#### 18-742:

# Computer Architecture & Systems

# Dark Silicon and the End of Multicore Scaling

Prof. Phillip Gibbons

Spring 2025, Lecture 2

#### Recall: Moore's Law



Number of components [transistors] per integrated function [integrated circuit] will double every year (for at least ten years).

Moore revised in 1975 to doubling every two years.

# Dennard Scaling (1974)

As transistors get smaller, their power consumption per unit area remains the same for every technology generation.

Alternatively, with every generation the number of transistors in a chip can be doubled with **no change in power consumption**.

Breakdown of Dennard Scaling around 2006 due to current leakage at small sizes.

# Moore's Law w/o Dennard Scaling

• 2X transistors every 2 years, but frequency & power capped



What to spend transistors on? Multiple cores

# "Scaling the Bandwidth Wall: Challenges in and Avenues for CMP Scaling"

Brian Rogers, Anil Krishna, Gordon Bell, Ken Vu, Xiaowei Jiang, Yan Solihin 2009

#### Memory Bandwidth Wall:

- Compute improvements >> Memory BW improvements
- On multicores: cores <u>share</u> off-chip BW
- Each core's BW share declines with each generation

#### This limits effective CMP scaling

- E.g., from 8 to 24 in four generations, not 128
- Most of chip is needed for caches

## **Chip Area for Cores vs. Caches**



Figure 3: Die area allocation for cores and the number of supportable cores assuming constant memory traffic requirements.

#### **BW Conserving Techniques**

- DRAM Caches [DRAM]
  - DRAM is 8x-16x denser than SRAM
- Smaller cores freeing up space for cache [SmCo]
- Link compression [LC] >> Cache compression [CC]
- 3D-stacked caches [3D]
- Ideally-sized cache lines [SmCl]

#### All techniques combined enables 183 cores



#### "Dark Silicon and the End of Multicore Scaling"

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, Doug Berger 2011

- Hadi: Washington PhD, now UCSD prof
  - Young Architect Award 2018
- Emily: Wisconsin PhD, now Google
- Renee: UT Austin PhD, ex-Arm
  - Fellow World Economic Forum
- Karu: Wisconsin prof & NVIDIA
  - Young Architect Award 2012
- Doug: Microsoft Fellow
  - IEEE & ACM Fellow











# Paper's Main Question

- How effective would multicore designs be in a power-limited era, for differing degrees of parallelism?
- Gives upper bound on achievable speedup, accounting for
  - Transistor scaling trends
  - Processor core design options
  - Chip multiprocessor organizations
  - Benchmark characteristics

All under area & power constraints

## **Analytical Model**

**Device Scaling** (DevM)



Core Scaling (CorM)



Multicore Scaling (CmpM)



Optimal # of Cores Multicore Speedup % of Dark Silicon

- ITRS **Projections**
- Conservative **Projections**

- Collecting **Empirical Data**
- Deriving **Pareto Frontiers**

- Analytical Models
- Microarchitectural **Features**
- Application Behavior

#### **Analytical Model**

Device Scaling (DevM)



- ITRS Projections
- Conservative Projections

Core Scaling
(CorM)

- Collecting Empirical Data
- Deriving Pareto Frontiers

Multicore Scaling (CmpM)

- Analytical Models
- Microarchitectural Features
- Application Behavior

Optimal # of Cores Multicore Speedup % of Dark Silicon



2 Projection Schemes



■ Data for 152 Processors



- 2 Chip Organizations × 4 Topologies
- 12 Benchmarks



■ Search 800 Configs for 12 Benchmarks

## **Discussion: Summary Question #1**

#### What Did the Paper Get Right?

State the 3 most important things the paper says.

These could be some combination of the motivations, observations, interesting parts of the design, or clever parts of the implementation.

#### **Analytical Model**

Device Scaling (DevM)



- ITRS Projections
- Conservative Projections

Core Scaling
(CorM)

- Collecting Empirical Data
- Deriving Pareto Frontiers

X Multicore Scaling (CmpM)

- Analytical Models
- Microarchitectural Features
- Application Behavior

Optimal # of Cores Multicore Speedup % of Dark Silicon



2 Projection Schemes



■ Data for 152 Processors



- 2 Chip Organizations × 4 Topologies
- 12 Benchmarks



■ Search 800 Configs for 12 Benchmarks

#### **Take-Aways**

- 2008 to 2024 would see only a 7.9x benchmark speedup
  - 24-fold gap from 2x every generation
- Multicore scaling would NOT be the principal vector of performance scaling
- Dark Silicon: Substantial fraction of the chip will be powered off

#### **Results for PARSEC**

|                        | Conservative  |               | ITRS          |               |
|------------------------|---------------|---------------|---------------|---------------|
| Characteristic         | CPU           | GPU           | CPU           | GPU           |
| Symmetric GM Speedup   | 3.4×          | 2.4×          | 7.7×          | 2.7×          |
| Dynamic GM Speedup     | $3.5 \times$  | $2.4 \times$  | $7.9 \times$  | $2.7 \times$  |
| Maximum Speedup        | $10.9 \times$ | $10.1 \times$ | $46.6 \times$ | $11.2 \times$ |
| Typical # of Cores     | < 64          | < 256         | < 64          | < 256         |
| Dark Silicon Dominates | 2016          | 2012          | 2021          | 2015          |

Different Workload: Ray tracing (on asymmetric topology, at 8 nm)

Optimal core count = 4864 8% Dark silicon

#### Two Sources of Dark Silicon





CPU, dynamic topology, 8nm, ITRS

# Summary: All Organizations/Topologies



#### **Predictions**

- Multicore era will likely end in 2014
- Moore's Law may end by 2016, creating massive disruptions in our industry!
- Silver lining:

"The onus will be on computer architects—and computer architects only—to deliver performance and efficiency gains that can work across a wide range of problems"

## **Discussion: Summary Question #2**

#### What Did the Paper Get Wrong?

Describe the paper's single most glaring deficiency.

Every paper has some fault. Perhaps an experiment was poorly designed or the main idea had a narrow scope or applicability.

# **Authors' Retrospective (2023)**

- Do we have multicores with hundreds of cores today?
- Do we have large swaths of dark silicon?
- Proliferation of specialized on-chip accelerators
- Deep Learning changed everything
- Approximate computing becomes viable (e.g., reduced precision)
- Future: Deep Learning & generative inference as a second class of general-purpose computation

# "Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware"

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, Babak Falsafi 2012

Scale-out workloads are ill-suited to Multicores (2012)

- Suffer from high instruction-cache miss rates
- Aggressive out-of-order cores are overkill
- On-chip caches are way too small
- On-chip & off-chip BW requirements are lower

#### To Read for Friday

"The Case for a Single-Chip Multiprocessor"

Kunle Olukotun, Basem Nayfeh, Lance Hammond, Ken Wilson, Kunyung Chang 1996

#### **Optional Further Reading:**

"Simultaneous Multithreading: Maximizing On-chip Parallelism"

Dean Tullsen, Susan Eggers, Henry Levy 1995

"Single-chip Heterogeneous Computing:

Does the Future Include Custom Logic, FPGAs, and GPGPUs?"

Eric Chung, Peter Milder, James Hoe, Ken Mai 2010

#### **BACKUP SLIDES**

#### Pollack's Rule

**Pollack's Rule** states that microprocessor performance increase due to microarchitecture advances is roughly proportional to [the] square root of [the] increase in complexity.

This contrasts with power consumption increase, which is roughly linearly proportional to the increase in complexity.

The performance of a core is proportional to the square root of its area.

# Power/performance



#### Power/Performance Frontier, 45nm



#### Area/Performance Frontier, 45nm



# Frontier Scaling (Single Core)

