Andrew ID: SOLUTION
Full Name: SOLUTION

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewlD, we won'’t easily know who should get credit for this exam. If we can’t read either
your AndrewlD or Full Name, we’re in real bind. Please write neatly :-)

Instructions:

18-213/18-613 Final Exam
Spring 2025

e Make sure that your exam is not missing any sheets (check page numbers at bottom)
e Write your Andrew ID and full name on this page (and we suggest on each and every

page)

This exam is closed book and closed notes.
You may not use anything other than what we provide, except writing implements,
such as pens and pencils, and a simple arithmetic calculator.

e Write your answers in the space provided for the problem.

e |f you make a mess, clearly indicate your final answer.

e The exam has a maximum score of 100 points.

e The point value of each problem is indicated.

e Good luck!

Problem # | Scope Max Points | Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10
2 Data Representation: Arrays, Structs, Unions, and Alignment 10
3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15
4 Caching, Locality, Memory Hierarchy, Effective Access Time 15
5 Malloc(), Free(), and User-Level Memory Allocation 10
6 Virtual Memory, Paging, and the TLB 15
7 Process Representation and Lifecycle + Signals and Files 10
8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when

impossible.

Machine 1: 6-bit

Machine 2: 6-bit

Binary representation of
Tmin (Hint: It’'s negative)

w/2s complement signed unsigned

Binary representation of -28 100100 UNABLE
decimal

. 42
Decimal value of 101010

. 30
Decimal value of (-24 - 10)

100000

Continued on next page.

Part B: Floats (5 points, 1 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.
e FormatA:
There are 6 bits
There are 0 (zero, none) sign bits.
There are k = 3 exponent bits.
You need to determine the number of fraction bits.

o O

o

v Fillin the empty (and not grayed-out) boxes as instructed.

v’ When decimal values are requested, reduced fractions are okay.

v/ Should rounding be required, “round even”

Format

Total Number of Bits 6
(Decimal)
Number of Sign Bits (Decimal) bl | Bl
Number of Exponent Bits 3
(Decimal)
Number of Fraction Bits 3
(Decimal) (No points, just for you)
Bias (Decimal) 3

(No points, just for you)
Largest number 15
(Decimal value)
binary 000111 7/32
(Decimal)
Smallest distance between any 1732
two adjacent points on the
number line (Decimal)
Largest distance between any two| 1
adjacent points on the number
line, excluding special values
(Decimal)
Infinity (Binary) 111000

Continued on next page.

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Array Size and Layout (4 points)

Consider the following definition in an x86-64 system with 8-byte pointers and 2-byte shorts:

Definition

unsigned short numbers[4][3];

2(A)(1) (2 point): How many bytes are allocated to numbers? (Write “UNKNOWN?” if
not knowable).
Hint: Think sizeof()

24 bytes

2(A)(2) (2 point): If the address of numbers[2] [1] is 0x10000, what is the
address of numbers[3][2]?

0x10008

Part B : Structs and Alignment (6 points)

For this question please assume “Natural alignment”, in other words, please assume
that each type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {
double d; // 8-byte type
char cal2];
int i; // 4-byte type
char c; // l-byte type
} partB;

Continued on next page.

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc.(10 points), cont.
Part B : Structs and Alignment (6 points), cont.

2(B)(1) (2 point): What would you expect to be the value of the expression below?
sizeof (struct partB)
struct {

double d; // 8-byte type
char cal[2]; // 2 bytes (2 * 1l-byte type)
// 2-bytes padding

int i; // 4-byte type
char c; // l-byte type
// T-bytes padding
} partB; // 24-bytes, total
24-bytes

2(B)(2) (2 points): Rewrite the struct above to minimize its size after alignment-mandated
padding:
struct {
char c; // l-byte
char cal[2]; // 2-bytes
// l-byte (padding)

int i; // 4-bytes
double d; // 8-byte type
} rewrite; // lé6-bytes, total

2(B)(3) (2 points): Consider the original definition we provided above and the definition of
arrayB3 given below, what is the distance, measured in bytes, between the address of
arrayB3[3].c andthe address of arrayB3[5] .d?

struct partB arrayB3[10];

&arrayB3[4] - &arrayB3[3].c = 8 and sizeof(arrayB3[4]) = 24, so 8+24=32

Continued on next page

3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA (15 points)
Part A: Loops and Calling Convention (7 points)

Consider the following code:

(gdb) disassemble loop
Dump of assembler code for function loop:

0x0000000000001149 <+0>: endbr64
0x000000000000114d <+4>: push Srbp
0x000000000000114e <+5>: mov %rsp, $rbp
0x0000000000001151 <+8>: sub $0x20, %rsp
0x0000000000001155 <+12>: mov %edi, -0x14 ($rbp)
0x0000000000001158 <+15>: mov %esi, -0x18 ($rbp)
0x000000000000115b <+18>: mov %edx, -0x1lc (%rbp)
0x000000000000115e <+21>: movl $0x0, -0Oxc (%rbp)
0x0000000000001165 <+28>: Jjmp 0x11le3 <loop+154>
0x0000000000001167 <+30>: movl $0x0, -0x8 (%rbp)
0x000000000000116e <+37>: jmp Oxllab <loop+98>
0x0000000000001170 <+39>: mov -0x8 (%rbp) , $ecx
0x0000000000001173 <+42>: movslg %$ecx, $rax
0x0000000000001176 <+45>: imul $0x2aaaaaab, $rax, $rax
0x000000000000117d <+52>: shr $0x20, $rax
0x0000000000001181 <+56>: mov Secx, sesi
0x0000000000001183 <+58>: sar $0x1f, %esi
0x0000000000001186 <+61>: mov $eax, $sedx
0x0000000000001188 <+63>: sub $esi, $edx
0x000000000000118a <+65>: mov Sedx, seax
0x000000000000118c <+67>: add $eax, $eax
0x000000000000118e <+69>: add $edx, $eax
0x0000000000001190 <+71>: add $eax, seax
0x0000000000001192 <+73>: sub $eax, $ecx
0x0000000000001194 <+75>: mov Secx, sedx
0x0000000000001196 <+77>: test $edx, sedx
0x0000000000001198 <+79>: je Oxlla6 <loop+93>
0x000000000000119a <+81>: mov $0x59, $edi
0x000000000000119f <+86>: call 0x1050 <putchar@plt>
0x00000000000011ad4 <+91>: Jjmp Oxlla7 <loop+94>
0x00000000000011ab <+93>: nop

0x00000000000011a7 <+94>: addl $0x2,-0x8 (%rbp)
0x00000000000011ab <+98>: mov -0x8 (%rbp) , $eax
0x00000000000011ae <+101>: cmp -0x18 (%rbp) , %eax
0x00000000000011b1 <+104>: J1 0x1170 <loop+39>

0x00000000000011b3 <+106>: movl $0x0, -0x4 ($rbp)
0x00000000000011ba <+113>: Jmp 0x11d4 <loop+139>
0x00000000000011bc <+115>: mov -0x4 (%rbp) , $eax
0x00000000000011bf <+118>: and $0x7, $eax
0x00000000000011c2 <+121>: test Seax, seax
0x00000000000011c4 <+123>: je 0x1lde <loop+149>
0x00000000000011c6 <+125>: mov $0x4e, $edi
0x00000000000011cb <+130>: call 0x1050 <putchar@plt>
0x00000000000011d0 <+135>: addl $0x1,-0x4 (%rbp)

0x00000000000011d4 <+139>: mov -0x4 (5rbp) , $eax
0x00000000000011d7 <+142>: cmp -0x1lc (%rbp), %$eax
0x00000000000011da <+145>: Jjl 0x1lbc <loop+115>

0x00000000000011dc <+147>: jmp 0x11df <loop+150>
0x00000000000011de <+149>: nop
0x00000000000011df <+150>: addl $0x1,-0Oxc (3rbp)

0x00000000000011e3 <+154>: mov -0xc (5rbp) , seax
0x00000000000011e6 <+157>: cmp -0x14 (5rbp) , seax
0x00000000000011e9 <+160>: jl 0x1167 <loop+30>

0x00000000000011ef <+166>: nop

0x00000000000011£f0 <+167>: nop

0x00000000000011f1 <+168>: leave

0x00000000000011f2 <+169>: ret
End of assembler dump.

Continued on next page.

3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
Part A: Loops, Conditionals, and Calling Convention (7 points), cont.

For your reference: Arguments are passed in the order %rdi, %rsi, %rdx, %rcx, %r8, and %r9. %rax is used
for return values.

3(A)(1) (2 points): How many loops does this function have? How do you know?

3 backward jumps forming cycles

3(A)(2) (2 points): How many arguments does this function receive (and use)? How do you know?
Hint: The first 6 arguments are passed via registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9, in that order.

Three. %rdi, %rsi, and %rdx are saved to the stack. These values from the stack are then used as part
of loop test for each of the three different loops

3(A)(3) (2 points): How many C Language if statements are likely contained within this code? Hint:
Do not count conditionals that likely control the repetition of for loops.

One. Guarding what looks like a break.

3(A)(4) (1 points): How many break statements are there? At what address is each located?

One. 0x11dc <+147>

Continued on next page.

3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
Part B: Loops, Conditionals, and Calling Convention (8 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements. Remember that the jump table keeps offsets from its own start address. The
address of each code block is the address of the beginning of the jump table plus the
value of the code block’s jump table entry. You'll see this address before the relevant jump in
the assembly. It might make things easier for you to note the address indicated by the lowest
jump table entry and think of the other entries relative to that one.

(gdb) disassemble foo

Dump of assembler code for function foo:
0x0000000000001169 <+0>: endbr64
0x000000000000116d <+4>: push Srbp
0x000000000000116e <+5>: mov Srsp, $rbp
0x0000000000001171 <+8>: mov %edi, -0x4 (5rbp)
0x0000000000001174 <+11>: mov %esi, -0x8 ($rbp)
0x0000000000001177 <+14>: cmpl $0x8,-0x8 ($rbp)
0x000000000000117b <+18>: ja 0x1llcc <foo+99>
0x000000000000117d <+20>: mov -0x8 (%rbp) , $eax
0x0000000000001180 <+23>: lea 0x0(,%rax,4),%rdx
0x0000000000001188 <+31>: lea 0xe75(%rip), $rax # 0x2004
0x000000000000118f <+38>: mov ($rdx, $rax,1l), %eax
0x0000000000001192 <+41>: cltg
0x0000000000001194 <+43>: lea 0xe69 (%$rip), $rdx # 0x2004
0x000000000000119p <+50>: add $rdx, $rax
0x000000000000119e <+53>: notrack jmp *Srax
0x00000000000011al <+56>: addl $0x2,-0x4 ($rbp)
0x00000000000011a5 <+60>: jmp 0x11d2 <foo+105>
0x00000000000011a7 <+62>: addl $0x3,-0x4 ($rbp)
0x00000000000011lab <+66>: mov -0x4 (%$rbp) , $eax
0x00000000000011lae <+69>: lea 0x3 (%rax), $edx
0x00000000000011b1 <+72>: test %eax, $eax
0x00000000000011b3 <+74>: cmovs %edx, $eax
0x00000000000011b6 <+77>: sar $0x2, %eax
0x00000000000011b9 <+80>: mov Seax, -0x4 (5rbp)
0x00000000000011bc <+83>: jmp 0x11d2 <foo+105>
0x00000000000011be <+85>: mov -0x4 ($rbp) , $eax
0x00000000000011cl <+88>: imul -0x8 (%$rbp) , $eax
0x00000000000011c5 <+92>: mov %eax,-0x4 (3rbp)
0x00000000000011c8 <+95>: addl $0x5,-0x4 ($rbp)
0x00000000000011cc <+99>: mov -0x8 (%$rbp), Seax # 0x2004 - 3640 is Oxllcc
0x00000000000011cf <+102>: add %eax, -0x4 ($rbp)
0x00000000000011d2 <+105>: mov -0x4 (%$rbp) , $eax
0x00000000000011d5 <+108>: pop Srbp
0x00000000000011d6 <+109>: ret

End of assembler dump.

Consider also the following memory dump.

(gdb) x/20wx 0x2000

0x2000: 0x00020001 Oxffffflc8 Oxfff££19d Oxfffffla3
0x2010: Oxfffffla’ Oxffffflc8 Oxffffflc8 Oxffffflba
0x2020: Oxffffflba Oxffffflc4 0x000a6425 0x3b031b01
0x2030: 0x00000038 0x00000006 Oxffffeffd 0x0000006c¢C
0x2040: Oxfffff024 0x00000094 Oxfffff034 0x000000ac
(gdb) x/20wd 0x2000

0x2000: 131073 -=3640 -3683 -3677

0x2010: -3673 -3640 -3640 -3654

0x2020: -3654 -3644 680997 990059265

0x2030: 56 6 -4108 108

0x2040: -4060 148 -4044 172

Continued on next page.

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)
Part B: Conditionals, cont. (8 points)

(3)(B)(1) (2 point): At what address does the jump table shown above begin? How do you know?

0x2004. Note the indirect jump at 0x119e <+53>. It builds up an index
into the jump table from the 2" argument, which it moves onto the stack,
“mov %esi,-0x8 (%rbp)”, and then uses from there to index into the table.
The comments show 0x2004 used as the base of the table.

(3)(B)(2) (2 points): Is there a default case? If so, at what address does it begin? How do you
know?

Yes. Note the guard at <+14> and <+18>, and that goes to 0x11cc <+99>

(3)(B)(3)(2 points): Which case(s), if any, fall through to the next case after executing some of their
own code? How do you know?

Hint: Give the case number not the address.

Cases 2, 6, 7, and 8. These don’t get out of the code block via a return or jump, etc. They
keep executing, running past the entry point for another case.

(3)(B)(2) (2 points): What integer input values are managed by default cases of the switch
statement? How do you know?

Anything greater than 8, 0, 4, or 5. These go to 0x11cc via the guarding jump or the jump
table.

Continued on next page.

4. Caching, Locality, Memory Hierarchy, Effective Access Time
Part A: Cache Configuration (3 points)

Given a model described as follows:
e Associativity: 2-way set associative
Total size: 256 bytes (not counting meta data)
Block size:16 bytes/block
Replacement policy: Set-wise LRU
8-bit addresses

4(A)(1) (0 point) How many bits for the block offset? (No points, just for you).

4 bits 0000 — 1111 ==> 0 — 15, 16 bytes/block

4(A)(2) (0 point) How many bits for the set index? (No points, just for you).
(256B/cache) / (16B/block) = 16 blocks

16 blocks / (2 blocks/set) = 8 sets
8 sets requires 3 bits to index, 000 — 111 ==>0 -7

4(A)(3) (0 point) How many bits for the tag? (No points, just for you).

Just 1. 8 bits - 3 bits (index) - 4 bits (offset) = 1 left over for the tag

4(A)(4) (3 points) Given this cache configuration, which of the following types of misses are possible: Conflict,
Compulsory (Cold), Capacity. Explain.

Compulsory misses are possible, because the cache can’t cache what it hasn’t seen.
But neither capacity nor conflict misses are possible. Since 8-bit addresses can address 256B, and
this is exactly the cache size, the cache can hold the entire memory. Since it is 2-way set associative,

and the one (1) tag bit can code for two states, each line maps to two addresses, each of which can fit
into the line.

Continues on next page.

4(B) Cache Trace (8 points, 1 point each line, 'z point each entry):

Below is an address trace giving a sequence of memory accesses. The trace begins at the
beginning of time, e.g. the cache is empty.

For each of the following addresses, please indicate if it hits or misses. If it misses, further
categorize it a capacity miss, a conflict miss, or a compulsory (cold) miss, or note whether the
miss results in allocating an unused entry or replacing/evicting a valid entry, as indicated within
the table. Mark your answers in the table.

Address Circle one (per row): | Circle one (per row):

0x1C Hit Miss Capacity Compulsory Conflict N/A
0X1A Hit Miss Allocate Replace N/A
0X34 Hit Miss Capacity Compulsory Conflict N/A
0X92 Hit Miss Allocate Replace N/A
0X35 Hit Miss Capacity Compulsory Conflict N/A
0XC1 Hit Miss Allocate Replace N/A
0X9C Hit Miss Capacity Compulsory Conflict N/A
0XBA Hit Miss Allocate Replace N/A

4(C) (2 points) Blocking: In cache lab you used blocking to improve the performance of a matrix transpose.
In the context of matrix transposition, what is blocking, and how does it improve performance?

As memory accesses move down a column of a 2D array, each access brings a cache block worth of
memory into the cache, eventually displacing an aging block, 1-for-1. The result is that a rectangular
area of memory is cached and moves downward with the sweep. Memory access within the
rectangular area, if not row-wise, still benefits from spatial and temporal locality and can be found
within the cache.

Continued on next page.

4(C)Effective Access Time (2 points)

Imagine a system with a DRAM-based main memory layered beneath an SRAM cache.
e The SRAM cache has a 15nS access time.
e The penalty for an SRAM cache miss is an additional 40nS.

Your goal is to design a system with a system with a memory access time of 25nS, or better. What is the
maximum SRAM cache miss rate that can be tolerated? Round up to a whole number.

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A
SIMPLE FRACTION

What is the maximum acceptable miss rate to achieve a system performance of 25nS?

4(C)(1) (3points) MISS_RATE =

25ns = 15nS + MISS_RATE * 40nS
10nS = MISS_RATE * 40nS
10nS/40nS = MISS_RATE
MISS_RATE =1/4 = 0.25

Continued on next page.

Question 5: Malloc(), Free(), and User- Memory Allocation (10 points)

5(A)(1) (2 points): As compared to an explicit list allocator, how does a segregated list allocator
help to balance utilization and throughput? Explain.

Since only lists with good candidates are searched, it isn’t necessary to sort lists or
brute-force search them to avoid bad matches, nor is it necessary to accept an overly large
match just to avoid the penalty of further searching.

5(A)(2) (2 points): When implementing implicit lists, we chose to include ways to access both
prev and next blocks, and we kept these even after moving forward to implementing explicit and
segregated lists. What optimization did this enable? And how?

These pointers enabled constant time coalesce by enabling a look left. This is needed with
explicitly lists and segregated lists just as much without. Those techniques provide a
logical organization to improve the search for a match, but don’t impact coalesce, which
necessarily works with address-neighbors, at all.

5(A)(3) (3 points): Once we sufficiently optimized our malloc implementation, we were able to
reduce internal fragmentation due to footers. What was the key observation that enabled us to
achieve this? And given this observation, where did our footers live? Explain.

The key observation is that metadata is free as long as it is in unallocated blocks. It only
comes with an opportunity cost when it is in an allocated block. Our footers lived only in
allocated blocks.

5(A)(4) (3 points): What advantage does a segregated list allocator have over an allocator that
simply calls brk()/sbrk() to grow the heap for each malloc() call and does the same to lower the
brk point, shrinking the heap, when possible?

It provides a mechanism to re-use recently freed blocks that aren’t contiguous with the top
of the heap and therefore can’t be deallocated. This dramatically reduces fragmentation
and dramatically increases utilization. In fact, most modern malloc’s don’t shrink the heap,
ever.

Continued on next page.

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:
e \Virtual addresses are 12 bits wide.
Physical addresses are 10 bits wide.
The page size is 64 bytes.
The TLB is 2-way set associative with 4 total entries.
The TLB may cache invalid entries
A single level page table is used

The replacement policy for the TLB is to replace invalid entries before valid
entries and, in the event of two of a kind, to replace the lowest tag within the set
(Regardless of whether or not this is the smartest thing to do).

Part A: Interpreting addresses

6(A)(1)(2 points): Please label the diagram below showing which bit positions are
interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit (9 |8 |7 |6 (5 |4 |3 (2 |1 |0

PPN/ ([N |[N|N [N |O|O|O |O|O|O
PPO

6(A)(2)(2 points): Please label the diagram below showing which bit positions are
interpreted as each of the VPO and VPN and each of the TLBI (TLB Index) and
TLBT (TLB Tag). Leave any unused entries blank.

Bit 1110 9 B8 |7 |6 |5 |43 |2 |11

VPO/ ([N N N N (N(N|O|OI|O |O|O O
VPN

TLBI/
TLBT T

6(A)(3) (2 points): How many entries exist within each page table? Hint: This is the
same as the total number of pages within each virtual address space.
272 address bits = 4096 bytes, 4096 bytes / 64bytes/page = 64 pages.

6(A)(4) (2 points): How many sets are in the TLB?
4 entries/tlb / 2 entries/set = 2 sets/TLB
Continued on next page.

Virtual Memory, Paging, and the TLB (15 points), cont.
Part B: Hits and Misses (7 points)

Shown below are the initial states of the TLB and partial page table.

TLB (X=INvalid, V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Set Tag PPN BITS Scratch space for you
0 4 4 X-R

0 8 2 V-RW

1 8 5 V-R

1 10 1 V-RW

Page Table (X=INvalid V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index/VPN PPN BITS Scratch space for you
0x8 (0b1000) 3 V-R

0xD (0b1101) 11 X-RW

0x10 (0b1_0000) |2 V-RW

0x11 (Ob1_0001) [5 V-R

0x15 (0b1_0101) 1 V-RW

0x1D (Ob1_1101) |7 V-R

Continued on next page.

Virtual Memory, Paging, and the TLB (15 points), cont.
Part B: Hits and Misses (7 points), cont.

Consider the following memory access trace i.e. sequence of memory operations listed in
order of execution, as shown in the first two columns (operation, virtual address). It
begins with the TLB and page table in the state shown above.

Please complete the remaining columns

Operation Virtual TLB Page Table Page Fault? PPN
Address | Hit or Miss? Hit or Miss? Yes or No? If Knowable

Read 0x540 Hit Miss Not knowable | Hit Miss N/A | Yes No Notknowable | 1

\Write 0x440 Hit Miss Not knowable | Hit Miss N/A | Yes No Notknowable | §

Read 0x740 Hit Miss Notknowable | Hit Miss N/A | Yes No Notknowable | 7

\Write 0x200 Hit Miss Not knowable | Hit Miss N/A | Yes No Notknowable | 3

Read 0x340 Hit Miss Not knowable | Hit Miss N/A | Yes No Notknowable | UNKNOWN

Read 0x440 Hit Miss Notknowable | Hit Miss N/A | Yes No Notknowable | §

Read 0x200 Hit Miss Not knowable | Hit Miss N/A | Yes No Notknowable | 3

Continued on next page.

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (4 points):

Please consider the following following process tree:

[l putchar(‘C’") [putchar('D’))0 putchar(‘F’)

putchar (A’) [0 fork()[putchar('B’) [0 *DELAY [] putchar (‘E’)U putchar (‘F’)

*DELAY means that the parent should delay at that point until the child is done running.

7(A)(1) (3 points): Please fill in the main() method below such that it implements the specification provided by
the tree above with as few calls to putchar() as possible.

void main () {

// Your code here

putchar (‘A’) ;

if (fork()) {
// Parent
putchar ('B’) ;
wait (NULL) ;
putchar (‘E’) ;

} else {
// Child
putchar (‘C’) ;
putchar ('D’) ;

putchar (‘F’) ;

7(A)(2) (1 points): Consider only the last three characters of the output. Please list all possibilities.

FEF

Continued on next page.

Question 7: Process Representation and Lifecycle + Signals and Files (10 points), cont.
Part B: Files (3 points):

Please consider the following:

int foo() {
int pid;
int fd1, £d2;

fdl = open("/filel", O_RDWR);

dup2 (fd1, 1); // Note that fd=1 is stdout

printf ("A"); // printf()s print to fd=1
if ((pid = fork()) == 0) {
printf ("B");

fd2 = open("/filel", O RDWR);
dup2 (£d2, 1);
printf ("C");

/* POINT X */

} else {
waitpid(pid, NULL, O0);
printf ("D");
close (fdl) ;
printf ("E");

exit (2);

7(B)(1) (1 point) How many processes share the open file structure referred to by fd1 at “POINT
X”in the code?

2

7(B)(2) (1 point) How many file descriptors (total among all processes) share the open structure
referred to by fd1 at “POINT X” in the code?

3

7(B)(3) (1 point) Assuming that /file1 was empty before running this code, what are its contents
after the execution is complete?

CBDE

Continued on next page

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)
Part C: Signals (3 points), cont :

7(C)(1) (2 points): In order for your shell to properly handle background jobs it had to
implement asynchronous signal handling. What signal did it need to handle and what would
have been the cost/consequence of not handling it (properly)?

It had to handle SIGCHLD with an asynchronous signal handler. Otherwise, if it
continued to prompt for, and run, another job, it would not have been able to reap the
background job, and resources would be leaked in the form of “zombie” defunct
processes.

7(C)(2) (1 points): Imagine that a signal is received while the receiving process blocks it. What
happens when should the receiving process subsequently unblock the signal? And, why does
this make sense?

The signal will be received. This makes sense because otherwise when signals are blocked for
concurrency control, they would be lost forever and the action wouldn’t be delayed, but untaken.

Continued on next page.

Question 8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Please consider the following code:

// Based upon:
// https://courses.cs.vt.edu/cs3214/spring2012/butta/documents/SampleFinalCS3214F10.pdf

// here, 'pop' returns the first element
// of the pool's queue, or NULL if queue
// is empty

while (!getShuttingDown (queue)) {
struct work t *work = NULL;

pthread mutex lock (&queue->mutex) ;
work = dequeue (queue); // Return the first element, or NULL if empty
pthread mutex unlock (&queue->mutex) ;

while (work == NULL) {
pthread mutex lock(&queue->mutex) ;
work = dequeue (queue); // Not an async safe function
pthread mutex unlock (&queue->mutex) ;

if (getShuttingDown (queue)) {
return NULL;
}
}

// do work

8(A)(1) (2 points) Consider the above code which accesses a work queue that is shared
among threads; dequeues work, if available, and repeats unless and until the work queue is
shut down. Is this code correct? Hint: Consider whether it is safe, whether it makes progress,
and whether there is starvation.

Yes. It is safe. It does not get stuck, starve any thread, or leave the critical resource
(queue) unprotected.

8(A)(1) (3 points) Consider the code again. With respect to efficiency, it does have some room
for improvement. Please describe the inefficient behavior and a strategy, based upon the
techniques we learned in class, that you might implement to address it.

It has a busy wait loop, which means it is spinning accomplishing nothing while
something could be getting work done. This could be treated like the producer-consumer
problem, which would allow the worker thread to block in a semaphore vs spinning, while
waiting for work.

Continued on next page.

8(B) Designing Concurrency Control (10 points)

Consider the following intersection:

The east-west road has a single westbound lane, as shown.

The north-south road has two lanes, one in each direction, as shown.
Each car knows the road it is on and the turn it wants to take.
Potential collisions exist in the regions noted with dotted boxes.

Recall the following:
] int pthread mutex init (pthread mutex t *mutex, const pthread mutexattr t
*attr) ;
® attr is NULL in our use.
int pthread mutex destroy(pthread mutex t *mutex);
int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

And, assume that consts or typedefs exist for

e NBOUND
e SBOUND
e EBOUND
e WBOUND

As does the following function which actually moves the vehicle,but does no concurrency control:
® void driveThrough(direction t initial dir, direction t turn to);

Continued on next page.

8(B) Designing Concurrency Control (10 points), cont.

// Declare and initialize global variables here

pthread mutex t east mutex;

pthread mutex t west mutex;

pthread mutex 1n1t(&east mutex, NULL) ;
pthread mutex init (&west mutex, NULL);

(3 points)

// Moves car into intersection, used by worker threads (4 points)

// CallsDriveThrough (...)

void advance (direction t initial dir, direction t turn to) ({

if (SBOUND == initial dir) {
pthread mutex lock (west mutex) ;
driveThrough (initial dir, turn to);
pthread mutex unlock (west mutex) ;
return;

}

if ((NBOUND == initial dir) && (NBOUND == turn to)) {

pthread mutex lock (east mutex) ;
driveThrough(initial dir, turn to);
pthread mutex unlock (east mutex) ;
return;

}

if ((NBOUND == initial dir) && (WBOUND == turn to)) {

pthread mutex lock (west mutex) ;
pthread mutex lock (east mutex) ;
driveThrough (initial dir, turn_ to);
pthread mutex unlock (east mutex) ;
pthread mutex unlock (west mutex) ;
return;

}

if ((WBOUND == initial dir) && (NBOUND == turn to)) {

pthread mutex lock (east mutex) ;
driveThrough (initial dir, turn to);
pthread mutex unlock (east mutex) ;
return;

}

if ((WBOUND == initial dir)&& (WBOUND == turn_to)) {

pthread mutex lock (west mutex);
pthread mutex lock (east mutex) ;
driveThrough (initial dir, turn to);
pthread mutex unlock (east mutex) ;
pthread mutex unlock (west mutex) ;
return;

}

// Should never occur

handleError (“Invalid direction”, initial dir,

turn_to) ;

return;

All done! Great work! Enjoy the summer!

	18-213/18-613 Final Exam
	●​Good luck!
	Continued on next page.
	Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)
	Part A: Array Size and Layout (4 points)
	Part B : Structs and Alignment (6 points)
	Part B : Structs and Alignment (6 points), cont.
	 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA (15 points)
	 Part A: Loops and Calling Convention (7 points)
	 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
	 Part A: Loops, Conditionals, and Calling Convention (7 points), cont.
	
	 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
	 Part B: Loops, Conditionals, and Calling Convention (8 points)
	Part A: Cache Configuration (3 points)
	
	
	
	
	
	
	
	
	
	
	
	
	
	Continued on next page.​4(C)Effective Access Time (2 points)
	
	FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A SIMPLE FRACTION

	Part A: Interpreting addresses
	Part B: Hits and Misses (7 points)
	TLB (X=INvalid, V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):
	Part B: Hits and Misses (7 points), cont.
	Part A (4 points):
	Continued on next page.
	
	Continued on next page

