Accelerating Dependent Cache Misses
with an Enhanced Memory Controller

Yunhao Lan, Ying Meng

Memory Controller Review

On-chip interconnect
DRAM bus scheduler
#cores increases contention

18-447 Spring 2015 L22

L2 Cache 0

MUItl-Core LLC m|SS requeStS To"Fr‘c:mCores Requests

'

L2 Cache N-1
Requests

Bank 0
Scheduler

= [Crossbar J
[
E— T 4 ————————————————————————————— ¢— "1 Memory Request
f : : Buffer
! |
Sl BANK 0 BANK B-1 !
| REQUEST REQUEST :
= BUFFER BUFFER I
| i
' |
I |

Memory Access
: Scheduler

Bank B-1

Scheduler

—

DRAM Data Bus

DRAM Bus Scheduler

~

\
To/From DRAM Banks

Selected Address and DRAM Command

DRAM Address/Command Bus

To DRAM Banks

DRAM

Access Address:

FR-FCFS (first ready, first come
first served) Scheduling Policy
(Row 1, Column 0)
1. Row-hit first
2. Oldest first

Goal: Maximize row buffer hit rate
— maximize DRAM throughput

18-447 Spring 2015 L21

Columns

—————————————————————————

........................				

Row decoder

"""""""""""""""				

||||||
||||||

—5‘ Column mux /

Data

Row Buffer CONFLICT !

Dependent Cache Miss

e Result in cache miss & address depend on data from a prior cache miss
e Pointer-chasing (create linked-list)

e LLC miss - DRAM — core compute address — DRAM ...

struct Node {
int data;

Nodex next;

r:

for (int i = 0: i < size - 1: i++) {
nodes [i]->next = nodes[i + 1];

Accelerating Dependent Cache Misses with an Enhanced Memory Controller

Milad Hashemi: PhD at UT Austin, now Research
Scientist at Google

Khubaib: PhD at UT Austin, now at CPU Design Group in
Apple Austin

Eiman Ebrahimi: PhD at UT Austin, worked at Nvidia,
now CEO at Protopia Al

Onur Mutlu: PhD at UT Austin, CMU prof, now Professor
atETH

Yale N. Patt: Professor at UT Austin, PhD advisor for all
authors, lead HPS Research Group (High Performance
Systems)

Scaling at 2016

40 Years of Microprocessor Trend Data

107

L] L]

106 L

Poynamic =N * C* V2 f* A

10° |
10 F
10%
10
10"}

10°

Transistors
(Thousands)

1970

Year

ats Single-Thread
Performance
1 (SpecINT x 10%)
*ﬁ.‘ Frequency (MHz)
' Typical Power (W)
ﬁﬁl oy < i
Number of
s 0 i Logical Cores
! ’ : o5 o0 nm.-*’ -
1 1 1 1 1
1980 1990 2000," 2010 2020

Dennard Scaling Fails in Here

MPKI > 10

J|IWXY

snjoedxy
dwsnazxy

Jwqobxy
soewoubxy
01U0IXY
youaqiadxy
ssawebxy
pweuxty
Aeinodxy

S9|2AD SSI |e101L

R
c
(o)

"
c
()

b
c
(o]
(&)

2

L
(&)

1
c
@)

Motivation
portion
latency in multi-core

of memory access
systems

a substantial

B On-Chip Delay

Il DRAM Access

Breakdown of total memory access latency into

DRAM latency and on-chip delay.

Figure 1

Motivation

¢ 100%
Dependent cache 2
. = 80%
misses are o
latency-critical 8 60%
operations that are a
o 40%
hard to prefetch. 0
% 20%
0
I 0% Q & 4 4 9 (o8 Q K Q
Prefetch ~20% of N R 4
{\@ ¢ o)oQ 9620 éb @

dependent miss

B GHBPF [Streem PF I Markov PF

Figure 3: Percentage of dependent cache misses that are
prefetched with a GHB, stream, and Markov prefetcher.

Motivation

Jow
wiqj

baqij
sanemq
xulyds
xa|dos
oW
ddisuwo
ol|s9|
sSwonH
JIMm
snjoed
dwisnaz
ouejex
Jejse
zdizqg
9y
Jawuwy
206
buals
lnesp
Jwqob
soewoub
ojuo0)
youaqpad
ssaweb
pweu
Aeanod
XI|NnJ>jed

(o)
—

< N O
— = e~

SSIIN Juspuadaq 03
SSI|\ 224N0S WOy

0 O < N O

suoljesadQ JO J2quinN

[
O w
%.B c
(O]
e
w— @ = c &
o o) () (()] (@)
£ T o»n
=) O c =
m C O 0o
o © aw
m - 0O O m
=5 O nrv ©
c m 35 @©)
O ¥ O 45 S
= n wn o
c C ®©
- = ®© ®© O

small

Average number of dependent operations between

a source miss and dependent miss.

Figure 6

Related Work

e Independent cache misses
o Correlation prefetching: stream/stride prefetcher & temporal prefetcher
m oblivious to control flow, bandwidth limited
o Content-directed prefetching
m greedily prefetches by dereferencing values that could be memory addresses
o Runahead execution & continual flow pipelines
m execute ahead of the demand access stream, generating independent cache misses

e Enhancing memory controller
o Move computation close to memory
o 3D-stacked DRAM with computation

e This paper
o Target dependent cache misses
o Add compute capability to memory controller

Out-of-Order Processor Review

pre-
decode

1nstr.
cache

0

floating pt.

register

file

Yy

nstr.
buffer

decode,
rename,

&dispatch

integer

floating pt.
mstruction
buffers

functional units

S

integer/address
instruction

buffers

functional units

and
data cache

memory

interface

i

register

file

I re-order and commitI

EMC

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.

Implementation

EMC sits in the memory

controller, close to
DRAM. Core O Corel
What it does: ‘ '
DRAM [Enhanced
e Offloads dependent Channel 0| Memory LLC LLC
. . - []
instructions from DRAM [Controller]
the core. Channel 1| (EMC) LLC LLC
e Reduces memory ® et
latency.
e |ssues requests Core 2 Core 3
faster than the
core.

Figure 7: A high level view of a quad-core processor with an
Enhanced Memory Controller. Each core has a ring stop, de-
noted by a dot, which is also connected to a slice of the shared

last level cache.

Implementation

EMC has just enough
hardware to process
dependent instructions.

Key parts:

e Front-end: Holds small
buffers for instructions.
e Back-end: Two ALUs

and a small data cache.

e No fetch/decode logic
(saves area & power).

Live-in
registers
o from core
registers Physical ‘ Result Data
to core 5 v
<— | Register ;
File | Live In Vector u
Decoded
micro-ops ALU O > <
from core
Reservatlon ALU 1 - EMC
Statlon L~ Data
Uop Buffer Cache
Dirty
| R
Tag Broadcast ”cnaecsh;eo
Load Store core

Queue

Figure 8: The microarchitecture of the EMC.

Generate Dependence Chain

Full-window ROB stall due to an LLC
miss blocking retirement

3-bit saturating counter to determine
if a dependent cache miss is likely

Dataflow walk to track dependencies
until end or micro-ops reaches 16
(the size of EMC register file)

Algorithm 1: Dependence Chain Generation

//Process the source uop at ROB full stall;
Allocate EPR for destination CPR of uop in RRT;
Add uop to chain and broadcast destination CPR tag;
for each dependent uop do
if uop Allowed and (all source CPRs ready or in RRT) then
//Prepare the dependent uop to send to EMC;
for each source operand do
if CPR ready then
| Read data from PRF into live-in vector;
else
| EPR = RRT[CPR];
end

end
Allocate EPR for destination CPR in RRT;
Add uop to chain and broadcast destination CPR tag;
if Total uops in Chain == 16 then
| break;
end

end

end
Send filtered chain of uops and live-in data to EMC;

Figure 10: Dependence chain generation. CPR: Core Physical
Register. EPR: EMC Physical Register. RRT: Register Remap-
ping Table.

Cycle 1

ROB RRT
Core instruction EMC micro-ops C1 | C9
MEM_LD C8 -> C1 MEM_LD C8 -> EO EO | E1
(independent instruction)
MOV C1 -> C9 MOV EO -> E1 Live-In
(independent instruction)
ADD C9, 0x18 -> C12
MEM_LD C12 -> C10
ADD C10, C3 -> C16

MEM_LD C16 -> C19

Cycle 2

ROB
Core instruction
MEM_LD C8 -> C1
(independent instruction)
MOV C1 -> C9
(independent instruction)
ADD C9, 0x18 -> C12
MEM_LD C12 -> C10
ADD C10, C3 -> C16

MEM_LD C16 -> C19

EMC micro-ops

MEM_LD C8 -> EO

MOV EO -> E1

ADD E1, LO -> E2

RRT
C1 C9 | C12
EO | E1 | E2
Live-In
0x18

Cycle 3

ROB
Core instruction
MEM_LD C8 -> C1
(independent instruction)
MOV C1 -> C9
(independent instruction)
ADD C9, 0x18 -> C12
MEM_LD C12 -> C10
ADD C10, C3 -> C16

MEM_LD C16 -> C19

EMC micro-ops

MEM_LD C8 -> EO

MOV EO -> E1

ADD E1, LO -> E2

MEM_LD E2 -> E3

RRT
C1 | C9 C12 C10

EO | E1 | E2 E3

Live-In

0x18

Cycle 4

ROB RRT
Core instruction EMC micro-ops C1 | C9 C12 C10 C16
MEM_ LD C8 -> C1 MEM_ LD C8 -> EO EO E1 | E2 E3 E4

(independent instruction)

MOV C1 -> C9 MOV EO -> E1 .
Live-In

(independent instruction) 0x18 | C3

ADD C9, 0x18 -> C12 ADD E1, LO -> E2

MEM_LD C12 -> C10 MEM_LD E2 -> E3

ADD C10, C3 -> C16 ADD E3, L1 -> E4

MEM_LD C16 -> C19

Cycle 5

ROB RRT
Core instruction EMC micro-ops C1 |C9 C12 C10 C16 | C19
MEM_ LD C8 -> C1 MEM_ LD C8 -> EO EO E1 | E2 E3 E4 E5

(independent instruction)

MOV C1 -> C9 MOV EO -> E1 .
Live-In

(independent instruction) 0x18 | C3

ADD C9, 0x18 -> C12 ADD E1, LO -> E2

MEM_LD C12 -> C10 MEM_LD E2 -> E3

ADD C10,C3 -> C16 ADD E3, L1 -> E4

MEM_LD C16 -> C19 MEM_LD E4 -> ES5

EMC Execution

Dependence chain (micro-ops) + live-in — live-outs

Core sends branch information, cannot resolve mispredicted branch
Loads to EMC cache, predicts if cache miss by 3-bit counters
In-order retirements in core ko

Live-out from core

registers Physical ‘ Result Data
to core : v
<—— | Register

F|Ie Live In Vector u

|
Decoded

micro-ops —> ALU O
from core
Reservat|on | L AU EMC

Statlon [Saza
Uop Buffer Cache
Dirty
—> cache
Tag Broadcast lines to
Load Store core

Queue

Figure 8: The microarchitecture of the EMC.

Methodology

H1 bwaves+lbm+milc+omnetpp
H2 soplex+omnetpp+bwaves+libq
H3 sphinx3+mcf+omnetpp+milc High Intensity omnetpp, milc, soplex, sphinx3, bwaves,
Ha £ -] Tib (MPKI >= 10) libquantum, Ibm, mcf

THELFSPIIRX 3 FSOPICX-AUDY Low Intensity calculix, povray, namd, gamess, perlbench,
H5 lbm+mcf+libq+bwaves (MPKI <10) tonto, gromacs, gobmk, dealll, sjeng, gcc, hm-

. mer, h264ref, bzip2, astar, xalancbmk, zeusmp,
He6 me+80p11?l))(+mel:mllC cactusADM, wrf, GemsFDTD, leslie3d
+libg+ +

] WavEs I SSPIINR S Fomneipp Table 2: SPEC CPU2006 classification by memory intensity.
H38 omnetpp+soplex+mcf+bwaves
H9 Ibm+mcf+libg+soplex
H10 libq+bwaves+soplex+omentpp

Table 3: Quad-Core workloads.

Results

Performance
Improvement:

Works well with
memory-intensive
workloads.

Best with prefetchers
Up to 15% speedup
over baseline, 9-11%
over prefetchers.

o

o o

o

N
o

o

% Weighted Speedup Improvement
over No-Prefetching Baseline
B
o

d EMC EZ3 EMC+GHB EMC+Stream EZZ EMC+Markov+Stream
[GHB [Stream B Markov+Stream

Figure 12: Quad-Core performance for workloads H1-H10.

Results

Latency Reduction:

e EMC reduces cache
miss latency by ~20%.

e Why? EMC bypasses
on-chip delays.

e Faster dependent
cache misses = faster
execution.

400

e

w
U
o

300
250
200
150
100

50

Cycles to Complet

B EMC Request [Core Request

Figure 18: Latency observed by an LLC miss generated by the
EMC vs. an LLC miss generated by the core for H1-H10.

Results

DRAM Contention: 9
@©
e EMC lowers row-buffer C%
conflicts in DRAM 0 E
(~19%). %8
e Why? ltissues 6@
dependent requests L3
faster & in groups. 2
® Explore the % ~60
first-regdy-fir§t-serve P FFE P L XD $’Q &
scheduling policy 3
e Result: More row-buffer [EMC BBl EMC+GHB [0 EMC+Stream MM EMC+Markov+Stream

hits, fewer delays.
Figure 16: Change in row-buffer conflict rate with the EMC

over a no-prefetching baseline.

Results

Energy Efficiency:

e Prefetching alone
increases energy
use (useless
prefetches).

e EMC lowers
energy by 11% (less

execution time +
reduced row-buffer o (o /\
conflict rate) N v %) QY O) Q Q
e EMC + prefetching N X e N N < L N A Q"\' 2
= better efficiency.

_
’
l
l
f
f
!

% Difference in
Energy Consumption

EMC EZ3 EMC+GHB EMC+Stream [EZ& EMC+Markov+Stream
I GHB [Stream I Markov+Stream

Figure 23: Energy consumption for workloads H1-H10.

Thoughts

e Pros
o Novel idea to reduce dependent cache miss delay
o Bypass on-chip delay
o Increase DRAM row buffer hit

e Cons

Performance improvement only on high memory intensity workloads (MPKI >= 10)
Redundancy cycles in generating dependence chain

Large area overhead (2% of chip area)

No evidence used by commercial chip?

o O O O

