### 18-742:

### Computer Architecture & Systems

### Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors

Prof. Phillip Gibbons

Spring 2025, Lecture 7

### **Last Lecture: Data Prefetcher**



### **This Lecture**

- Prefetching "hard-to-predict" memory references
  - Helper thread prefetching
  - Runahead execution

### Helper Thread Prefetching [1999]

Use <u>idle</u> threads to prefetch data for the main thread

## The Actual Program

```
00 long refresh_potential
                                      long refresh_potential
      (network_t * net) {
01
                                         (network_t * net) {
   node_t * node, * tmp;
                                       node_t * node, * tmp;
    ... // some computation
    while (node != root) {
                                       while (node != root) {
05
     while (node) {
                                        while (node) {
06
      if(node-
                                         pref(node);
07
        == UP) {
                                         pref(node->pred);
80
       node->potential
                                         pref(node->basic_arc);
        = node->basic_c cost
09
                                         tmp = node
        + node->pred->potential;
10
                                         node = node->child:
      } else {
11
       node->potential
                                        node = tmp;
12
                                        while (node->pred) {
13
        = node->pred->potent al
14
        - node->basic_arc
                                         tmp = node->sibling;
15
       checksum++;
                                         if (tmp) {
16
                                          node = tmp;
17
      tmp = node;
                                          break:
18
      node = node->child;
                                         } else
19
                                          node = node->pred;
    node = tmp;
20
     while (node->pred) {
21
      tmp = node->sibling
22
23
      if(tmp) {
24
       node = tmp;
25
       break;
26
      } else
27
       node = node->pred;
28
29
30 }
               (a)
                                                  (b)
```

# The "Constructed" Program

### **Helper Thread Prefetching**

Use <u>idle</u> threads to prefetch data for the main thread



### Helper Thread Prefetching

Use <u>idle</u> threads to prefetch data for the main thread

### The helper thread prefetches the data of the main thread into the shared cache

```
O3 ... // some computation
O4 while (node != root) {
O5 while (node) {
O6 if(node->orientation)
O7 == UP) {
O8 node->potential
O9 = node->basic_arc->cost
O1 + node->pred->potential;
O2 to the condense of th
```

- How does Helper Thread stay ahead of Main Thread?
  - Only waits for prefetches when result needed for its next prefetch
- Main Drawback?
  - An entire execution unit (core) is dedicated for prefetching

### "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors"

Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003

Onur: UT Austin PhD, CMU prof, now ETH;
 Young Architect Award, Maurice Wilkes Award,
 ACM/IEEE Fellow



 Jared: Intel Processor Architect; branch predictors for Sandy Bridge and Ivy Bridge processors



Chris: Intel Principal Engineer, CMU MS



 Yale: UT Austin Prof; NAE, ACM/IEEE Fellow, Eckert-Mauchly Award, Charles Babbage Award



### Moore's Law w/o Dennard Scaling



We are here

### "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors"

Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003

- An alternative architecture for better tolerating long-latency cache misses
- Integrated into Sun ROCK, IBM POWER6, NVIDIA Denver

The slides presented hereafter are adapted from the original materials developed by Professor Onur Mutlu.

### **Small Windows: Full-window Stalls**

### 8-entry instruction window:

Oldest → LOAD R1 ← mem[R5]

BEQ R1, R0, target

ADD R2 ← R2, 8

LOAD R3 ← mem[R2]

MUL R4 ← R4, R3

ADD R4 ← R4, R5

L2 Miss! Takes 100s of cycles.

Independent of the L2 miss, executed out of program order, but cannot be retired.

LOAD R3 4 mem[R2]

STOR mem[R2] ← R4

**ADD R2** ← **R2**, 64

Younger instructions can't be executed because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

Long-latency cache misses are responsible for most full-window stall

### Impact of Long-Latency Cache Misses



500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

### Impact of Long-Latency Cache Misses



500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

### The Problem

- Out-of-order execution requires large instruction windows to tolerate today's main memory latencies.
- As main memory latency increases, instruction window size should also increase to fully tolerate the memory latency.
- Building a large instruction window is a challenging task if we would like to achieve:
  - Low power/energy consumption (tag matching logic, ld/st buffers)
  - Short cycle time (access, wakeup/select latencies)
  - Low design and verification complexity

### **Efficient Scaling of Instruction Window Size**

One of the major research issues in out-of-order execution

 How to achieve the benefits of a large window with a small one (or in a simpler way)?

 How to efficiently tolerate memory latency using the machinery of out-of-order execution (and a small instruction window)?

### Memory Level Parallelism (MLP)

- Idea: Find/service multiple cache misses in parallel
  - Processor stalls only once for all misses



- Enables latency tolerance: overlaps latency of different misses
- How to generate multiple misses?
  - Out-of-order execution, multithreading, prefetching, runahead

### Runahead Execution

A technique to obtain the memory-level parallelism benefits of a large instruction window

- When the oldest instruction is a long-latency cache miss:
  - Checkpoint architectural state and enter runahead mode
- In runahead mode:
  - Speculatively pre-execute instructions (generates prefetches)
  - L2-miss dependent instructions are marked INV and dropped
- Runahead mode ends when the original miss returns
  - Checkpoint is restored and normal execution resumes

### **Runahead Example**



### **Runahead Example**



### **Discussion: Summary Question #1**

### What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations, interesting parts of the design, or clever parts of the implementation.

### **Benefits of Runahead Execution**

Instead of stalling during an L2 cache miss:

- Pre-executed loads/stores (independent of L2-miss instructions) generate very accurate data prefetches
  - For both regular and irregular access patterns
- Instructions on the predicted program path are prefetched into the instruction/trace cache and L2.
- Hardware prefetcher and branch predictor tables are trained using future access information.

### Runahead Execution Mechanism

- Entry into runahead mode
  - Checkpoint architectural register state
- Instruction processing in runahead mode
- Exit from runahead mode
  - Restore architectural register state from checkpoint

### Instruction Processing in Runahead Mode



Runahead mode processing is the same as normal processing, EXCEPT:

- It is purely speculative: Architectural (software-visible) register/memory state is NOT updated in runahead mode.
- L2-miss dependent instructions are identified and treated specially.
  - They are quickly removed from the instruction window.
  - > Their results are not trusted.

### **L2-Miss Dependent Instructions**



- Two types of results produced: INV and VALID
  - > INV = Dependent on an L2 miss
- INV results are marked using INV bits in register file & store buffer
- INV values are not used for prefetching/branch resolution

### Removal of Instructions from Window



- Oldest instruction is examined for pseudo-retirement
  - An INV instruction is removed from window immediately.
  - A VALID instruction is removed when it completes execution.
- Pseudo-retired instructions free their allocated resources.
  - This allows the processing of later instructions.
- Pseudo-retired stores communicate their data to dependent loads.

### Store/Load Handling in Runahead Mode



- A pseudo-retired store writes its data and INV status to a dedicated memory, called a runahead cache.
  - Purpose: Data communication thru memory in runahead mode.
- A dependent load reads its data from the runahead cache.
- Need not be always correct → Size of runahead cache is very small.

### **Branch Handling in Runahead Mode**



- INV branches cannot be resolved
  - A mispredicted INV branch causes the processor to stay on the wrong program path until the end of runahead execution.
- VALID branches are resolved and initiate recovery if mispredicted.

### A Runahead Processor Diagram



### Performance of Runahead Execution



### Runahead Execution vs. Large Windows



### **Discussion: Summary Question #2**

### What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly designed or the main idea had a narrow scope or applicability.

### Runahead Execution: Pros and Cons

### **Advantages:**

- + Very accurate prefetches for data/instructions (all cache levels)
  - > Follows the program path
- + Simple to implement, most of the hardware is already built in
- + Versus other pre-execution-based prefetching mechanisms:
  - Uses the same thread context as main thread, no waste of context
  - No need to construct a pre-execution thread

### **Disadvantages/Limitations:**

- -- Extra executed instructions
- -- Limited by branch prediction accuracy
- -- Cannot prefetch dependent cache misses
- -- Effectiveness limited by available "memory-level parallelism" (MLP)
- -- Prefetch distance (how far ahead to prefetch) limited by memory latency

### **Current and Future Processors**

| PARAMETER                    | Current                                   | Future                               |
|------------------------------|-------------------------------------------|--------------------------------------|
| Processor Frequency          | 4 GHz                                     | 8 GHz                                |
| Fetch/Issue/Retire Width     | 3                                         | 0                                    |
| Branch Misprediction Penalty | 29 stages                                 | 58 stages                            |
| Instruction window size      | 128                                       | 512                                  |
| Scheduling window size       | 16 int, 8 mem, 24 fp                      | 64 int, 32 mem, 96 fp                |
| Load and store buffer sizes  | 48 load, 32 store                         | 192 load, 128 store                  |
| Functional units             | 3 int, 2 mem, 1 fp                        | 6 int, 4 mem, 2 fp                   |
| Branch predictor             | 1000-entry 32-bit history perceptron [15] | 3000-entry 32-bit history perceptron |
| Hardware Data Prefetcher     | Stream-based (16 streams)                 | Stream-based (16 streams)            |
| Trace Cache                  | 12k-uops, 8-way                           | 64k-uops, 8-way                      |
| Memory Disambiguation        | Perfect                                   | Perfect                              |

### Memory Subsystem

| L1 Data Cache                | 32 KB, 8-way, 64-byte line size  | 64 KB, 8-way, 64-byte line size |
|------------------------------|----------------------------------|---------------------------------|
| L1 Data Cache Hit Latency    | 3 cycles                         | 6 cycles                        |
| L1 Data Cache Bandwidth      | 512 GB/s, 2 accesses/cycle       | 4 TB/s, 4 accesses/cycle        |
| L2 Unified Cache             | 512 KB, 8-way, 64-byte line size | 1 MB, 8-way, 64-byte line size  |
| L2 Unified Cache Hit Latency | 16 cycles                        | 32 cycles                       |
| L2 Unified Cache Bandwidth   | 128 GB/s                         | 256 GB/s                        |
| Bus Latency                  | 495 processor cycles             | 1008 processor cycles           |
| Bus Bandwidth                | 4.25 GB/s                        | 8.5 GB/s                        |
| Max Pending Bus Transactions | 10                               | 20                              |

### **Effect of Runahead in Sun ROCK**

**Shailender Chaudhry talk, Aug 2008** 



### To Read for Friday

### "Decoupled Vector Runahead"

Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, Lieven Eeckhout 2023

### **Optional Further Reading:**

"Accelerating Dependent Cache Misses with an Enhanced Memory Controller"

Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, Yale N. Patt 2016

### Performance on Improved Frontend



### **Impact of Runahead Cache**



### Runahead on Future Processor



### **Perfect Frontend on Future Processor**

