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Parallelism Is The Key

e Recall Amdahl’s law

:
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e Parallel processing to achieve speedup
— More processors = more parallelism = higher speedup

* This lecture: different forms of parallelism




Instruction-Level Parallelism (ILP)

e Parallelism across instructions

# Two independent instructions
X=a+b
y=c*d

(Assuming a, b, c, d, X, y cannot alias one another)




Instruction-Level Parallelism (ILP)

e Parallelism across instructions

* How to achieve?
— Pipelining
— Superscalar execution

— Qut-of-order execution

e Examples
— High-performance CPUs

e Scaling: Build “beefier” cores




Out-of-Order Processor Structure

Instruction Control
Instruction
Cache
Registers Op. Queue
I PC
o
Functional Units

e Instruction Control dynamically converts program into stream of ops

e Operations mapped onto functional units to execute in parallel




ILP Limitations

* Diminishing return from making the processor “beefier”
— Significant complexity

— High port requirements in register files & caches

— Need extremely good branch prediction

* Not all applications expose a good level of ILP
— Due to inter-instruction dependencies

# Two dependent instructions
X=a+b
y=Cc*X




Thread-Level Parallelism (TLP)

e Parallelism across different threads

def sum_array part(arr, start, end, result, index):
result[index] = sum(arr[start:end])

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
results = [0, 0]

t1
t2

threading.Thread(target=sum_array part, args=(arr, 0, n//2, results, 0))
threading.Thread(target=sum_array part, args=(arr, n//2, n, results, 1))

total sum = results[@] + results[1]




Thread-Level Parallelism (TLP)

e Parallelism across different threads

* How to achieve?
— Multiprocessors

— Hyperthreading

e Examples
— Chip multiprocessors

— Multi-socket systems
- GPUs
- FPGAs




Moore’s Law w/o Dennard Scaling

40 Years of Microprocessor Trend Data
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“Simultaneous Multithreading: Maximizing

On-chip Parallelism”
Dean Tullsen, Susan Eggers, Henry Levy 1995

e Applications can’t fully utilize beefy cores

issue slots _
XI full issue slot

[ empty issue slot

horizontal waste=9 slots

vertical waste=12 slots

e Solution: SMT (a.k.a., Hyperthreading)
— Run multiple threads on the same core, simultaneously




K-way Hyperthreading

Instruction Control
Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
T PCA ocE
A 4 1 \ A 4

Functional Units

* Replicate Instruction Control to process Kinstruction streams

* K copies of all registers

e Share functional units




How Many Hyperthreads?

e Hardware complexity vs. diminishing returns

1 2 3 4 5 6 7 8
Number of Threads

Instructions Issued Per Cycle

Real CPUs use 2 hyperthreads

But: Intel is discontinuing hyperthreading on its mobile chip designs




“The Case for a Single-Chip Multiprocessor”

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond,
Kenneth M. Wilson, Kunyung Chang 1996

* Kunle: Stanford prof
* ACM Fellow, IEEE Fellow, NAE
* Eckert-Mauchly Award 2023

 Basem: Stanford PhD, CTO Cisco
 Lance: Stanford PhD, now Apple

 Ken: Stanford PhD, now Apple
Kun-Yung: Stanford PhD, now Rambus




The Case for a Single-Chip Multiprocessor

e Focus on TLP instead of ILP

e Multiple “less beefy’” processors instead of one huge processor
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Application Requirements

e Low-ILP programs (e.g., SPEC-Int) benefit little from wide-issue
superscalar machines

- 1-wide R5000 is within 30% of 4-wide R10000

e High-ILP programs (e.g., SPEC-FP) benefit from large windows -
typically, loop-level parallelism that might be easy to extract




The Argument

e Build many small CPU cores

* The small cores are enough to optimize low-ILP programs
(high thruput with multiprogramming)

* For high-ILP programs, the compiler parallelizes the application
into multiple threads

— since the cores are on a single die, cost of communication is
affordable

e Low communication cost = even integer programs with moderate
ILP could be parallelized




Discussion: Summary Question #1

What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.




Processors’ Parameters

b-way 55

4x2-way MP
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% of physical registers
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# of integer functional units 3 4x1
7 of floating pt. functional units A 4x1
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BTH size
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Return stack size
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Results
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Similar area for 6-wide SS and 4x2 CMP

4-wide | 6-wide SS | 4x2-way CMP Comments
32KB DL1 13 17 4x3 Banking/muxing
32KB IL1 14 18 4x3.5 Banking/muxing
TLB ) 15 4x5
Bpred 9 28 4x7
Decode 11 38 4x5
Queues 14 50 4x4
ROB/Regs 9 34 4x2
Int FUs 10 31 4x10 More FUs in CMP
FP FUs 12 37 4x12 More FUs in CMP
Crossbar 50 Multi-L1s - L2
L2, clock, 163 163 163 Remains
ext. interface unchanged




Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.




Why Did Multicore Only Emerge in 2004?

40 Years of Microprocessor Trend Data
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“Single-chip Heterogeneous Computing:
Does the Future Include Custom Logic, FPGAs,

and GPGPUs?”
Eric Chung, Peter Milder, James Hoe, Ken Mai 2010

e Chips with heterogeneous compute units
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Figure 1: Chip models:
(a) Symmetric, (b) Asymmetric, (c) Heterogeneous.

* Creates/studies scaling model of Hill2008 extended to U-cores

U-cores: Unconventional cores 23

BCE: Base-Core Equivalent




Key Findings

* >90% parallelism required for big U-core performance gains

e [f application is BW-limited, flexible U-cores (FPGAs, GPGPUs)
can keep up with fixed U-cores (ASICs)

* When parallelism is 90-99%, flexible U-cores are competitive
with fixed U-cores

e U-cores are more broadly useful if goal is same performance
with reduced energy/power




To Read for Wednesday

“Why On-chip Cache Coherence is Here To Stay”

Milo M.K. Martin, Mark D. Hill, Daniel J. Sorin 2012

Optional Further Reading:

“CoNDA: Efficient Cache Coherence Support for

Near-Data Accelerators”

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna T. Malladi, Hongzhong Zheng,
Onur Mutlu 2019
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