

Andrew ID:

Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read

your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either

your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613 Final Exam
Spring 2025

Instructions:

● Make sure that your exam is not missing any sheets (check page numbers at bottom)

● Write your Andrew ID and full name on this page (and we suggest on each and every

page)

● This exam is closed book and closed notes.

● You may not use anything other than what we provide, except writing implements,

such as pens and pencils, and a simple arithmetic calculator.

● Write your answers in the space provided for the problem.

● If you make a mess, clearly indicate your final answer.

● The exam has a maximum score of 100 points.

● The point value of each problem is indicated.

● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when

impossible.

Machine 1: 6-bit
w/2s complement signed

Machine 2: 6-bit
unsigned

Binary representation of -28
decimal

Decimal value of 101010

Decimal value of (-24 - 10)

Binary representation of
Tmin (Hint: It’s negative)

Continued on next page.

Part B: Floats (5 points, 1 point per blank)

For this problem, please consider a floating point number representation based upon an IEEE-

like floating point format as described below.

● Format:

○ There are 6 bits

○ There are 0 (zero, none) sign bits.

○ There are k = 3 exponent bits.

○ You need to determine the number of fraction bits.

✔ Fill in the empty (and not grayed-out) boxes as instructed.

✔ When decimal values are requested, reduced fractions are okay.

✔ Should rounding be required, “round even”

Format

Total Number of Bits
(Decimal)

6

Number of Sign Bits (Decimal) **** 0 ****

Number of Exponent Bits
(Decimal)

3

Number of Fraction Bits
(Decimal)

(No points, just for you)

Bias (Decimal)

(No points, just for you)

Largest number
(Decimal value)

binary 000111
(Decimal)

Smallest distance between any
two adjacent points on the
number line (Decimal)

Largest distance between any two
adjacent points on the number
line, excluding special values
(Decimal)

Infinity (Binary)

Continued on next page.

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)
Part A: Array Size and Layout (4 points)

Consider the following definition in an x86-64 system with 8-byte pointers and 2-byte shorts:

Definition

unsigned short numbers[4][3];

2(A)(1) (2 point): How many bytes are allocated to numbers? (Write “UNKNOWN” if

not knowable).

Hint: Think sizeof()

2(A)(2) (2 point): If the address of numbers[2][1] is 0x10000, what is the address

of numbers[3][2]?

Part B : Structs and Alignment (6 points)

For this question please assume “Natural alignment”, in other words, please assume

that each type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {

double d; // 8-byte type

char ca[2];

int i; // 4-byte type

char c; // 1-byte type

} partB;

Continued on next page.

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc.(10 points), cont.

Part B : Structs and Alignment (6 points), cont.

2(B)(1) (2 point): What would you expect to be the value of the expression below?

sizeof(struct partB)

2(B)(2) (2 points): Rewrite the struct above to minimize its size after alignment-mandated

padding:

2(B)(3) (2 points): Consider the original definition we provided above and the definition of

arrayB3 given below, what is the distance, measured in bytes, between the address of

arrayB3[3].c and the address of arrayB3[5].d?

 struct partB arrayB3[10];

Continued on next page

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA (15 points)
 Part A: Loops and Calling Convention (7 points)

Consider the following code:
(gdb) disassemble loop

Dump of assembler code for function loop:

 0x0000000000001149 <+0>: endbr64

 0x000000000000114d <+4>: push %rbp

 0x000000000000114e <+5>: mov %rsp,%rbp

 0x0000000000001151 <+8>: sub $0x20,%rsp

 0x0000000000001155 <+12>: mov %edi,-0x14(%rbp)

 0x0000000000001158 <+15>: mov %esi,-0x18(%rbp)

 0x000000000000115b <+18>: mov %edx,-0x1c(%rbp)

 0x000000000000115e <+21>: movl $0x0,-0xc(%rbp)

 0x0000000000001165 <+28>: jmp 0x11e3 <loop+154>

 0x0000000000001167 <+30>: movl $0x0,-0x8(%rbp)

 0x000000000000116e <+37>: jmp 0x11ab <loop+98>

 0x0000000000001170 <+39>: mov -0x8(%rbp),%ecx

 0x0000000000001173 <+42>: movslq %ecx,%rax

 0x0000000000001176 <+45>: imul $0x2aaaaaab,%rax,%rax

 0x000000000000117d <+52>: shr $0x20,%rax

 0x0000000000001181 <+56>: mov %ecx,%esi

 0x0000000000001183 <+58>: sar $0x1f,%esi

 0x0000000000001186 <+61>: mov %eax,%edx

 0x0000000000001188 <+63>: sub %esi,%edx

 0x000000000000118a <+65>: mov %edx,%eax

 0x000000000000118c <+67>: add %eax,%eax

 0x000000000000118e <+69>: add %edx,%eax

 0x0000000000001190 <+71>: add %eax,%eax

 0x0000000000001192 <+73>: sub %eax,%ecx

 0x0000000000001194 <+75>: mov %ecx,%edx

 0x0000000000001196 <+77>: test %edx,%edx

 0x0000000000001198 <+79>: je 0x11a6 <loop+93>

 0x000000000000119a <+81>: mov $0x59,%edi

 0x000000000000119f <+86>: call 0x1050 <putchar@plt>

 0x00000000000011a4 <+91>: jmp 0x11a7 <loop+94>

 0x00000000000011a6 <+93>: nop

 0x00000000000011a7 <+94>: addl $0x2,-0x8(%rbp)

 0x00000000000011ab <+98>: mov -0x8(%rbp),%eax

 0x00000000000011ae <+101>: cmp -0x18(%rbp),%eax

 0x00000000000011b1 <+104>: jl 0x1170 <loop+39>

 0x00000000000011b3 <+106>: movl $0x0,-0x4(%rbp)

 0x00000000000011ba <+113>: jmp 0x11d4 <loop+139>

 0x00000000000011bc <+115>: mov -0x4(%rbp),%eax

 0x00000000000011bf <+118>: and $0x7,%eax

 0x00000000000011c2 <+121>: test %eax,%eax

 0x00000000000011c4 <+123>: je 0x11de <loop+149>

 0x00000000000011c6 <+125>: mov $0x4e,%edi

 0x00000000000011cb <+130>: call 0x1050 <putchar@plt>

 0x00000000000011d0 <+135>: addl $0x1,-0x4(%rbp)

 0x00000000000011d4 <+139>: mov -0x4(%rbp),%eax

 0x00000000000011d7 <+142>: cmp -0x1c(%rbp),%eax

 0x00000000000011da <+145>: jl 0x11bc <loop+115>

 0x00000000000011dc <+147>: jmp 0x11df <loop+150>

 0x00000000000011de <+149>: nop

 0x00000000000011df <+150>: addl $0x1,-0xc(%rbp)

 0x00000000000011e3 <+154>: mov -0xc(%rbp),%eax

 0x00000000000011e6 <+157>: cmp -0x14(%rbp),%eax

 0x00000000000011e9 <+160>: jl 0x1167 <loop+30>

 0x00000000000011ef <+166>: nop

 0x00000000000011f0 <+167>: nop

 0x00000000000011f1 <+168>: leave

 0x00000000000011f2 <+169>: ret

End of assembler dump.

Continued on next page.

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
 Part A: Loops, Conditionals, and Calling Convention (7 points), cont.

For your reference: Arguments are passed in the order %rdi, %rsi, %rdx, %rcx, %r8, and %r9. %rax is used
for return values.

3(A)(1) (2 points): How many loops does this function have? How do you know?

3(A)(2) (2 points): How many arguments does this function receive (and use)? How do you know?
Hint: The first 6 arguments are passed via registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9, in that order.

3(A)(3) (2 points): How many C Language if statements are likely contained within this code? Hint:

Do not count conditionals that likely control the repetition of for loops.

3(A)(4) (1 points): How many break statements are there? At what address is each located?

Continued on next page.

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
 Part B: Loops, Conditionals, and Calling Convention (8 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements. Remember that the jump table keeps offsets from its own start address. The
address of each code block is the address of the beginning of the jump table plus the
value of the code block’s jump table entry. You’ll see this address before the relevant jump in
the assembly. It might make things easier for you to note the address indicated by the lowest
jump table entry and think of the other entries relative to that one.

(gdb) disassemble foo

Dump of assembler code for function foo:

 0x0000000000001169 <+0>: endbr64

 0x000000000000116d <+4>: push %rbp

 0x000000000000116e <+5>: mov %rsp,%rbp

 0x0000000000001171 <+8>: mov %edi,-0x4(%rbp)

 0x0000000000001174 <+11>: mov %esi,-0x8(%rbp)

 0x0000000000001177 <+14>: cmpl $0x8,-0x8(%rbp)

 0x000000000000117b <+18>: ja 0x11cc <foo+99>

 0x000000000000117d <+20>: mov -0x8(%rbp),%eax

 0x0000000000001180 <+23>: lea 0x0(,%rax,4),%rdx

 0x0000000000001188 <+31>: lea 0xe75(%rip),%rax # 0x2004

 0x000000000000118f <+38>: mov (%rdx,%rax,1),%eax

 0x0000000000001192 <+41>: cltq

 0x0000000000001194 <+43>: lea 0xe69(%rip),%rdx # 0x2004

 0x000000000000119b <+50>: add %rdx,%rax

 0x000000000000119e <+53>: notrack jmp *%rax

 0x00000000000011a1 <+56>: addl $0x2,-0x4(%rbp)

 0x00000000000011a5 <+60>: jmp 0x11d2 <foo+105>

 0x00000000000011a7 <+62>: addl $0x3,-0x4(%rbp)

 0x00000000000011ab <+66>: mov -0x4(%rbp),%eax

 0x00000000000011ae <+69>: lea 0x3(%rax),%edx

 0x00000000000011b1 <+72>: test %eax,%eax

 0x00000000000011b3 <+74>: cmovs %edx,%eax

 0x00000000000011b6 <+77>: sar $0x2,%eax

 0x00000000000011b9 <+80>: mov %eax,-0x4(%rbp)

 0x00000000000011bc <+83>: jmp 0x11d2 <foo+105>

 0x00000000000011be <+85>: mov -0x4(%rbp),%eax

 0x00000000000011c1 <+88>: imul -0x8(%rbp),%eax

 0x00000000000011c5 <+92>: mov %eax,-0x4(%rbp)

 0x00000000000011c8 <+95>: addl $0x5,-0x4(%rbp)

 0x00000000000011cc <+99>: mov -0x8(%rbp),%eax # 0x2004 – 3640 is 0x11cc

 0x00000000000011cf <+102>: add %eax,-0x4(%rbp)

 0x00000000000011d2 <+105>: mov -0x4(%rbp),%eax

 0x00000000000011d5 <+108>: pop %rbp

 0x00000000000011d6 <+109>: ret

End of assembler dump.

Consider also the following memory dump.

(gdb) x/20wx 0x2000

0x2000: 0x00020001 0xfffff1c8 0xfffff19d 0xfffff1a3

0x2010: 0xfffff1a7 0xfffff1c8 0xfffff1c8 0xfffff1ba

0x2020: 0xfffff1ba 0xfffff1c4 0x000a6425 0x3b031b01

0x2030: 0x00000038 0x00000006 0xffffeff4 0x0000006c

0x2040: 0xfffff024 0x00000094 0xfffff034 0x000000ac

(gdb) x/20wd 0x2000

0x2000: 131073 -3640 -3683 -3677

0x2010: -3673 -3640 -3640 -3654

0x2020: -3654 -3644 680997 990059265

0x2030: 56 6 -4108 108

0x2040: -4060 148 -4044 172

Continued on next page.

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)

Part B: Conditionals, cont. (8 points)

(3)(B)(1) (2 point): At what address does the jump table shown above begin? How do you know?

(3)(B)(2) (2 points): Is there a default case? If so, at what address does it begin? How do you

know?

(3)(B)(3) (2 points): Which case(s), if any, fall through to the next case after executing some of

their own code? How do you know?

Hint: Give the case number not the address.

(3)(B)(2) (2 points): What integer input values are managed by default cases of the switch

statement? How do you know?

Continued on next page.

4. Caching, Locality, Memory Hierarchy, Effective Access Time
Part A: Cache Configuration (3 points)

Given a model described as follows:

● Associativity: 2-way set associative

● Total size: 256 bytes (not counting meta data)

● Block size:16 bytes/block

● Replacement policy: Set-wise LRU

● 8-bit addresses

4(A)(1) (0 point) How many bits for the block offset? (No points, just for you).

4(A)(2) (0 point) How many bits for the set index? (No points, just for you).

4(A)(3) (0 point) How many bits for the tag? (No points, just for you).

4(A)(4) (3 points) Given this cache configuration, which of the following types of misses are possible:
Conflict, Compulsory (Cold), Capacity. Explain.

Continued on next page.

4(B) Cache Trace (8 points, 1 point each line, ½ point each entry):

Below is an address trace giving a sequence of memory accesses. The trace begins at the

beginning of time, e.g. the cache is empty.

For each of the following addresses, please indicate if it hits, or misses. If it misses, further

categorize it a capacity miss, a conflict miss, or a compulsory (cold) miss, or note whether the

miss results in allocating an unused entry or replacing/evicting a valid entry, as indicated within

the table. Mark your answers in the table.

Address Circle one (per row): Circle one (per row):

0x1C Hit Miss Capacity Compulsory Conflict N/A

0X1A Hit Miss Allocate Replace N/A

0X34 Hit Miss Capacity Compulsory Conflict N/A

0X92 Hit Miss Allocate Replace N/A

0X35 Hit Miss Capacity Compulsory Conflict N/A

0XC1 Hit Miss Allocate Replace N/A

0X9C Hit Miss Capacity Compulsory Conflict N/A

0XBA Hit Miss Allocate Replace N/A

4(C) (2 points) Blocking: In cache lab you used blocking to improve the performance of a matrix transpose.
In the context of matrix transposition, what is blocking, and how does it improve performance?

Continued on next page.

4(D) Effective Access Time (2 points)

Imagine a system with a DRAM-based main memory layered beneath an SRAM cache.

● The SRAM cache has a 15nS access time.

● The penalty for an SRAM cache miss is an additional 40nS.

Your goal is to design a system with a system with a memory access time of 25nS, or better. What is the
maximum SRAM cache miss rate that can be tolerated? Round up to a whole number.

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A

SIMPLE FRACTION

What is the maximum acceptable miss rate to achieve a system performance of 25nS?

4(D) (3points) MISS_RATE =

Continued on next page.

Question 5: Malloc(), Free(), and User- Memory Allocation (10 points)

5(A)(1) (2 points): As compared to an explicit list allocator, how does a segregated list allocator
help to balance utilization and throughput? Explain.

5(A)(2) (2 points): When implementing implicit lists, we chose to include ways to access both
prev and next blocks, and we kept these even after moving forward to implementing explicit and
segregated lists. What optimization did this enable? And how?

5(A)(3) (3 points): Once we sufficiently optimized our malloc implementation, we were able to
reduce internal fragmentation due to footers. What was the key observation that enabled us to
achieve this? And, given this observation, where did our footers live? Explain.

5(A)(4) (3 points): What advantage does a segregated list allocator have over an allocator that
simply calls brk()/sbrk() to grow the heap for each malloc() call and does the same to lower the
brk point, shrinking the heap, when possible?

Continued on next page.

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical

addresses. Imagine a system has the following parameters:
● Virtual addresses are 12 bits wide.

● Physical addresses are 10 bits wide.

● The page size is 64 bytes.

● The TLB is 2-way set associative with 4 total entries.

● The TLB may cache invalid entries

● A single level page table is used

● The replacement policy for the TLB is to replace invalid entries before valid entries and, in the
event of two of a kind, to replace the lowest tag within the set (Regardless of whether or not this is
the smartest thing to do).

Part A: Interpreting addresses

6(A)(1) (2 points): Please label the diagram below showing which bit positions are

interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

6(A)(2) (2 points): Please label the diagram below showing which bit positions are

interpreted as each of the VPO and VPN and each of the TLBI (TLB Index) and TLBT

(TLB Tag). Leave any unused entries blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

TLBI/
TLBT

6(A)(3) (2 points): How many entries exist within each page table? Hint: This is the

same as the total number of pages within each virtual address space.

6(A)(4) (2 points): How many sets are in the TLB?

Continued on next page.

6. Virtual Memory, Paging, and the TLB (15 points), cont.

Part B: Hits and Misses (7 points)

Shown below are the initial states of the TLB and partial page table.

TLB (X=INvalid, V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Set Tag PPN BITS Scratch space for you

0 4 4 X-R

0 8 2 V-RW

1 8 5 V-R

1 10 1 V-RW

Page Table (X=INvalid V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index/VPN PPN BITS Scratch space for you

0x8 (0b1000) 3 V-R

0xD (0b1101) 11 X-RW

0x10 (0b1_0000) 2 V-RW

0x11 (0b1_0001) 5 V-R

0x15 (0b1_0101) 1 V-RW

0x1D (0b1_1101) 7 V-R

Continued on next page.

6. Virtual Memory, Paging, and the TLB (15 points), cont.

Part B: Hits and Misses (7 points), cont.

Consider the following memory access trace i.e. sequence of memory operations listed in

order of execution, as shown in the first two columns (operation, virtual address). It

begins with the TLB and page table in the state shown above.

Please complete the remaining columns

Continued on next page.

Operation Virtual
Address

TLB

Hit or Miss?

Page Table

Hit or Miss?

Page Fault?

Yes or No?

PPN

If Knowable

Read 0x540 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Write 0x440 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Read 0x740 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Write 0x200 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Read 0x340 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Read 0x440 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Read 0x200 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)
Part A (4 points):

Please consider the following following process tree:

 . → putchar(‘C’) → putchar(‘D’))→ putchar(‘F’)

 .

 .

 putchar(‘A’) → fork()→ putchar(‘B’) → *DELAY → putchar(‘E’)→ putchar(‘F’)

 *DELAY means that the parent should delay at that point until the child is done running.

7(A)(1) (3 points): Please fill in the main() method below such that it implements the specification provided
by the tree above with as few calls to putchar() as possible.

void main(){

 // Your code here

}

7(A)(2) (1 points): Consider only the last three characters of the output. Please list all possibilities.

Continued on next page.

Question 7: Process Representation and Lifecycle + Signals and Files (10 points), cont.

Part B: Files (3 points):

Please consider the following:

int foo() {

 int pid;

 int fd1, fd2;

 fd1 = open("/file1", O_RDWR);

 dup2(fd1, 1); // Note that fd=1 is stdout

 printf("A"); // printf()s print to fd=1

 if ((pid = fork()) == 0) {

 printf("B");

 fd2 = open("/file1", O_RDWR);

 dup2(fd2, 1);

 printf("C");

 /* POINT X */

 } else {

 waitpid(pid, NULL, 0);

 printf("D");

 close(fd1);

 printf("E");

 }

 exit(2);

}

7(B)(1) (1 point) How many processes share the open file structure referred to by fd1 at “POINT
X” in the code?

7(B)(2) (1 point) How many file descriptors (total among all processes) share the open structure
referred to by fd1 at “POINT X” in the code?

7(B)(3) (1 point) Assuming that /file1 was empty before running this code, what are its contents
after the execution is complete?

Continued on next page

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part C: Signals (3 points), cont :

7(C)(1) (2 points): In order for your shell to properly handle background jobs it had to

implement asynchronous signal handling. What signal did it need to handle and what would

have been the cost/consequence of not handling it (properly)?

7(C)(2) (1 points): Imagine that a signal is received while the receiving process blocks it. What

happens when the receiving process subsequently unblock the signal? And, why does this

make sense?

Continued on next page.

Question 8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Please consider the following code:

// Based upon:

// https://courses.cs.vt.edu/cs3214/spring2012/butta/documents/SampleFinalCS3214F10.pdf

// here, 'pop' returns the first element

// of the pool's queue, or NULL if queue

// is empty

while (!getShuttingDown(queue)) {

 struct work_t *work = NULL;

 pthread_mutex_lock(&queue->mutex);

 work = dequeue(queue); // Return the first element, or NULL if empty

 pthread_mutex_unlock(&queue->mutex);

 while (work == NULL) {

 pthread_mutex_lock(&queue->mutex);

 work = dequeue(queue); // Not an async safe function

 pthread_mutex_unlock(&queue->mutex);

 if (getShuttingDown(queue)) {

 return NULL;

 }

 }

 // do work

}

8(A)(1) (2 points) Consider the above code which accesses a work queue that is shared

among threads; dequeues work, if available, and repeats unless and until the work queue is

shut down. Is this code correct? Hint: Consider whether it is safe, whether it makes progress,

and whether there is starvation.

8(A)(1) (3 points) Consider the code again. With respect to efficiency, it does have some room

for improvement. Please describe the inefficient behavior and a strategy, based upon the

techniques we learned in class, that you might implement to address it.

Continued on next page.

8(B) Designing Concurrency Control (10 points)

 Consider the following intersection:

● The east-west road has a single westbound lane, as shown.

● The north-south road has two lanes, one in each direction, as shown.

● Each car knows the road it is on and the turn it wants to take.

● Potential collisions exist in the regions noted with dotted boxes.

Recall the following:

● int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t

*attr);
● attr is NULL in our use.

● int pthread_mutex_destroy(pthread_mutex_t *mutex);
● int pthread_mutex_lock(pthread_mutex_t *mutex);
● int pthread_mutex_trylock(pthread_mutex_t *mutex);
● int pthread_mutex_unlock(pthread_mutex_t *mutex);

And, assume that consts or typedefs exist for

● NBOUND
● SBOUND
● EBOUND
● WBOUND

As does the following function which actually moves the vehicle,but does no concurrency control:

● void driveThrough(direction_t initial_dir, direction_t turn_to);

Continued on next page.

8(B) Designing Concurrency Control (10 points), cont.

// Declare and initialize global variables here (3 points)

// Moves car into intersection, used by worker threads (7 points)

// CallsDriveThrough(…)

void advance (direction_t initial_dir, direction_t turn_to) {

 }

All done! Great work! Enjoy the summer!

