Precise exceptions In

relaxed architectures
Simner et al., 2025

18-742 Presen tation
Ania Krzyzanska, Abnash Bassi, Soren Dupont

Outline

Context

Motivation

Background

Model

Limitations & Conclusion
Open Discussion

Who are the authors?

University of Cambridge:
e Ben Simner
e Alasdair Armstrong
e Thomas Bauereiss
e Peter Sewell (Fellow of the
Royal Society)

University of Edinburgh:
e Brian Campbell
e Ohad Kammar

Aarhus University:
e Jean Pichon-Pharabod

ACM SIGARCH/IEEE-CS TCCA ISCA Best Paper Award

Context

e Exceptions are supposed to appear as happening
between instructions
however this is not what happens
new model is required
ARM

o from cambridge
o preferred ISA for embedded processors

e Interrupts and Exceptions in embedded systems
o usually triggered in response to sensors, requiring some
swift action
o less exceptional than in other kinds of computing
much more important to handle quickly and seamlessly in
embedded systems

MAIN CAMPUS

| 10 Fulbourn R

Exceptions in ARM

e Synchronous exceptions

o supervisor calls, traps, page faults, etc.

o ‘precise’
e Interrupts

o interrupt requests, fast interrupt requests, system errors

o all are ‘precise’, except external system aborts may not be
e Reminders in the paper:

o ‘Instructions’ are actually fetch-decode-execute instances
o Speculative execution

- +Ee-)
el ‘:KDD

0

Context Synchronization

e ‘“Updates to the context (ex: writes to system registers - ESR, FAR, ELR, EL)
need synchronisation to be guaranteed to have an effect”
e Context Synchronization event
o guarantee that no instruction after the event is observed occurring
(fetched, decoded, or executed) until the context-synchronising event has
happened
o semantically equivalent to flushing the pipeline
e Software may implement context synchronisation by issuing Instruction
Synchronisation Barriers (ISB)

Relaxed Behaviors

e Examples from the paper showing behaviors that are allowed and not allowed

e Different exception kinds may have different requirements/behaviors

e Mostly overviewed examples of system calls using SVC, which
unconditionally generate an exception at a specific point in the program

e Asynchronous exceptions cannot be taken speculatively; they must be
completed before proceeding in the program

e Authors spoke with ARM architects to verify the intentions behind the
architecture

Out of order w.r.t. exception barriers: allowed on ARM
Processors

S+dmb.sy+svc AArch64

Initial state: *x=0, xy=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
Thread 0 Thread 1 T1 Handler

MOV XO,#2 LDR X0, [X1] |MOV X2,#1

STR X0, [X1] |SVC #0 STR X2, [X3]

DMB SY

MOV X2,#1

STR X2, [X3]

Allowed: 1:X0=1, *x=2

a:W x=2 c:Ry=1

ld mV lsvc

b:W y=1 d:W x=1

ordering: dabc

Cco

Out of order w.r.t. exception barriers: allowed on ARM
Processors

SB+dmb.sy+eret AArch64

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
Thread 0 Thread 1 T1 Handler

MOV X0, #1 SVC #0 MOV X0, #1

STR X0, [X1] |LDR X2,[X3][STR X0, [X1]

DMB SY ERET

LDR X2, [X3]

Allowed: 0:X2=0, 1:X2=0

Thread 0 Thread 1

der dab aW x=1 W y=1
oraering. dapcC

9 1dmb leret

b:R y=0 d:R x=0

Out of order w.r.t. exception barriers: allowed on ARM
Processors

MP+svceret+addr AArch64
Initial state: xx=0, xy=0;
0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
Thread 0 TO0 Handler Thread 1

MOV X0, #1 ERET LDR X0, [X1]
STR X0, [X1] EOR X4,X0, X0
SVC #0 LDR X2, [X3,X4]
MOV X2,#1
STR X2, [X3]
Allowed: 1:X0=1, 1:X2=0

Thread 0 Thread 1

a:W x=1 c:Ry=1

ordering: bcda 1svc% laddr

b:W y=1 d:R x=0

Speculative instruction of exceptions: forbidden

MP+dmb.sy+ctrlsvc AArch64

Initial state: xx=0, *xy=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
Thread 0 Thread 1 T1 Handler

MOV X0, #1 LDR X0, [X1] |LDR X2, [X3]

STR X0, [X1] | CBNZ X0,LCOO
DMB SY LCOO:

MOV X2,#1 SVC #0

STR X2, [X3]

Forbidden: 1:X0=1, 1:X2=0

ordering: dabc

Thread 0 Thread 1

a:W x=1 c:Ry=1
lde lctrlsvc

b:W y=1 d:R x=0

11

Forwarding stores: allowed

SB+dmb.sy+rfisvc-addr

AArch64

Initial state: *x=0, *y=0;

Thread 0

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=y, 1:X5=x

Thread 0 Thread 1 T1 Handler
MOV X0, #1 MOV X0, #1 LDR X2, [X3]
STR X0, [X1] |STR X0, [X1] |[EOR X6,X2,X2
DMB SY SVC #0 LDR X4, [X5,X6]
LDR X2, [X3]

Allowed: 1:X0=1, 1:X2=0

ordering: cdefab

a:W x=1
dmb
b:R y=0

12

System registers and context synchronisation

MP.EL1+dmb.sy+dataesrsvc AArché64
Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:PSTATE.EL=0bl1, 1:X1=y,
1:X3=x

Thread 0 Thread 1 T1 Handler

MOV XO,#1 LDR X0, [X1] LDR X2, [X3]
STR X0, [X1] [MRS X4,ESR_EL1
DMB SY EOR X5,X0,X0
MOV X2,#1 |ADD X5,X4,X5
STR X2,[X3] [MSR ESR_EL1,X5
SVC #0

Forbidden: 1:X0=1, 1:X2=0

Thread 0 Thread 1
a:W x=1 c:Ry=1

ld mV ldataesrsvc
b:W y=1 d:R x=0

ordering: dabc

System registers and context synchronisation

MP+dmb.sy+ctrlelr AArch64

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x
Thread 0 Thread 1 T1 Handler

MOV XO,#1 SVC #0 LDR X0, [X1]

STR X0, [X1] |LDR X2,[X3] |MRS X4,ELR_EL1

DMB SY EOR X5,X0,X0

MOV X2,#1 ADD X5,X4,X5

STR X2, [X3] MSR ELR_EL1,X4

ERET
Forbidden: 1:X0=1, 1:X2=0

Thread 0 Thread 1

a:W x=1 c:R y=1
lde lctrlelr

b:W y=1 d:R x=0

ordering: dabc

MP+dmb.sy+fault
Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y;

AArch64

1:X1=y, 1:X3=x

Thread 0 Thread 1 T1 Handler
MOV X0,#1 LDR XO,[X1] |LDR X2,[X3]
STR X0, [X1] |MOV X5,#0
DMB SY / segfault
MOV X2,#1 LDR X4, [X5]

STR X2, [X3]

Forbidden: 1:X0=1, 1:X2=0

Thread 0 Thread 1
a:W x=1 c:R y=1
it o
b:W y=1 d:Pagefault
lpo
e:R x=0

ordering: eabc

Different demands for different exceptions

MP+dmb.sy+int

AArch64

Initial state: *x=0, *y=0;
10:X1=x, 0:X3=y;
interrupt at=L

1:X1=y, 1:X3=x

Thread 0

Thread 1

T1 Handler

MOV XO,#1

STR X0, [X1]|L

LDR X0, [X1]

LDR X2, [X3]

DMB SY NOP
MOV X2,#1
STR X2, [X3]

Allowed: 1:X0=1, 1:X2=0

Thread 0 Thread 1
a:W x=1 c:R y=1
i
b:W y=1 d:Takelnterrupt
po
e:R x=0

15

Exception special case: intra-instruction exception

STR Xt, [Xn], #8

e In this instruction, Xt is stored into the address at location Xn, and Xn is

incremented
e If the memory operation triggers an exception, the increment should not

happen

16

Name még
MP+dmb+ctrl-svc 0/ 16m
MP+dmb+ctrlelr 0/ 16m
MP+svc-eret+addr Y0/ 1em
MP.EL1+dmb+dataesrsvc 9/,
S+dmb+svc Y0/ 1m
SB+dmb+eret 60/ 16m
SB+dmb+rfisvc-addr 4/ 1em
MP+dmb+fault °/ 16m

Experimental results from different processors

m7g¢ m8g odroid m2 pi3 pi4 pi5
0/24" 6/12" o/329" 6/366'4 G/lOﬁ 6/231'.'”1 6/1316?4
e/2401 o/12'1 e/329" o/360" 0/3601 o/318!! 8/130?4
UG/ZM UG/IZH 149.(/328!1 UO/BGGM 376/M UG/ZZSH 12/136?4
e/24" o/12" G/IGH B/@ 6/4" o/l‘H 0/27"
UG/ZM U6/12H UQ/SZSH UO/360M Uo/dlﬂ UG/ZZZH UD/IGIH
126/24" 213/12" 262/328" 12K/368ﬂ 203K/41H 9“6.(/222!! 4K/IGGN
235/24" 1K/IZN 365“/328!‘! 12/360" 1“/3601 m/BIGH 197K/128N

e/2-1&1 o/12" o/74" 0/8 G/Zﬂ O/CGH O/SOH

Figure 9: Experimental results.

17

Synchronous external aborts (§4)

MMU

Asynchronous
External Abort

Stop the process

Detect error independently

Debug HW

Synchronous External
Abort (SEA)

Execute instructions

speculatively

18

RAS Extension helps handle HW errors (§4)

Reliability, Availability, and Service ARM ISA Extension, introducing:

1. Error Synchronization Barrier instructions

2. RAS Extension Registers

3. Poison: lets HW flag that data has been corrupted
Architecture implementations should use this extension

Left as future work for concurrency models

19

Behaviour resulting from synchronous external aborts (§4.1)

If SEA caused by store

Later instances are speculative until store reaches memory
Cannot re-order later stores
Can re-order later loads

Else if SEA caused by load

Later instances are speculative until load is completely done and cannot be restarted
Cannot speculatively execute later stores, let alone re-order
Can re-order later loads (?)

20

Concurrency models do not capture how load buffering can lead to
the out-of-thin-air-problem (§4.2)

Due to re-ordering before prior writes...

ong Valuefroma oag Value from an
memory known source memory unknown source

(prior write) (random?)
v @

Solution:
Do not buffer loads, so loads are not re-ordered before stores to the same address

Ensures that data loaded was from a prior store, and not a value “out-of-thin-air”
21

How can we reason about HW/SW behaviour?

An axiomatic model of exceptions (§5)!
Describes how concurrent precise exceptions behave on Arm-A architecture
Parameterized:

1. FEAT ExS: if “exception entry and exception return are Context

Synchronization events” [Armv8.5]; not all HW supports

2. SEA Rand SEA_S: if reads & writes can generate SEAs

22

https://developer.arm.com/documentation/109697/2025_12/Feature-descriptions/The-Armv8-5-architecture-extension

(Cont). How can we reason about HW/SW behaviour?

(* might-be speculatively Thelr mOdel
executed x) (* context-sync-events *) EIS: Entry to
let speculative = let CSE = exception is context
ctrl I8 synchronizing Supports most precise
| addr; po | if "FEAT_ExS" & ~"EIS" .
| if "SEA_R" then [R]; po then © else TE EOS: Exit from asynCh exceptlons
. e}se 0) | if "FEAT_ExS" & ~"E0S" exception is context
| if "SEA_W" then [W]; po then @ else ERET synchronizing
else 0 Does not support
TE: Tak ti : ;
oo program order are exeeption —interprocessor interrupts &
ctrl: control dependence ERET: the generlc Interrupt
Entering/returning
ISB: instr. synch. barrier from an exception ContrO”er

Async-ordered-before (asyncob): asynch. events cannot be executed speculatively

More model axioms can be found in the paper

23

Executable-as-a-test-oracle implementation (§5.1)

Memory

model

Allowed
Behaviours

Litmus tests

v/

24

Challenges in defining precision (§6)

e Precise exception: HW thread (PE) state and mem sys state appear as

though instructions up to exception in the instruction stream took place

o Registers and memory values can be UNKNOWN
m These side effects are visible (handling unknowns is not codified)
o Intent of precision is to resume execution after exception

e All exceptions in ARM are precise except for asynchronously reported
external memory errors

25

SW generated interrupts (SGls) (§7)

e aka Inter-processor interrupts (IPIs)

e Interrupts are generated from a source (eg HW thread) for an event (eg SGI)

o Sent to interrupt controller

m Distributor - routes interrupts to cores

m Redistributor - (per thread) maintain thread local state for each interrupt
o Identified by INTID
o Each HW thread has Interrupt Status Register

e Note: the authors suggests additions to the axiomatic model to account for
these things

26

A generic concept: Generic Interrupt Controller

target deactivates interrupt
by writing to EOIR/DIR
(depending on EIOmode)

source asserts interrupt target acks interrup
(eg by writing ICC_SGITR_EL1); by reading IAR; Active

GIC delivers interrupt GIC unsets pending bit in ISR
by setting pending bit in ISR
e software changes re-pend

Inactive Pending pending state INTID

B T
software changes pending state
s Active &
software deactivates interrupt

pending

e Interrupts can be delivered at any time, with multiple pending delivered in
any order

27

System-wide Memory Barrier

e The HW thread that issues the interrupt notifies the other HW threads and

waits for their response
o Kernel RCU (synchronize rcu)
m an interrupt is taken before or after the critical read section, but not during it
e Interrupts are masked when a HW thread is in this critical section

28

Scope & Limitations

Small test suite

Don’t provide semantics for imprecise exceptions

Don’t precisely model relaxed behavior of system registers

Don'’t provide a detailed model of the Generic Interrupt Controller

e This paper is meant to lay the foundation for future work regarding exceptions
and interrupts

29

Conclusion

e General Goal: Clarifying the definition of precision on relaxed architectures

e Contributions:
o Extends Arm-A model to cover exceptions
o Implements axiomatic model to delve into effects of synchronization
o Discusses model for SGls

30

Time to Discuss

—

Why do you think this won best paper at ISCA 20257

Why is this an important topic? How strict should our models be when
designing processors?

What can go wrong if we don’t have/follow an adequate model for exceptions?
Are there any additional limitations you can think of?

What is the connection between this and Cohmeleon?

What did you find most interesting?

Would you read this paper?

Recall question: what is an exception? What is a precise exception?

A

©®NODOA W

31

