
18-742:
Computer Architecture & Systems

Runahead Execution: An Alternative
to Very Large Instruction Windows

for Out-of-order Processors

Prof. Phillip Gibbons

Spring 2025, Lecture 7

2

Last Lecture: Data Prefetcher

3

This Lecture
• Prefetching “hard-to-predict” memory references

– Helper thread prefetching

– Runahead execution

4

Helper Thread Prefetching [1999]
• Use idle threads to prefetch data for the main thread

Th
e

Ac
tu

al
 P

ro
gr

am

Th
e

”C
on

st
ru

ct
ed

” P
ro

gr
am

5

Helper Thread Prefetching
• Use idle threads to prefetch data for the main thread

C C

M
ai

n
th

re
ad

H
el

pe
r t

hr
ea

d

Shared Cache

6

Helper Thread Prefetching

C C

M
ai

n
 t

h
re

ad

H
el

p
er

 t
h

re
ad

Shared Cache

The helper thread prefetches the data
of the main thread into the shared cache

• Use idle threads to prefetch data for the main thread

• How does Helper Thread stay ahead of Main Thread?
– Only waits for prefetches when result needed for its next prefetch

• Main Drawback?
– An entire execution unit (core) is dedicated for prefetching

7

• Onur: UT Austin PhD, CMU prof, now ETH;
Young Architect Award, Maurice Wilkes Award,
ACM/IEEE Fellow

• Jared: Intel Processor Architect; branch predictors
for Sandy Bridge and Ivy Bridge processors

• Chris: Intel Principal Engineer, CMU MS

• Yale: UT Austin Prof; NAE, ACM/IEEE Fellow,
Eckert-Mauchly Award, Charles Babbage Award

“Runahead Execution: An Alternative to Very Large
 Instruction Windows for Out-of-order Processors”
 Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003

8

Moore’s Law w/o Dennard Scaling

We are here

9

• An alternative architecture for better tolerating long-latency
 cache misses

• Integrated into Sun ROCK, IBM POWER6, NVIDIA Denver

The slides presented hereafter are adapted from the original
materials developed by Professor Onur Mutlu.

“Runahead Execution: An Alternative to Very Large
 Instruction Windows for Out-of-order Processors”
 Onur Mutlu, Jared Stark, Chris Wilkerson, Yale N. Patt 2003

10

ADD R2  R2, 64
STOR mem[R2]  R4

ADD R4  R4, R5
MUL R4  R4, R3

LOAD R3  mem[R2]
ADD R2  R2, 8

BEQ R1, R0, target
LOAD R1  mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order,

but cannot be retired.

Younger instructions can’t be executed because
 there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

Long-latency cache misses are responsible for most full-window stall

LOAD R3  mem[R2]

11

Impact of Long-Latency Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

Non-stall (compute) time

Full-window stall time

500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

12

Impact of Long-Latency Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window 2048-entry window

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

Non-stall (compute) time

Full-window stall time

500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

13

The Problem
• Out-of-order execution requires large instruction windows
 to tolerate today’s main memory latencies.

• As main memory latency increases, instruction window size should
 also increase to fully tolerate the memory latency.

• Building a large instruction window is a challenging task if
 we would like to achieve:

– Low power/energy consumption (tag matching logic, ld/st buffers)

– Short cycle time (access, wakeup/select latencies)

– Low design and verification complexity

14

Efficient Scaling of Instruction Window Size
One of the major research issues in out-of-order execution

• How to achieve the benefits of a large window with a small one
 (or in a simpler way)?

• How to efficiently tolerate memory latency using the machinery
 of out-of-order execution (and a small instruction window)?

15

Memory Level Parallelism (MLP)
• Idea: Find/service multiple cache misses in parallel

– Processor stalls only once for all misses

– Enables latency tolerance: overlaps latency of different misses

• How to generate multiple misses?
– Out-of-order execution, multithreading, prefetching, runahead

time

A
B

C

isolated miss parallel miss

16

Runahead Execution
A technique to obtain the memory-level parallelism

 benefits of a large instruction window

• When the oldest instruction is a long-latency cache miss:
– Checkpoint architectural state and enter runahead mode

• In runahead mode:
– Speculatively pre-execute instructions (generates prefetches)

– L2-miss dependent instructions are marked INV and dropped

• Runahead mode ends when the original miss returns
– Checkpoint is restored and normal execution resumes

17

Runahead Example

18

Runahead Example

19

Discussion: Summary Question #1

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right?

20

Benefits of Runahead Execution
Instead of stalling during an L2 cache miss:

• Pre-executed loads/stores (independent of L2-miss instructions)
 generate very accurate data prefetches

– For both regular and irregular access patterns

• Instructions on the predicted program path are prefetched
 into the instruction/trace cache and L2.

• Hardware prefetcher and branch predictor tables are trained
 using future access information.

21

Runahead Execution Mechanism
• Entry into runahead mode

– Checkpoint architectural register state

• Instruction processing in runahead mode

• Exit from runahead mode
– Restore architectural register state from checkpoint

22

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as normal processing,
EXCEPT:

• It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

• L2-miss dependent instructions are identified and treated
specially.
 They are quickly removed from the instruction window.
 Their results are not trusted.

23

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

 Two types of results produced: INV and VALID
 INV = Dependent on an L2 miss

 INV results are marked using INV bits in register file & store
buffer

 INV values are not used for prefetching/branch resolution

24

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

 Oldest instruction is examined for pseudo-retirement
 An INV instruction is removed from window immediately.
 A VALID instruction is removed when it completes execution.

 Pseudo-retired instructions free their allocated resources.
 This allows the processing of later instructions.

 Pseudo-retired stores communicate their data to dependent
loads.

25

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

• A pseudo-retired store writes its data and INV status to a dedicated
memory, called a runahead cache.
 Purpose: Data communication thru memory in runahead mode.

• A dependent load reads its data from the runahead cache.

• Need not be always correct  Size of runahead cache is very
small.

26

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

• INV branches cannot be resolved
 A mispredicted INV branch causes the processor to stay on

the wrong program path until the end of runahead execution.

• VALID branches are resolved and initiate recovery if
mispredicted.

27

A Runahead Processor Diagram

27

28

12%

35%

13%

15%
22% 12%

16% 52%

22%

0.0

0.1

0.2
0.3

0.4

0.5

0.6
0.7

0.8

0.9

1.0
1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

No prefetcher, no runahead
Only prefetcher (baseline)
Only runahead
Prefetcher + runahead

Performance of Runahead Execution

Numbers above red bar is % improvement over blue barRunahead+Prefetcher is 22% better than Prefetcher alone

29

Runahead Execution vs. Large Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

entry window (baseline)-128
entry window with Runahead-128
entry window-256
entry window-384
entry window-512

Runahead Window-128 is within 1% of Baseline Window-384

30

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.

31

Runahead Execution: Pros and Cons
Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
 Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution-based prefetching mechanisms:
 Uses the same thread context as main thread, no waste of context
 No need to construct a pre-execution thread

Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

32

Current and Future Processors

33

Effect of Runahead in Sun ROCK
Shailender Chaudhry talk, Aug 2008

34

To Read for Friday

“Decoupled Vector Runahead”
 Ajeya Naithani, Jaime Roelandts, Sam Ainsworth,
 Timothy M. Jones, Lieven Eeckhout 2023

Optional Further Reading:

“Accelerating Dependent Cache Misses with an
 Enhanced Memory Controller”
 Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu,
 Yale N. Patt 2016

35

Performance on Improved Frontend

36

Impact of Runahead Cache

37

Runahead on Future Processor

38

Perfect Frontend on Future Processor

	18-742:�Computer Architecture & Systems��Runahead Execution: An Alternative�to Very Large Instruction Windows�for Out-of-order Processors�
	Last Lecture: Data Prefetcher
	This Lecture
	Helper Thread Prefetching [1999]
	Helper Thread Prefetching
	Helper Thread Prefetching
	Slide Number 7
	Moore’s Law w/o Dennard Scaling
	Slide Number 9
	Small Windows: Full-window Stalls
	Impact of Long-Latency Cache Misses
	Impact of Long-Latency Cache Misses
	The Problem
	Efficient Scaling of Instruction Window Size
	Memory Level Parallelism (MLP)
	Runahead Execution
	Runahead Example
	Runahead Example
	Discussion: Summary Question #1
	Benefits of Runahead Execution
	Runahead Execution Mechanism
	Instruction Processing in Runahead Mode
	L2-Miss Dependent Instructions
	Removal of Instructions from Window
	Store/Load Handling in Runahead Mode
	Branch Handling in Runahead Mode
	A Runahead Processor Diagram
	Performance of Runahead Execution
	Runahead Execution vs. Large Windows
	Discussion: Summary Question #2
	Runahead Execution: Pros and Cons
	Current and Future Processors
	Effect of Runahead in Sun ROCK
	To Read for Friday
	Performance on Improved Frontend
	Impact of Runahead Cache
	Runahead on Future Processor
	Perfect Frontend on Future Processor

