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Last Lecture: Data Prefetcher
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This Lecture
• Prefetching “hard-to-predict” memory references

– Helper thread prefetching

– Runahead execution
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Helper Thread Prefetching [1999]
• Use idle threads to prefetch data for the main thread
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Helper Thread Prefetching
• Use idle threads to prefetch data for the main thread
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Helper Thread Prefetching
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The helper thread prefetches the data 
of the main thread into the shared cache

• Use idle threads to prefetch data for the main thread

• How does Helper Thread stay ahead of Main Thread?
– Only waits for prefetches when result needed for its next prefetch

• Main Drawback? 
– An entire execution unit (core) is dedicated for prefetching
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• Onur: UT Austin PhD, CMU prof, now ETH;
Young Architect Award, Maurice Wilkes Award, 
ACM/IEEE Fellow

• Jared: Intel Processor Architect; branch predictors
for Sandy Bridge and Ivy Bridge processors

• Chris: Intel Principal Engineer, CMU MS

• Yale: UT Austin Prof; NAE, ACM/IEEE Fellow,
Eckert-Mauchly Award, Charles Babbage Award

“Runahead Execution: An Alternative to Very Large 
  Instruction Windows for Out-of-order Processors” 
  Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003
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Moore’s Law w/o Dennard Scaling

We are here
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• An alternative architecture for better tolerating long-latency
   cache misses

• Integrated into Sun ROCK, IBM POWER6, NVIDIA Denver

The slides presented hereafter are adapted from the original
materials developed by Professor Onur Mutlu. 

“Runahead Execution: An Alternative to Very Large 
  Instruction Windows for Out-of-order Processors” 
  Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003



10

ADD R2  R2, 64
STOR mem[R2]  R4

ADD R4  R4, R5
MUL R4  R4, R3

LOAD R3  mem[R2]
ADD R2  R2, 8

BEQ R1, R0, target
LOAD R1  mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 

but cannot be retired.

Younger instructions can’t be executed because
    there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

Long-latency cache misses are responsible for most full-window stall

LOAD R3  mem[R2]
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Impact of Long-Latency Cache Misses
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Impact of Long-Latency Cache Misses
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The Problem
• Out-of-order execution requires large instruction windows
    to tolerate today’s main memory latencies.

• As main memory latency increases, instruction window size should
    also increase to fully tolerate the memory latency.

• Building a large instruction window is a challenging task if 
    we would like to achieve: 

– Low power/energy consumption (tag matching logic, ld/st buffers)

– Short cycle time (access, wakeup/select latencies)

– Low design and verification complexity



14

Efficient Scaling of Instruction Window Size
One of the major research issues in out-of-order execution

• How to achieve the benefits of a large window with a small one
   (or in a simpler way)?

• How to efficiently tolerate memory latency using the machinery
    of out-of-order execution (and a small instruction window)?
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Memory Level Parallelism (MLP)
• Idea: Find/service multiple cache misses in parallel 

– Processor stalls only once for all misses

– Enables latency tolerance: overlaps latency of different misses

• How to generate multiple misses?
– Out-of-order execution, multithreading, prefetching, runahead

time

A
B

C

isolated miss parallel miss
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Runahead Execution
A technique to obtain the memory-level parallelism

 benefits of a large instruction window

• When the oldest instruction is a long-latency cache miss:
– Checkpoint architectural state and enter runahead mode

• In runahead mode:
– Speculatively pre-execute instructions (generates prefetches)

– L2-miss dependent instructions are marked INV and dropped

• Runahead mode ends when the original miss returns
– Checkpoint is restored and normal execution resumes



17

Runahead Example
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Runahead Example
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Discussion: Summary Question #1

State the 3 most important things the paper says. 

These could be some combination of the motivations, observations, 
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right? 
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Benefits of Runahead Execution
Instead of stalling during an L2 cache miss:

• Pre-executed loads/stores (independent of L2-miss instructions)
    generate very accurate data prefetches

– For both regular and irregular access patterns

• Instructions on the predicted program path are prefetched 
    into the instruction/trace cache and L2.

• Hardware prefetcher and branch predictor tables are trained
    using future access information. 
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Runahead Execution Mechanism
• Entry into runahead mode

– Checkpoint architectural register state

• Instruction processing in runahead mode

• Exit from runahead mode
– Restore architectural register state from checkpoint



22

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as normal processing, 
EXCEPT:

• It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

• L2-miss dependent instructions are identified and treated 
specially.
 They are quickly removed from the instruction window.
 Their results are not trusted.
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L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

 Two types of results produced: INV and VALID
 INV = Dependent on an L2 miss

 INV results are marked using INV bits in register file & store 
buffer

 INV values are not used for prefetching/branch resolution
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Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

 Oldest instruction is examined for pseudo-retirement
  An INV instruction is removed from window immediately.
  A VALID instruction is removed when it completes execution.

 Pseudo-retired instructions free their allocated resources.
  This allows the processing of later instructions.

 Pseudo-retired stores communicate their data to dependent 
loads.
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Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

• A pseudo-retired store writes its data and INV status to a dedicated 
memory, called a runahead cache. 
 Purpose: Data communication thru memory in runahead mode.

• A dependent load reads its data from the runahead cache.

• Need not be always correct  Size of runahead cache is very 
small.
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Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

• INV branches cannot be resolved
 A mispredicted INV branch causes the processor to stay on

the wrong program path until the end of runahead execution.

• VALID branches are resolved and initiate recovery if 
mispredicted.
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A Runahead Processor Diagram

27
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Runahead Execution vs. Large Windows
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Discussion: Summary Question #2

What Did the Paper Get Wrong? 

Describe the paper's single most glaring deficiency. 

Every paper has some fault. Perhaps an experiment was poorly 
designed or the main idea had a narrow scope or applicability.
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Runahead Execution: Pros and Cons 
Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
 Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution-based prefetching mechanisms:
 Uses the same thread context as main thread, no waste of context
 No need to construct a pre-execution thread

Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses 

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency
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Current and Future Processors
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Effect of Runahead in Sun ROCK
Shailender Chaudhry talk, Aug 2008
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To Read for Friday

“Decoupled Vector Runahead” 
  Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, 
     Timothy M. Jones, Lieven Eeckhout  2023

Optional Further Reading:

“Accelerating Dependent Cache Misses with an 
  Enhanced Memory Controller” 
     Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, 
       Yale N. Patt 2016
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Performance on Improved Frontend
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Impact of Runahead Cache
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Runahead on Future Processor
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Perfect Frontend on Future Processor
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