
18-742:
Computer Architecture & Systems

The Case for a Single-Chip
Multiprocessor

Prof. Phillip Gibbons

Spring 2025, Lecture 3

2

Parallelism Is The Key
• Recall Amdahl’s law

• Parallel processing to achieve speedup
– More processors  more parallelism  higher speedup

• This lecture: different forms of parallelism

3

Instruction-Level Parallelism (ILP)
• Parallelism across instructions

Two independent instructions
x = a + b
y = c * d

(Assuming a, b, c, d, x, y cannot alias one another)

4

Instruction-Level Parallelism (ILP)
• Parallelism across instructions

• How to achieve?
– Pipelining

– Superscalar execution

– Out-of-order execution

• Examples
– High-performance CPUs

• Scaling: Build ‘‘beefier” cores

5

Out-of-Order Processor Structure

• Instruction Control dynamically converts program into stream of ops

• Operations mapped onto functional units to execute in parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC

6

ILP Limitations

• Diminishing return from making the processor “beefier”
– Significant complexity

– High port requirements in register files & caches

– Need extremely good branch prediction

• Not all applications expose a good level of ILP
– Due to inter-instruction dependencies

Two dependent instructions
x = a + b
y = c * x

7

Thread-Level Parallelism (TLP)
• Parallelism across different threads

def sum_array_part(arr, start, end, result, index):
 result[index] = sum(arr[start:end])

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = len(arr)
results = [0, 0]

t1 = threading.Thread(target=sum_array_part, args=(arr, 0, n//2, results, 0))
t2 = threading.Thread(target=sum_array_part, args=(arr, n//2, n, results, 1))

total_sum = results[0] + results[1]

8

Thread-Level Parallelism (TLP)
• Parallelism across different threads

• How to achieve?
– Multiprocessors

– Hyperthreading

• Examples
– Chip multiprocessors

– Multi-socket systems

– GPUs

– FPGAs

9

Moore’s Law w/o Dennard Scaling

We are here

10

• Applications can’t fully utilize beefy cores

• Solution: SMT (a.k.a., Hyperthreading)
– Run multiple threads on the same core, simultaneously

“Simultaneous Multithreading: Maximizing
 On-chip Parallelism”
 Dean Tullsen, Susan Eggers, Henry Levy 1995

11

K-way Hyperthreading

• Replicate Instruction Control to process K instruction streams

• K copies of all registers

• Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A PC B

12

How Many Hyperthreads?
• Hardware complexity vs. diminishing returns

Real CPUs use 2 hyperthreads

But: Intel is discontinuing hyperthreading on its mobile chip designs

13

• Kunle: Stanford prof
• ACM Fellow, IEEE Fellow, NAE
• Eckert-Mauchly Award 2023

• Basem: Stanford PhD, CTO Cisco
• Lance: Stanford PhD, now Apple

• Ken: Stanford PhD, now Apple

• Kun-Yung: Stanford PhD, now Rambus

“The Case for a Single-Chip Multiprocessor”
 Kunle Olukotun, Basem A. Nayfeh, Lance Hammond,
 Kenneth M. Wilson, Kunyung Chang 1996

14

The Case for a Single-Chip Multiprocessor
• Focus on TLP instead of ILP

• Multiple “less beefy” processors instead of one huge processor

Chip MultiProcessor (CMP)

15

Application Requirements
• Low-ILP programs (e.g., SPEC-Int) benefit little from wide-issue
 superscalar machines

– 1-wide R5000 is within 30% of 4-wide R10000

• High-ILP programs (e.g., SPEC-FP) benefit from large windows –
 typically, loop-level parallelism that might be easy to extract

16

The Argument
• Build many small CPU cores

• The small cores are enough to optimize low-ILP programs
 (high thruput with multiprogramming)

• For high-ILP programs, the compiler parallelizes the application
 into multiple threads

– since the cores are on a single die, cost of communication is
affordable

• Low communication cost  even integer programs with moderate
 ILP could be parallelized

17

Discussion: Summary Question #1

State the 3 most important things the paper says.

These could be some combination of the motivations, observations,
interesting parts of the design, or clever parts of the implementation.

What Did the Paper Get Right?

18

Processors’ Parameters

19

Results

20

Similar area for 6-wide SS and 4x2 CMP
4-wide 6-wide SS 4x2-way CMP Comments

32KB DL1 13 17 4x3 Banking/muxing
32KB IL1 14 18 4x3.5 Banking/muxing

TLB 5 15 4x5
Bpred 9 28 4x7

Decode 11 38 4x5 Quadratic effect
Queues 14 50 4x4 Quadratic effect

ROB/Regs 9 34 4x2 Quadratic effect
Int FUs 10 31 4x10 More FUs in CMP
FP FUs 12 37 4x12 More FUs in CMP

Crossbar 50 Multi-L1s  L2
L2, clock,

ext. interface
163 163 163 Remains

unchanged

21

Discussion: Summary Question #2

What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly
designed or the main idea had a narrow scope or applicability.

22

Why Did Multicore Only Emerge in 2004?

We are here

23

• Chips with heterogeneous compute units

• Creates/studies scaling model of Hill2008 extended to U-cores

“Single-chip Heterogeneous Computing:
 Does the Future Include Custom Logic, FPGAs,
 and GPGPUs?”
 Eric Chung, Peter Milder, James Hoe, Ken Mai 2010

BCE: Base-Core Equivalent U-cores: Unconventional cores

24

Key Findings

• >90% parallelism required for big U-core performance gains

• If application is BW-limited, flexible U-cores (FPGAs, GPGPUs)
 can keep up with fixed U-cores (ASICs)

• When parallelism is 90-99%, flexible U-cores are competitive
 with fixed U-cores

• U-cores are more broadly useful if goal is same performance
 with reduced energy/power

25

To Read for Wednesday

Optional Further Reading:

“Why On-chip Cache Coherence is Here To Stay”
 Milo M.K. Martin, Mark D. Hill, Daniel J. Sorin 2012

“CoNDA: Efficient Cache Coherence Support for
 Near-Data Accelerators”
 Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
 Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
 Nastaran Hajinazar, Krishna T. Malladi, Hongzhong Zheng,
 Onur Mutlu 2019

	18-742:�Computer Architecture & Systems��The Case for a Single-Chip Multiprocessor�
	Parallelism Is The Key
	Instruction-Level Parallelism (ILP)
	Instruction-Level Parallelism (ILP)
	Out-of-Order Processor Structure
	ILP Limitations
	Thread-Level Parallelism (TLP)
	Thread-Level Parallelism (TLP)
	Moore’s Law w/o Dennard Scaling
	Slide Number 10
	K-way Hyperthreading
	How Many Hyperthreads?
	Slide Number 13
	The Case for a Single-Chip Multiprocessor
	Application Requirements
	The Argument
	Discussion: Summary Question #1
	Processors’ Parameters
	Results
	Similar area for 6-wide SS and 4x2 CMP
	Discussion: Summary Question #2
	Why Did Multicore Only Emerge in 2004?
	Slide Number 23
	Key Findings
	To Read for Wednesday

