18-742:
Computer Architecture & Systems

The Case for a Single-Chip
Multiprocessor

Prof. Phillip Gibbons

Spring 2025, Lecture 3

Parallelism Is The Key

e Recall Amdahl’s law

:
1-f) +

Speecjupenhanced (f,S) — (

f
S

e Parallel processing to achieve speedup
— More processors = more parallelism = higher speedup

* This lecture: different forms of parallelism

Instruction-Level Parallelism (ILP)

e Parallelism across instructions

Two independent instructions
X=a+b
y=c*d

(Assuming a, b, c, d, X, y cannot alias one another)

Instruction-Level Parallelism (ILP)

e Parallelism across instructions

* How to achieve?
— Pipelining
— Superscalar execution

— Qut-of-order execution

e Examples
— High-performance CPUs

e Scaling: Build “beefier” cores

Out-of-Order Processor Structure

Instruction Control
Instruction
Cache
Registers Op. Queue
I PC
o
Functional Units

e Instruction Control dynamically converts program into stream of ops

e Operations mapped onto functional units to execute in parallel

ILP Limitations

* Diminishing return from making the processor “beefier”
— Significant complexity

— High port requirements in register files & caches

— Need extremely good branch prediction

* Not all applications expose a good level of ILP
— Due to inter-instruction dependencies

Two dependent instructions
X=a+b
y=Cc*X

Thread-Level Parallelism (TLP)

e Parallelism across different threads

def sum_array part(arr, start, end, result, index):
result[index] = sum(arr[start:end])

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
results = [0, 0]

t1
t2

threading.Thread(target=sum_array part, args=(arr, 0, n//2, results, 0))
threading.Thread(target=sum_array part, args=(arr, n//2, n, results, 1))

total sum = results[@] + results[1]

Thread-Level Parallelism (TLP)

e Parallelism across different threads

* How to achieve?
— Multiprocessors

— Hyperthreading

e Examples
— Chip multiprocessors

— Multi-socket systems
- GPUs
- FPGAs

Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data

107 - . - -

Pﬂynamiczw*ct VEF*A

Transistors
(Thousands)

Single-Thread
¥y "’@Perfurmance

| (SpecINT x 10°)

Typical Power (W)

Number of
| Logical Cores

2020

10° |
10% |
103 | -
10° “
10" F
1000 g ¢ S -_.....{ |
1970 15:80 19:30 2{;ﬂﬂi 20'10
Dennard Scaling Fails in Here
We are here

“Simultaneous Multithreading: Maximizing

On-chip Parallelism”
Dean Tullsen, Susan Eggers, Henry Levy 1995

e Applications can’t fully utilize beefy cores

issue slots _
XI full issue slot

[empty issue slot

horizontal waste=9 slots

vertical waste=12 slots

e Solution: SMT (a.k.a., Hyperthreading)
— Run multiple threads on the same core, simultaneously

K-way Hyperthreading

Instruction Control
Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
T PCA ocE
A 4 1 \ A 4

Functional Units

* Replicate Instruction Control to process Kinstruction streams

* K copies of all registers

e Share functional units

How Many Hyperthreads?

e Hardware complexity vs. diminishing returns

1 2 3 4 5 6 7 8
Number of Threads

Instructions Issued Per Cycle

Real CPUs use 2 hyperthreads

But: Intel is discontinuing hyperthreading on its mobile chip designs

“The Case for a Single-Chip Multiprocessor”

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond,
Kenneth M. Wilson, Kunyung Chang 1996

* Kunle: Stanford prof
* ACM Fellow, IEEE Fellow, NAE
* Eckert-Mauchly Award 2023

 Basem: Stanford PhD, CTO Cisco
 Lance: Stanford PhD, now Apple

 Ken: Stanford PhD, now Apple
Kun-Yung: Stanford PhD, now Rambus

The Case for a Single-Chip Multiprocessor

e Focus on TLP instead of ILP

e Multiple “less beefy’” processors instead of one huge processor

-t 21 mm -
\
f ln%truction
External . ache
Instruction

Interface Fetch (32 KB)
TLB o
5
o | Inst. Decode & Data 10
® Rename Cache g
g (32 KB) 2
©
21 mm g o
§ Reorder Buffer, R
&) Instruction Queues, = o
and Out-of-Order Logic [S5)
o c
g (@)

=

Floating Point
Unit
Y

)

Chip MuttiPr

I-Cache #1 (BR) | I-Cache 72 (BR)

A

mm

21 mm

0CesSsor

(CMP)

Clocking & Pads

Processor
#1

External
Interface

Processor
#2

D-Cache #1

D-Cache #3 (8K

D-Cache #2 (8K) |
D-Cache #4

Processor
#3

-Lache.

Processor
#4

-Lache

L2 Communication Crossbar

On-Chip L2 Cache (256KB)

Application Requirements

e Low-ILP programs (e.g., SPEC-Int) benefit little from wide-issue
superscalar machines

- 1-wide R5000 is within 30% of 4-wide R10000

e High-ILP programs (e.g., SPEC-FP) benefit from large windows -
typically, loop-level parallelism that might be easy to extract

The Argument

e Build many small CPU cores

* The small cores are enough to optimize low-ILP programs
(high thruput with multiprogramming)

* For high-ILP programs, the compiler parallelizes the application
into multiple threads

— since the cores are on a single die, cost of communication is
affordable

e Low communication cost = even integer programs with moderate
ILP could be parallelized

Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.

Processors’ Parameters

b-way 55

4x2-way MP

#of CPLs

__.I-

Degree superscalar

i)

42

of architectural registers

32int/ 321p

4 x32int/ A24p

% of physical registers

[o0int /- 160fp

4 x40t/ 401p

of integer functional units 3 4x1
7 of floating pt. functional units A 4x1
of load/store ports 8 {one per bank) 4x1

BTH size

2048 entries

4 % 312 entries

Return stack size

A2 entries

4 x 8 entries

Instruction issue queue size

[28 entries

4 % 8 entries

| cache

A2 KB, 2-way 5. AL

4 x 8 KB, 2-way 5. AL

D cache

A2 KB, 2-way 5. AL

4 x 8 KB, 2-way 5. AL

L1 hit time

2 cyelesid ns)

| evele (2 ns)

L1 cache interleaving

5 banks

N/A

Unified L2 cache

256 KB, Z-way 5. AL

256 KB, 2-way 5. A.

L2 hit time / L1 penalty

4 cycles (% ns)

5 eycles (10 ns)

Memory latency /L2 penalty

A0 eveles (100 ns)

A0 eyeles (100 ns)

Results

SS
MP

_ | L _ | L _ L _ | _ | L _ L _ L _ L _
<t i) ™ o] o) — Lo o

o o -— o
dnpaadg sAne|ay

ayewd

AJEDWIO)

WIMS

Isde

nidde

Wisd|N

LiIs3ggul

nojba

ssaldwon

Similar area for 6-wide SS and 4x2 CMP

4-wide | 6-wide SS | 4x2-way CMP Comments
32KB DL1 13 17 4x3 Banking/muxing
32KB IL1 14 18 4x3.5 Banking/muxing
TLB) 15 4x5
Bpred 9 28 4x7
Decode 11 38 4x5
Queues 14 50 4x4
ROB/Regs 9 34 4x2
Int FUs 10 31 4x10 More FUs in CMP
FP FUs 12 37 4x12 More FUs in CMP
Crossbar 50 Multi-L1s - L2
L2, clock, 163 163 163 Remains
ext. interface unchanged

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.

Why Did Multicore Only Emerge in 2004?

40 Years of Microprocessor Trend Data

L] L] L] L]

Pﬂynamiczw*ct VEF*A

m"—"-‘: :

®

& 4 B
L
-
-
-
4

Pr !

1970

Transistors

(Thousands)

Single-Thread
Performance

| (SpecINT x 10°)

Typical Power (W)

Number of

| Logical Cores

Dennard Scaling Fails in Here

1980 1990 fﬂﬂﬂ ‘; 2010 2020

We are here

“Single-chip Heterogeneous Computing:
Does the Future Include Custom Logic, FPGAs,

and GPGPUs?”
Eric Chung, Peter Milder, James Hoe, Ken Mai 2010

e Chips with heterogeneous compute units

FastCore FastCore BCE ||BCE ||BCE || BCE

L1 | 11D

L1 | 1D

L2

L2

BCE

FastCore

BCE

FastCore

FastCore

FastCore

BCE

L1-1 | L1-D

L2

BCE

L1-1 | L1-D

L2

111 | 11-p

L1l [11-b

L2

L2

BCE

BCE ||BCE

BCE

U-cores

Figure 1: Chip models:
(a) Symmetric, (b) Asymmetric, (c) Heterogeneous.

* Creates/studies scaling model of Hill2008 extended to U-cores

U-cores: Unconventional cores 23

BCE: Base-Core Equivalent

Key Findings

* >90% parallelism required for big U-core performance gains

e [f application is BW-limited, flexible U-cores (FPGAs, GPGPUs)
can keep up with fixed U-cores (ASICs)

* When parallelism is 90-99%, flexible U-cores are competitive
with fixed U-cores

e U-cores are more broadly useful if goal is same performance
with reduced energy/power

To Read for Wednesday

“Why On-chip Cache Coherence is Here To Stay”

Milo M.K. Martin, Mark D. Hill, Daniel J. Sorin 2012

Optional Further Reading:

“CoNDA: Efficient Cache Coherence Support for

Near-Data Accelerators”

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna T. Malladi, Hongzhong Zheng,
Onur Mutlu 2019

	18-742:�Computer Architecture & Systems��The Case for a Single-Chip Multiprocessor�
	Parallelism Is The Key
	Instruction-Level Parallelism (ILP)
	Instruction-Level Parallelism (ILP)
	Out-of-Order Processor Structure
	ILP Limitations
	Thread-Level Parallelism (TLP)
	Thread-Level Parallelism (TLP)
	Moore’s Law w/o Dennard Scaling
	Slide Number 10
	K-way Hyperthreading
	How Many Hyperthreads?
	Slide Number 13
	The Case for a Single-Chip Multiprocessor
	Application Requirements
	The Argument
	Discussion: Summary Question #1
	Processors’ Parameters
	Results
	Similar area for 6-wide SS and 4x2 CMP
	Discussion: Summary Question #2
	Why Did Multicore Only Emerge in 2004?
	Slide Number 23
	Key Findings
	To Read for Wednesday

