
Precise exceptions in
relaxed architectures

Simner et al., 2025
18-742 Presentation

Ania Krzyżańska, Abnash Bassi, Soren Dupont

1

Outline

● Context
● Motivation
● Background
● Model
● Limitations & Conclusion
● Open Discussion

2

Who are the authors?

3

University of Cambridge:
● Ben Simner
● Alasdair Armstrong
● Thomas Bauereiss
● Peter Sewell (Fellow of the

Royal Society)

University of Edinburgh:
● Brian Campbell
● Ohad Kammar

Aarhus University:
● Jean Pichon-Pharabod

Context

● Exceptions are supposed to appear as happening
between instructions

● however this is not what happens
● new model is required
● ARM

○ from cambridge
○ preferred ISA for embedded processors

● Interrupts and Exceptions in embedded systems
○ usually triggered in response to sensors, requiring some

swift action
○ less exceptional than in other kinds of computing
○ much more important to handle quickly and seamlessly in

embedded systems

4

Exceptions in ARM

● Synchronous exceptions
○ supervisor calls, traps, page faults, etc.
○ ‘precise’

● Interrupts
○ interrupt requests, fast interrupt requests, system errors
○ all are ‘precise’, except external system aborts may not be

● Reminders in the paper:
○ ‘Instructions’ are actually fetch-decode-execute instances
○ Speculative execution

5

Context Synchronization

● “Updates to the context (ex: writes to system registers - ESR, FAR, ELR, EL)
need synchronisation to be guaranteed to have an effect”

● Context Synchronization event
○ guarantee that no instruction after the event is observed occurring

(fetched, decoded, or executed) until the context-synchronising event has
happened

○ semantically equivalent to flushing the pipeline
● Software may implement context synchronisation by issuing Instruction

Synchronisation Barriers (ISB)

6

Relaxed Behaviors

● Examples from the paper showing behaviors that are allowed and not allowed
● Different exception kinds may have different requirements/behaviors
● Mostly overviewed examples of system calls using SVC, which

unconditionally generate an exception at a specific point in the program
● Asynchronous exceptions cannot be taken speculatively; they must be

completed before proceeding in the program
● Authors spoke with ARM architects to verify the intentions behind the

architecture

7

Out of order w.r.t. exception barriers: allowed on ARM
processors

ordering: dabc

8

Out of order w.r.t. exception barriers: allowed on ARM
processors

ordering: dabc

9

Out of order w.r.t. exception barriers: allowed on ARM
processors

ordering: bcda

10

Speculative instruction of exceptions: forbidden

11

ordering: dabc

Forwarding stores: allowed

ordering: cdefab 12

System registers and context synchronisation

ordering: dabc 13

System registers and context synchronisation

ordering: dabc 14

Different demands for different exceptions

ordering: eabc 15

Exception special case: intra-instruction exception

STR Xt, [Xn], #8

16

● In this instruction, Xt is stored into the address at location Xn, and Xn is
incremented

● If the memory operation triggers an exception, the increment should not
happen

Experimental results from different processors

17

Synchronous external aborts (§4)

18

memoryMMU Debug HW
ECC

Detect error independently

Synchronous External
Abort (SEA)

Asynchronous
External Abort

Execute instructions
speculatively

Stop the process

RAS Extension helps handle HW errors (§4)

19

Reliability, Availability, and Service ARM ISA Extension, introducing:

1. Error Synchronization Barrier instructions
2. RAS Extension Registers
3. Poison: lets HW flag that data has been corrupted

Architecture implementations should use this extension

Left as future work for concurrency models

Behaviour resulting from synchronous external aborts (§4.1)

20

If SEA caused by store

Else if SEA caused by load

Later instances are speculative until store reaches memory
Cannot re-order later stores
Can re-order later loads

Later instances are speculative until load is completely done and cannot be restarted
Cannot speculatively execute later stores, let alone re-order
Can re-order later loads (?)

Concurrency models do not capture how load buffering can lead to
the out-of-thin-air-problem (§4.2)

Solution:

Do not buffer loads, so loads are not re-ordered before stores to the same address

Ensures that data loaded was from a prior store, and not a value “out-of-thin-air”
21

memory
value from a
known source
(prior write)

load
memory

value from an
unknown source
(random?)

load

Challenging to reason about

Due to re-ordering before prior writes…

How can we reason about HW/SW behaviour?

An axiomatic model of exceptions (§5)!

Describes how concurrent precise exceptions behave on Arm-A architecture

Parameterized:

1. FEAT_ExS: if “exception entry and exception return are Context

Synchronization events” [Armv8.5]; not all HW supports

2. SEA_R and SEA_S: if reads & writes can generate SEAs

22

https://developer.arm.com/documentation/109697/2025_12/Feature-descriptions/The-Armv8-5-architecture-extension

(Cont). How can we reason about HW/SW behaviour?

23

Their model:

Supports most precise
asynch exceptions

Does not support
interprocessor interrupts &
the generic interrupt
controller

TE: Take exception

ERET:
Entering/returning
from an exception

EIS: Entry to
exception is context
synchronizing

EOS: Exit from
exception is context
synchronizing

Async-ordered-before (asyncob): asynch. events cannot be executed speculatively

More model axioms can be found in the paper

po: program order

ctrl: control dependence

ISB: instr. synch. barrier

Executable-as-a-test-oracle implementation (§5.1)

24

Isla

Memory
model

Litmus tests

Allowed
Behaviours

Challenges in defining precision (§6)

● Precise exception: HW thread (PE) state and mem sys state appear as
though instructions up to exception in the instruction stream took place

○ Registers and memory values can be UNKNOWN
■ These side effects are visible (handling unknowns is not codified)

○ Intent of precision is to resume execution after exception

● All exceptions in ARM are precise except for asynchronously reported
external memory errors

25

SW generated interrupts (SGIs) (§7)

● aka Inter-processor interrupts (IPIs)
● Interrupts are generated from a source (eg HW thread) for an event (eg SGI)

○ Sent to interrupt controller
■ Distributor - routes interrupts to cores
■ Redistributor - (per thread) maintain thread local state for each interrupt

○ Identified by INTID
○ Each HW thread has Interrupt Status Register

● Note: the authors suggests additions to the axiomatic model to account for
these things

26

A generic concept: Generic Interrupt Controller

27

● Interrupts can be delivered at any time, with multiple pending delivered in
any order

System-wide Memory Barrier

● The HW thread that issues the interrupt notifies the other HW threads and
waits for their response

○ Kernel RCU (synchronize_rcu)
■ an interrupt is taken before or after the critical read section, but not during it

● Interrupts are masked when a HW thread is in this critical section

28

Scope & Limitations

● Small test suite
● Don’t provide semantics for imprecise exceptions
● Don’t precisely model relaxed behavior of system registers
● Don’t provide a detailed model of the Generic Interrupt Controller

● This paper is meant to lay the foundation for future work regarding exceptions
and interrupts

29

Conclusion

● General Goal: Clarifying the definition of precision on relaxed architectures
● Contributions:

○ Extends Arm-A model to cover exceptions
○ Implements axiomatic model to delve into effects of synchronization
○ Discusses model for SGIs

30

Time to Discuss

1. Why do you think this won best paper at ISCA 2025?
2. Why is this an important topic? How strict should our models be when

designing processors?
3. What can go wrong if we don’t have/follow an adequate model for exceptions?
4. Are there any additional limitations you can think of?
5. What is the connection between this and Cohmeleon?
6. What did you find most interesting?
7. Would you read this paper?
8. Recall question: what is an exception? What is a precise exception?

31

