Decoupled Vector Runahead

And other kinds of runahead

Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones,
and Lieven Eeckhout

MICRO 2023

Presented by Matt Ngaw and Yufei Shi

' : ~ % e ';:i/ G
Ajeya Naithani Sam Ainsworth Timothy M. Jones Lieven Eeckhout

PhD + Postdoc @ PhD @ Ghent Honorary Fellow, Professor @ Full Professor @

Ghent University University Assistant Professor @ University of Ghent University
University of Cambridge

now Professor @ Edinburgh

Eindhoven University
of Technology

77)

Review: Runahead Execution Heca 2003

% ROB (instruction window) commits in-order
o Problem: Can be blocked by a long-latency memory access

% Traditionally, pipeline stalls until memory access resolves
o Alternative: Speculatively execute past the blocking instruction to prefetch

S 460 OROB full
Pros Cons 2 W _
Accurate prefetching; Executes everything; not all 8§ w
follows program path instructions are useful { H H 1
g o =0
E%f“gééﬁgssg“ﬁ“z% 2
Low hardware overhead:; Performance overhead of i 858:FegiE®ctogs
reuses much of existing flushin9+r6fi”in9 pipeline Fig. 1: Fraction of the execution time the ROB is full for
hardware memory-intensive benchmarks. An out-of-order processor stalls
on a full ROB for about half the time.

Precise Runahead Hrca 2020

% Runahead executes everything

O

Solution: Find and execute only instructions
needed to generate memory accesses

% Runahead incurs overhead from flushing/refilling

O

Solution 1: Do not release processor state (AKA
preserve the IQ, PRF, and ROB)

Solution 2: Reuse availability in IQ and PRF to
execute in runahead mode

O GP registers B FP registers M@ 1Q entries

[
(=
(=]

=]
o

a
(=]

Iy
(=]

% availability

N
o

(=]
wrf
Gems

kel
E

E
2

zeusm
cactus
leslie
omnet
milc
soplex
sphinx
bwave
libqua
roms
parest
fotonik
average

Fig. 4: Percentage general-purpose (GP) registers, floating-point
(FP) registers and issue queue (IQ) entries that are available
upon a full-window stall due to a long-latency load blocking
commit. About half the issue queue and physical register file
entries are available upon a full-window stall.

Vector Runahead micro 2021, micro 2021 Top Pick

% What about dependence chains?
o for (i=0.100) { x += B[hash(A[i]D] }

% Why wait for the front-end to deliver future instructions?
o Insight: Generate your own memory instructions!
o Akin to hardware prefetching techniques
o If right, automatically exposes lots of MLP

% Same instruction, different data
o Insight: Vectorize these auto-generated instructions
o Performance of compute within loops can be improved via SIMD

N\

“

Vector Runahead micro 2021, micro 2021 Top Pick

for (int x=0; x<N; x++)
y += Blhash(A[x])]->value;

Data from A prefetched during runahead

Precise Runahead B cannot be prefetched since depends on A

EeW->

V

. 000000000

Data from A known from prefetcher
Data from B prefetched during runahead

6@5@6@@6@ Values cannot be prefefched since depends on B

oD e e e [] Data from A fetched + stalled for during VR
Data from B fetched + stalled for during VR, after A
Data from value fetched + stalled for during VR,

.50BOBOOO0 A

Precise Runahead
+ HW Prefetch

%4—&4—)

V

Vector Runahead

o

V

Decoupled Vector Runahead A%

% ROBs have grown bigger over the years . A

o Condition for runahead mode: still full ROB? g
2x speedup*®
% VR delays termination until done vectorizing dependent chains

o What if stalling load finishes before then?

18 0000 QvR +Processor Stall Time 100
. o 16 H .
% Not all workloads have predictable loops Suntd Lo T 7 0E
. . . £ = = = (0 U =il H eo0 &
o Data-dependent, dynamic number of iterations? s 2 o TR - Fe THETT
§ % 06 | % .,.“ |8 - g
2200 [RUEHIN IR BRI = 3
* Not all workloads have loops with many iterations $ 8 oo LB THLURIHINER] EDIET UL LT TN €
o Multiple instances of inner-loop? - 0l L e M e o o e
Avg

% Control flow complicates vectorization of loop iterations Figure 2: Performance of an 000 core and VR, normalized to

o Different memory accesses patterns? a baseline 350-entry ROB 000 core (left axis), and processor
stall time due to a full ROB (right axis), as a function of ROB
size. The performance gain of VR diminishes with increasing ROB
size, and for some benchmarks overall performance even decreases.

DVR::Discovery Mode

BE
(Calculation +
Prediction)

~ Stride |«

Decision Logic

Detector

()Discovery Mode

~Tracker

Stride Detector identifies a striding load and its stride

Look for the most suitable candidate for DVR
Derive loop bounds
Discover dependent loads

L R b b D o

Stride Detector reaches the same striding load again

- Loop Bound Detector

Execute j;[Commit]

Discovery Mode

DVR::Innermost Striding Load Detection , &

PC
(Calculation + = = . \’ k
Prediction) | ";}
Decision Logic S?.nld)<
[¢] - Detector N ngp :Bound:.DetectOr.i. P

Execute 4}|.[Commit]
ROB

(I Discovery Mode

Taint |
Tracker |

G

% Uses the Reference Prediction Table (RPT) to detect striding load.
% Prefers innermost striding load to be the trigger for entering Discovery Mode.

DVR::Dependent-Load Checking £

PC ;
(Calculation + \) §

Prediction) ' |

A<

.
O
o @

Decision Logic

A A

|+-L:oop. Bound Detector | _

Dispatch
=

Taint
~Tracker |

* Vector Taint Tracker (VTT) identifies instructions that will later be vectorized.
% Final-Load Register (FLR) is updated with the PC of a load if its input is tainted.
% All tainted instructions in the dependence chain, starting from the striding load

that triggers the DVR to the last dependent load in FLR.

DVR::Loop Bound Inference

= SBB.
Prediction) ";}
N\
|

Yd
v

v 4

Decision Logic

J

N
... Loop Bound Detector

&
<

m Execute 4}|.[Commit]
ROB

()Discovery Mode

Taint |
Tracker |

G

% First branch with a backward edge -> a loop.
% Seen-Branch Bit (SBB) gets set when a backward branch is encountered.
% Aslong as SBB is not set:
o Last-Compare Register (LCR) gets updated with the Src/Dst register IDs
when encountering a compare instruction as long as SBB is not set.
o If LCR's tracked Dst register matches a branch's Src register AND the
branch-taken destination PC < striding load PC, set SBB.

DVR::Loop Bound Inference

. LOAD rl, r2

. CMP rl, r2, r4

BNEZ r5, #?
BNEZ r3, #1 ;

S oy 0 WD PR

. ADDI rl, 1, rl ;

-

rl = rl + 1 R

; r2 = Mem[rl] ~ striding load
. CMPI rl, rl1l0, r3 ;
; rd = (rl < r2) 21 :0
. BNEZ r3, #8 ;

r3 = (rl < rl0) ?2 1 : 0, assume rl0 = 10

Branch to line 7 if r3 is not zero

; Branch to somewhere if r5 is not zero

Branch to line 1 if r3 is not zero

% First branch with a backward edge -> a loop.
% Seen-Branch Bit (SBB) gets set when a backward branch is encountered.
% Aslong as SBB is not set:
o Last-Compare Register (LCR) tracks the Src/Dst register IDs when
encountering a compare instruction as long as SBB is not sef.
o If LCR's tracked Dst register matches a branch's Src register AND the
branch-taken destination PC < striding load PC, set SBB.

DVR::Loop Bound Infer'ence

BE
(Calculation +
Prediction)

Decision Logic

Execute }r[Commit]
ROB

% Two checkpoints of the architectural register file are taken when entering and
exiting Discovery Mode.

% LCR contains the register mappings of the inputs to the compare instruction used in
the loop guard.

% # loop iterations left can be derived from the difference between the register
values.

Decode Rename

Discovery Mode

Dispatch

Taint -
Tracker

G
s/

DVR::Vector Runahead Subthread

(JDecoupled Vector Runahead (JDiscovery Mode

*

*

; Vector Issue 4 \J
Vectorizer }—»[Register ’ 4

) A 4

PC
(Calculation + [Buffer ~—>| VRAT J
Prediction) Y 5

\ Decision Logic /4_

Decode

i Detector - Loop Bound Detector
\ 4
Dispatch Execute A}|.[Commit]

et __» ROB
- Tracker

Rename

Discover Mode identifies: a striding load, its stride, its dependence chain, and
remaining iterations of the inner loop.

DVR spawns a vector-runahead subthread once the main thread reaches the
striding load in the second time.

Subthread instructions are generated from the front-end micro-op buffer, which
decouples the fetch stage from the rest of the pipeline.

DVR::Vector Register Allocation Table z

'RJ\J

PC
(Calculation +
Prediction)

Vector Issue

u'»'»_:‘:-:» -------- Reglster]

VV
é
(@l
ﬁ
@
=

\ 4

Execute A}|;[Commit]
| 'S
() Decoupled-Vector Runahead @Discovefy Mode [=nt 1 L, RoB
= c
s 1
’
-’ |
’
7 ! Figure 4: An example VRAT allocation considering 8 physical
Vreg | Preg(s) | registers (one per vector lane) for brevity rather than 16 as
R1 | S45 S45 S45 S45 S45 S45 S45 S45 in our setup. Architectural register R1 points to the same scalar

R2 | V34 V35 V36 V37 V38 V39 V68 V69 physical register (S45) for all lanes. Architectural register R2 has been
vectorized to 8 different vector physical registers, because either one
of its sources was tainted, or control-flow divergence occurred.

DVR::Vector Issue Register

PC

Inst #
Lane #
Mask
Issued
Executed
Uop / Imm
Dest

Srcl

Src2

(Calulation + | Bufer || VRAT | p| Yestorzer | Rogstr |
Prediction) “3 S w— Ve — Y - _ -
-- -
= : eI e =~ =
\ Decision Logic 4 . etectol [Loop Bound QeﬁtthQF-f---l< |
- \ 4
wode Execute A}|;[Commit]
0 1 2 3 l;aér'e : |, ROB
01234567 891011..15161718..23242526...31 . . .
Figure 5: The Vector Issue Register showing 4 AVX-512 vector
01100000 11111111 11001111 11111211 instructions (instead of 16 as in our setup for brevity). Fine-
1 0 0 0 grained masking has turned some scalar-equivalent lanes in AVX-512
instructions 0 and 2 into no-ops. The first AVX-512 instruction has
1 0 0 0 been issued and executed, and the last three have neither been issued
nor executed. Source register srcl is scalar register S3 and is shared
Add among all lanes (none of which have diverged), which may be for
V53 V67 T T V78 example the base address of an array, whereas source register src2 has
been vectorized (for example the index into the array). The destination
S3 S3 S3 S3 registers are also vectorized, to the same location as src2 as they were
V53 V67 \F77 V78 the same architectural scalar register.

DVR::Branch Reconvergence

()Decoupled Vector Runahead

Reconvergence
Stack

PC
(Calculation +
Prediction)

(J)Discovery Mode Branch Reconvergence

" Stride

PC (48 bits) | Mask (128 bits)
0x1234 111111100000
0x12a0 000000011111

=

Lk —» ROB
acker

e Detecto = [Loop Bound Detector |
........................ 1[4
Decode Dispatch :@—»{ Execute}|.[Commit]

-
1

Figure 6: An example reconvergence stack. The top of the stack
stores the current PC and mask. Once the reconvergence point is

reached, the stack head is popped and execution proceeds with the
next PC and mask.

4

DVR::Nested Vector Runahead /3

DExisting Structures [F)Decoupled Vector Runahead (B Discovery Mode @ Nested Discovery Mode Branch Reconvergence

- /ul g
-

Reconvergence :
Stack
.

PC SRR S s ROX.
(Calculation + [Buffer]_,[VRAT} > VOnZe Vel'\?g)grlslf:#e]
Prediction) : — Piiiiiiiiiziiiini L ERGUIIC: :

b 4 PR = f e
\ Decision Logic /47 - Tot BRRZUCLERID p -
i TPPIGRR .| Loop Bound Detector |
....................... i

Decode

Rename

Executej.‘ Commit]

(T Taint) » ROB
Q

% Nested Discovery Mode (NDM) vectorizes the chain of instructions from the outer
striding load to the inner striding load, and discovers loop bounds and data inputs

to multiple invocations of the inner loop.
% Upon reaching the inner striding loop, Nested Vector Runahead (NVR) expands
vectorization further to cover the inner loop as well.

What did the paper get right?

Q
S
-
C
£
o
Y
Q
a.

DVR

mIMP OVR ®m DVR B Oracle

O PRE

SI-SVN
92-SVYN
Jeduey
8rH

ZrH

= yyO dsss

= N dsss
—

- —— P S

—

= yn .d
=

—
i _
= M40 .d
—
=\ ad
—

— ¥ .d

Ddl PazijeW.oN

Figure 7: Performance for PRE, VR, DVR and Oracle normalized to a baseline OoO core. DVR achieves 2.4X higher performance (and

up to 6.4X) compared to a baseline OoO core.

DVR::Performance vs. Growing ROBs

IPC Normalized to the Qo0

Figure 12: Performance of DVR with increasing ROB size,
relative to our baseline 000 core with 350-entry ROB. The
performance gains delivered by DVR continue to increase despite the

=350)

Baseline (ROB

4.0

3.0

2.0

1.0

0.0

0000 ODVR
RONSIOMN RONITOMN RONTOMN RONTOMN [RONION [ONTOMN OO N
NN NN NN NN NN INOYAIN . IOV
e e=iNMNUN jefeiNMNMUN NN e MNMWN e eiNOILN e e NN e e MUY
bc bfs cc pr SSSp hpc-db |H-mean

large size of the ROB.

0 9.0:/0.0 bk
oNbowON

IPC Normalized to the 00O
Baseline(ROB=350)

0000 avR +Processor Stall Time
= o =N 0 1 H o H
H bt - H L=
™ L o1 \ |4 -
fo)
fo] A \ & \ ot o} \ ‘
O ON NTSON [ONTON NTON INTFON [ONTON ONTON
INONIA NN [NONIAE NONIAH (NN [NONIAC (NOCA
bc bfs cc pr sssp hpc-db |H-mean/|
Avg

100

8 83 8
Proessor Stall Time (%)

o

Figure 2: Performance of an 000 core and VR, normalized to
a baseline 350-entry ROB 00O core (left axis), and processor
stall time due to a full ROB (right axis), as a function of ROB
size. The performance gain of VR diminishes with increasing ROB
size, and for some benchmarks overall performance even decreases.

DVR::Memory Level Parallelism

i 0 000 O VR W DVR ad \,
* ol ol sl

bc bfs cc pr sssp hpc-db H-mean

Figure 9: Memory-level parallelism, in terms of MSHRs used
per cycle on average, for DVR and VR compared to the base-
line 000 core. DVR generates significantly more parallel outstand-
ing memory accesses.

DVR::Accuracy and Coverage

O Normal Mode 0 Runahead Mode
g 3.0
a
§ 2.5 s
> 2.0
]
e 15 -
(]
= 1.0 : - :
c
O —
£ 0.0 —
o o o o o o o o o o o o
> > > > > > > > > > >
a) a) [a) @) [
bc bfs cc pr Sssp hpc-db

DV

Avg

Figure 10: Accuracy and Coverage: number of off-chip mem-
ory accesses for VR and DVR normalized to 000, and fraction
of memory accesses in normal versus runahead mode. DVR
successfully prefetches DRAM accesses, converting them into on-chip
cache hits when the program subsequently accesses them in normal

mode.

5

DVR::Timeliness

=
Ve
O L1D-hits O L2-hits B L3-hits | Off-chip v
P B -
ol oo
0
é 60% ...
(]
g Q0% oo i i o S .
|_
20%
0%
bc bfs cc pr sssp hpc-db

Figure 11: Timeliness: fraction of total prefetched cachelines
in runahead mode for which the data is present in the L1-D,
L2 and L3 caches during normal mode; ‘Off-chip’ represents
either the cachelines prefetched incorrectly or the cache lines
for which the data is still being transferred from memory.

What did the paper get wrong?

Remaining Question

% No discussion of area
o ~1.1k bytes of added storage
o How much area of logic?

% No discussion of power

What are your takeaways?

Takeaways

% The helper thread strikes back!
o Less switching overhead than traditional runahead

% No need for fancy OoO!
o Lots of MLP already exposed
o Mostly RAW dependencies left behind

References

% O. Mutly, J. Stark, C. Wilkerson and Y. N. Patt, "Runahead execution: an alternative to very large instruction
windows for out-of-order processors," The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings., Anaheim, CA, USA, 2003, pp. 129-140, doi:
10.1109/HPCA.2003.1183532.

% A.Naithani, J. Feliu, A. Adileh and L. Eeckhout, "Precise Runahead Execution," 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA, 2020, pp. 397-410, doi:
10.1109/HPCA47549.2020.00040.

% A.Naithani, S. Ainsworth, T. M. Jones and L. Eeckhout, "Vector Runahead," 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2021, pp. 195-208, doi:
10.1109/IS5CA52012.2021.00024.

% Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout. 2023. Decoupled
Vector Runahead. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO '23). Association for Computing Machinery, New York, NY, USA, 17-31.
https://doi.org/10.1145/3613424.3614255

