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Parallelism Is The Key 
• Recall Amdahl’s law

• Parallel processing to achieve speedup
– More processors  more parallelism  higher speedup

• This lecture: different forms of parallelism
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Instruction-Level Parallelism (ILP)
• Parallelism across instructions

# Two independent instructions
x = a + b
y = c * d

(Assuming a, b, c, d, x, y cannot alias one another)
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Instruction-Level Parallelism (ILP)
• Parallelism across instructions

• How to achieve?
– Pipelining

– Superscalar execution

– Out-of-order execution

• Examples
– High-performance CPUs

• Scaling: Build ‘‘beefier” cores 
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Out-of-Order Processor Structure

• Instruction Control dynamically converts program into stream of ops

• Operations mapped onto functional units to execute in parallel
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ILP Limitations

• Diminishing return from making the processor “beefier”
– Significant complexity

– High port requirements in register files & caches

– Need extremely good branch prediction

• Not all applications expose a good level of ILP
– Due to inter-instruction dependencies

# Two dependent instructions
x = a + b
y = c * x
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Thread-Level Parallelism (TLP)
• Parallelism across different threads

def sum_array_part(arr, start, end, result, index):
    result[index] = sum(arr[start:end])

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
results = [0, 0]

t1 = threading.Thread(target=sum_array_part, args=(arr, 0, n//2, results, 0))
t2 = threading.Thread(target=sum_array_part, args=(arr, n//2, n, results, 1))

total_sum = results[0] + results[1]
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Thread-Level Parallelism (TLP)
• Parallelism across different threads

• How to achieve?
– Multiprocessors

– Hyperthreading

• Examples
– Chip multiprocessors

– Multi-socket systems

– GPUs

– FPGAs
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Moore’s Law w/o Dennard Scaling

We are here
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• Applications can’t fully utilize beefy cores

• Solution: SMT  (a.k.a., Hyperthreading)
– Run multiple threads on the same core, simultaneously

“Simultaneous Multithreading: Maximizing 
   On-chip Parallelism” 
  Dean Tullsen, Susan Eggers, Henry Levy 1995
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K-way Hyperthreading

• Replicate Instruction Control to process K instruction streams

• K copies of all registers

• Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction 
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A PC B



12

How Many Hyperthreads?
• Hardware complexity vs. diminishing returns

Real CPUs use 2 hyperthreads

But: Intel is discontinuing hyperthreading on its mobile chip designs
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• Kunle: Stanford prof
• ACM Fellow, IEEE Fellow, NAE
• Eckert-Mauchly Award 2023

• Basem: Stanford PhD, CTO Cisco
• Lance: Stanford PhD, now Apple

• Ken: Stanford PhD, now Apple

• Kun-Yung: Stanford PhD, now Rambus

“The Case for a Single-Chip Multiprocessor” 
  Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, 
       Kenneth M. Wilson, Kunyung Chang 1996
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The Case for a Single-Chip Multiprocessor 
• Focus on TLP instead of ILP

• Multiple “less beefy” processors instead of one huge processor

Chip MultiProcessor (CMP)
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Application Requirements
• Low-ILP programs (e.g., SPEC-Int) benefit little from wide-issue 
   superscalar machines

– 1-wide R5000 is within 30% of 4-wide R10000

• High-ILP programs (e.g., SPEC-FP) benefit from large windows – 
    typically, loop-level parallelism that might be easy to extract
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The Argument 
• Build many small CPU cores

• The small cores are enough to optimize low-ILP programs 
   (high thruput with multiprogramming)

• For high-ILP programs, the compiler parallelizes the application 
    into multiple threads

– since the cores are on a single die, cost of communication is 
affordable

• Low communication cost  even integer programs with moderate 
    ILP could be parallelized
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Discussion: Summary Question #1

State the 3 most important things the paper says. 

These could be some combination of the motivations, observations, 
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right? 
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Processors’ Parameters
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Results
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Similar area for 6-wide SS and 4x2 CMP
4-wide 6-wide SS 4x2-way CMP Comments

32KB DL1 13 17 4x3 Banking/muxing
32KB IL1 14 18 4x3.5 Banking/muxing

TLB 5 15 4x5
Bpred 9 28 4x7

Decode 11 38 4x5 Quadratic effect
Queues 14 50 4x4 Quadratic effect

ROB/Regs 9 34 4x2 Quadratic effect
Int FUs 10 31 4x10 More FUs in CMP
FP FUs 12 37 4x12 More FUs in CMP

Crossbar 50 Multi-L1s  L2
L2, clock,

ext. interface
163 163 163 Remains 

unchanged
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Discussion: Summary Question #2

What Did the Paper Get Wrong? 

Describe the paper's single most glaring deficiency. 

Every paper has some fault. Perhaps an experiment was poorly 
designed or the main idea had a narrow scope or applicability.
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Why Did Multicore Only Emerge in 2004?

We are here
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• Chips with heterogeneous compute units

• Creates/studies scaling model of Hill2008 extended to U-cores

“Single-chip Heterogeneous Computing: 
   Does the Future Include Custom Logic, FPGAs, 
   and GPGPUs?” 
  Eric Chung, Peter Milder, James Hoe, Ken Mai 2010

BCE: Base-Core Equivalent        U-cores: Unconventional cores
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Key Findings

• >90% parallelism required for big U-core performance gains

• If application is BW-limited, flexible U-cores (FPGAs, GPGPUs) 
    can keep up with fixed U-cores (ASICs)

• When parallelism is 90-99%, flexible U-cores are competitive 
    with fixed U-cores

• U-cores are more broadly useful if goal is same performance 
    with reduced energy/power
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To Read for Wednesday

Optional Further Reading:

“Why On-chip Cache Coherence is Here To Stay” 
  Milo M.K. Martin, Mark D. Hill, Daniel J. Sorin  2012

“CoNDA: Efficient Cache Coherence Support for 
   Near-Data Accelerators” 
  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, 
      Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, 
      Nastaran Hajinazar, Krishna T. Malladi, Hongzhong Zheng, 
      Onur Mutlu  2019 
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