruction EMC micro-ops

MEM_LD C8 -> C1 MEM_LD C8 -> E0

(independent instruction)

MOV C1 -> C9 MOV E0 -> E1

(independent instruction)

ADD C9, 0x18 -> C12 ADD E1, L0 -> E2

MEM_LD C12 -> C10 MEM_LD E2 -> E3

ADD C10, C3 -> C16 ADD E3, L1 -> E4

MEM_LD C16 -> C19

RRT

C1 C9 C12 C10 C16

E0 E1 E2 E3 E4

Live-In

0x18 C3



Cycle 5
ROB

Core instruction EMC micro-ops

MEM_LD C8 -> C1 MEM_LD C8 -> E0

(independent instruction)

MOV C1 -> C9 MOV E0 -> E1

(independent instruction)

ADD C9, 0x18 -> C12 ADD E1, L0 -> E2

MEM_LD C12 -> C10 MEM_LD E2 -> E3

ADD C10, C3 -> C16 ADD E3, L1 -> E4

MEM_LD C16 -> C19 MEM_LD E4 -> E5

RRT

C1 C9 C12 C10 C16 C19

E0 E1 E2 E3 E4 E5

Live-In

0x18 C3



EMC Execution

● Dependence chain (micro-ops) + live-in → live-outs
● Core sends branch information, cannot resolve mispredicted branch
● Loads to EMC cache, predicts if cache miss by 3-bit counters
● In-order retirements in core



Methodology



Results

Performance 
Improvement:

● Works well with 
memory-intensive 
workloads.

● Best with prefetchers
● Up to 15% speedup 

over baseline, 9–11% 
over prefetchers.



Results

Latency Reduction:

● EMC reduces cache 
miss latency by ~20%.

● Why? EMC bypasses 
on-chip delays.

● Faster dependent 
cache misses = faster 
execution.



Results

DRAM Contention:

● EMC lowers row-buffer 
conflicts in DRAM 
(~19%).

● Why? It issues 
dependent requests 
faster & in groups.

● Explore the 
first-ready-first-serve 
scheduling policy

● Result: More row-buffer 
hits, fewer delays.



Results

Energy Efficiency:

● Prefetching alone 
increases energy 
use (useless 
prefetches).

● EMC lowers 
energy by 11% (less 
execution time + 
reduced row-buffer 
conflict rate)

● EMC + prefetching 
= better efficiency.



Thoughts

● Pros
○ Novel idea to reduce dependent cache miss delay
○ Bypass on-chip delay
○ Increase DRAM row buffer hit

● Cons
○ Performance improvement only on high memory intensity workloads (MPKI >= 10)
○ Redundancy cycles in generating dependence chain
○ Large area overhead (2% of chip area)
○ No evidence used by commercial chip?


