
Decoupled Vector Runahead
And other kinds of runahead

Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones,
and Lieven Eeckhout

MICRO 2023

Presented by Matt Ngaw and Yufei Shi

Honorary Fellow,
Assistant Professor @

University of
Edinburgh

Professor @
University of

Cambridge

PhD + Postdoc @
Ghent University

now Professor @
Eindhoven University

of Technology

PhD @ Ghent
University

Jaime RoelandtsAjeya Naithani Sam Ainsworth Timothy M. Jones Lieven Eeckhout

Full Professor @
Ghent University

★ ROB (instruction window) commits in-order
○ Problem: Can be blocked by a long-latency memory access

★ Traditionally, pipeline stalls until memory access resolves
○ Alternative: Speculatively execute past the blocking instruction to prefetch

Review: Runahead Execution HPCA 2003

Pros Cons

Accurate prefetching;
follows program path

Executes everything; not all
instructions are useful

Low hardware overhead;
reuses much of existing
hardware

Performance overhead of
flushing+refilling pipeline

★ Runahead executes everything
○ Solution: Find and execute only instructions

needed to generate memory accesses

★ Runahead incurs overhead from flushing/refilling
○ Solution 1: Do not release processor state (AKA

preserve the IQ, PRF, and ROB)
○ Solution 2: Reuse availability in IQ and PRF to

execute in runahead mode

Precise Runahead HPCA 2020

★ What about dependence chains?
○ for (i = 0..100) { x += B[hash(A[i])]; }

★ Why wait for the front-end to deliver future instructions?
○ Insight: Generate your own memory instructions!
○ Akin to hardware prefetching techniques
○ If right, automatically exposes lots of MLP

★ Same instruction, different data
○ Insight: Vectorize these auto-generated instructions
○ Performance of compute within loops can be improved via SIMD

Vector Runahead MICRO 2021, Micro 2021 Top Pick

Vector Runahead MICRO 2021, Micro 2021 Top Pick

Precise Runahead Data from A prefetched during runahead
B cannot be prefetched since depends on A

Precise Runahead
+ HW Prefetch

Data from A known from prefetcher
Data from B prefetched during runahead
Values cannot be prefetched since depends on B

Vector Runahead
Data from A fetched + stalled for during VR
Data from B fetched + stalled for during VR, after A
Data from value fetched + stalled for during VR,
after A + B

Decoupled Vector Runahead MICRO 2023 Best Paper
Micro 2023 Top Pick

2x speedup*

★ ROBs have grown bigger over the years
○ Condition for runahead mode: still full ROB?

★ VR delays termination until done vectorizing dependent chains
○ What if stalling load finishes before then?

★ Not all workloads have predictable loops
○ Data-dependent, dynamic number of iterations?

★ Not all workloads have loops with many iterations
○ Multiple instances of inner-loop?

★ Control flow complicates vectorization of loop iterations
○ Different memory accesses patterns?

DVR::Discovery Mode

★ Stride Detector identifies a striding load and its stride

★ Look for the most suitable candidate for DVR
★ Derive loop bounds
★ Discover dependent loads

★ Stride Detector reaches the same striding load again

Discovery Mode

DVR::Innermost Striding Load Detection

★ Uses the Reference Prediction Table (RPT) to detect striding load.
★ Prefers innermost striding load to be the trigger for entering Discovery Mode.

RPT

DVR::Dependent-Load Checking

★ Vector Taint Tracker (VTT) identifies instructions that will later be vectorized.
★ Final-Load Register (FLR) is updated with the PC of a load if its input is tainted.

★ All tainted instructions in the dependence chain, starting from the striding load
that triggers the DVR to the last dependent load in FLR.

VTT

FLR

DVR::Loop Bound Inference

★ First branch with a backward edge -> a loop.
★ Seen-Branch Bit (SBB) gets set when a backward branch is encountered.
★ As long as SBB is not set:

○ Last-Compare Register (LCR) gets updated with the Src/Dst register IDs
when encountering a compare instruction as long as SBB is not set.

○ If LCR’s tracked Dst register matches a branch’s Src register AND the
branch-taken destination PC < striding load PC, set SBB.

SBB

LCR
Checkpointed

RFs

DVR::Loop Bound Inference

★ First branch with a backward edge -> a loop.
★ Seen-Branch Bit (SBB) gets set when a backward branch is encountered.
★ As long as SBB is not set:

○ Last-Compare Register (LCR) tracks the Src/Dst register IDs when
encountering a compare instruction as long as SBB is not set.

○ If LCR’s tracked Dst register matches a branch’s Src register AND the
branch-taken destination PC < striding load PC, set SBB.

1. ADDI r1, 1, r1 ; r1 = r1 + 1
2. LOAD r1, r2 ; r2 = Mem[r1] ← striding load
3. CMPI r1, r10, r3 ; r3 = (r1 < r10) ? 1 : 0, assume r10 = 10
4. CMP r1, r2, r4 ; r4 = (r1 < r2) ? 1 : 0
5. BNEZ r3, #8 ; Branch to line 7 if r3 is not zero
6. BNEZ r5, #? ; Branch to somewhere if r5 is not zero
7. BNEZ r3, #1 ; Branch to line 1 if r3 is not zero

DVR::Loop Bound Inference

★ Two checkpoints of the architectural register file are taken when entering and
exiting Discovery Mode.

★ LCR contains the register mappings of the inputs to the compare instruction used in
the loop guard.

★ # loop iterations left can be derived from the difference between the register
values.

SBB

LCR
Checkpointed

RFs

DVR::Vector Runahead Subthread

★ Discover Mode identifies: a striding load, its stride, its dependence chain, and
remaining iterations of the inner loop.

★ DVR spawns a vector-runahead subthread once the main thread reaches the
striding load in the second time.

★ Subthread instructions are generated from the front-end micro-op buffer, which
decouples the fetch stage from the rest of the pipeline.

DVR::Vector Register Allocation Table

DVR::Vector Issue Register

DVR::Branch Reconvergence

DVR::Nested Vector Runahead

★ Nested Discovery Mode (NDM) vectorizes the chain of instructions from the outer
striding load to the inner striding load, and discovers loop bounds and data inputs
to multiple invocations of the inner loop.

★ Upon reaching the inner striding loop, Nested Vector Runahead (NVR) expands
vectorization further to cover the inner loop as well.

Increment Register

Inner Load Register

What did the paper get right?

DVR::Performance

DVR::Performance vs. Growing ROBs

Recall…

DVR::Memory Level Parallelism

DVR::Accuracy and Coverage

DVR::Timeliness

What did the paper get wrong?

★ No discussion of area
○ ~1.1k bytes of added storage
○ How much area of logic?

★ No discussion of power

Remaining Question

What are your takeaways?

★ The helper thread strikes back!
○ Less switching overhead than traditional runahead

★ No need for fancy OoO!
○ Lots of MLP already exposed
○ Mostly RAW dependencies left behind

Takeaways

★ O. Mutlu, J. Stark, C. Wilkerson and Y. N. Patt, "Runahead execution: an alternative to very large instruction
windows for out-of-order processors," The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings., Anaheim, CA, USA, 2003, pp. 129-140, doi:
10.1109/HPCA.2003.1183532.

★ A. Naithani, J. Feliu, A. Adileh and L. Eeckhout, "Precise Runahead Execution," 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA, 2020, pp. 397-410, doi:
10.1109/HPCA47549.2020.00040.

★ A. Naithani, S. Ainsworth, T. M. Jones and L. Eeckhout, "Vector Runahead," 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2021, pp. 195-208, doi:
10.1109/ISCA52012.2021.00024.

★ Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout. 2023. Decoupled
Vector Runahead. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO '23). Association for Computing Machinery, New York, NY, USA, 17–31.
https://doi.org/10.1145/3613424.3614255

References

