

Andrew ID:

Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read

your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either

your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613 Final Exam
Fall 2024

Instructions:

● Make sure that your exam is not missing any sheets (check page numbers at bottom)

● Write your Andrew ID and full name on this page (and we suggest on each and every

page)

● This exam is closed book and closed notes.

● You may not use anything other than what we provide, except writing implements,

such as pens and pencils, and a simple arithmetic calculator.

● Write your answers in the space provided for the problem.

● If you make a mess, clearly indicate your final answer.

● The exam has a maximum score of 100 points.

● The point value of each problem is indicated.

● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on two machines using two’s complement arithmetic for signed

integers.

● Machine 1 has 6-bit integers

● Machine 2 has 4-bit integers.

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when

impossible.

Machine 1: 8-bit

w/2s complement signed
Machine 2: 6-bit

w/2s complement signed

Binary representation of -38
decimal

1101 1010

UNABLE

Decimal value of +Tmax

01 1111

Decimal value of (30 + 24)
 -10

Binary representation of
-Tmin

1000 0000

Continued on next page.

Part B: Floats (5 points, 1/2 point per blank)

For this problem, please consider a floating point number representation based upon an IEEE-

like floating point format as described below.

● Format A:

○ There are 6 bits

○ There is 1 sign bit s.

○ There are k = 2 exponent bits.

○ You need to determine the number of fraction bits.

✓ Fill in the empty (and not grayed-out) boxes as instructed.

✓ When decimal values are requested, reduced fractions are okay.

✓ Should rounding be required, “round even”

✓

Format

Total Number of Bits
(Decimal)

6

Number of Sign Bits (Decimal) 1

Number of Exponent Bits
(Decimal)

2

Number of Fraction Bits
(Decimal)

3

Bias (Decimal)
1

Largest magnitude negative
number (Decimal value)

 -3 3/4

+Infinity (Binary bit pattern)

0 111 11

001101
(Decimal value, unrounded)

1 5/8

100010
(Decimal value, unrounded)

-1/4

3 ¼ (Binary bit pattern) 010101

What is the rounding error as
a decimal fraction when the
decimal number below is
represented?

1/16

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Array Size and Layout (4 points)

Consider the following definition in an x86-64 system with 8-byte pointers and 8-byte longs:

Definition

unsigned long numbers[3][2];

2(A)(1) (2 point): How many bytes are allocated to numbers? (Write “UNKNOWN” if

not knowable).

Hint: Think sizeof()

 8 bytes * 3 * 2 = 48 bytes

2(A)(2) (2 point): If the address of numbers[0][0] is 0x10000, what is the

address of numbers[1][3]?

 0x10000 + (((1*2)+3)*8) = 0x10000 + 0x28 = 0x10028

Part B : Structs and Alignment (4 points)

For this question please assume “Natural alignment”, in other words, please assume

that each type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {

char c; // 1-byte type

short s1; // 2-byte type

double d; // 8-byte type

short s2;

} partB;

Continued on nest page.

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc.(10 points), cont.

Part B : Structs and Alignment (6 points), cont.

2(B)(1) (2 point): What would you expect to be the value of the expression below?

sizeof(struct partB)

 24 Bytes

2(B)(2) (2 points): Rewrite the struct above to minimize its size after alignment-mandated

padding:

struct {

char c; // 1-byte type

short s1; // 2-byte type

short s2;

double d; // 8-byte type

} partB;

2(B)(3) (2 points): Consider your revised struct from 2(B)(2) above and the definition of

arrayB3 given below, what is the distance, measured in bytes, between the address of

arrayB3[3].s2 and the address of arrayB3[5].d?

 struct partB arrayB3[10];

struct {

char c; // 1-byte type

// 1-byte padding

short s1; // 2-byte type

short s2; // 2-byte type

// 2-byte padding

double d; // 8-byte type

} revisedPartB;

 sizeof(revisedPartB) = 16 bytes

 (&(arrayB3[3]) – &(arrayB3[5])) = 2 * sizeof(revisedPartB) = 2 * 16 bytes = 32 bytes

Offset of field .s2 is 4 bytes

Offset of field .d is 8 bytes

32 bytes – 4 bytes + 8 bytes = 36 bytes

Continued on next page

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA (15 points)
 Part A: Loops and Calling Convention (7 points)

Consider the following code:

(gdb) disassemble loop

Dump of assembler code for function loop:

 0x0000000000001129 <+0>: endbr64

 0x000000000000112d <+4>: push %rbp

 0x000000000000112e <+5>: mov %rsp,%rbp

 0x0000000000001131 <+8>: mov %edi,-0x14(%rbp)

 0x0000000000001134 <+11>: mov %esi,-0x18(%rbp)

 0x0000000000001137 <+14>: movl $0x0,-0x8(%rbp)

 0x000000000000113e <+21>: movl $0x0,-0x4(%rbp)

 0x0000000000001145 <+28>: cmpl $0x0,-0x14(%rbp)

 0x0000000000001149 <+32>: je 0x117f <loop+86>

 0x000000000000114b <+34>: movl $0x0,-0x8(%rbp)

 0x0000000000001152 <+41>: jmp 0x1172 <loop+73>

 0x0000000000001154 <+43>: mov -0x8(%rbp),%eax

 0x0000000000001157 <+46>: cltq

 0x0000000000001159 <+48>: lea 0x0(,%rax,4),%rdx

 0x0000000000001161 <+56>: lea 0x2eb8(%rip),%rax # 0x4020

<numbers>

 0x0000000000001168 <+63>: mov (%rdx,%rax,1),%eax

 0x000000000000116b <+66>: add %eax,-0x4(%rbp)

 0x000000000000116e <+69>: addl $0x1,-0x8(%rbp)

 0x0000000000001172 <+73>: mov -0x8(%rbp),%eax

 0x0000000000001175 <+76>: cmp -0x18(%rbp),%eax

 0x0000000000001178 <+79>: jl 0x1154 <loop+43>

 0x000000000000117a <+81>: mov -0x4(%rbp),%eax

 0x000000000000117d <+84>: jmp 0x11ae <loop+133>

 0x000000000000117f <+86>: mov -0x18(%rbp),%eax

 0x0000000000001182 <+89>: mov %eax,-0x8(%rbp)

 0x0000000000001185 <+92>: jmp 0x11a5 <loop+124>

 0x0000000000001187 <+94>: mov -0x8(%rbp),%eax

 0x000000000000118a <+97>: cltq

 0x000000000000118c <+99>: lea 0x0(,%rax,4),%rdx

 0x0000000000001194 <+107>: lea 0x2e85(%rip),%rax # 0x4020

<numbers>

 0x000000000000119b <+114>: mov (%rdx,%rax,1),%eax

 0x000000000000119e <+117>: sub %eax,-0x4(%rbp)

 0x00000000000011a1 <+120>: subl $0x1,-0x8(%rbp)

 0x00000000000011a5 <+124>: cmpl $0x0,-0x8(%rbp)

 0x00000000000011a9 <+128>: jns 0x1187 <loop+94>

 0x00000000000011ab <+130>: mov -0x4(%rbp),%eax

 0x00000000000011ae <+133>: pop %rbp

 0x00000000000011af <+134>: ret

End of assembler dump.

Continued on next page.

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
 Part A: Loops, Conditionals, and Calling Convention (7 points), cont.

For your reference: Arguments are passed in the order %rdi, %rsi, %rdx, %rcx, %r8, and %r9. %rax is
used for return values.

3(A)(1) (2 points): How many loops does this function have? How do you know?

Two. There are two backward jumps.

3(A)(2) (2 points): How many arguments does this function receive (and use)?

Two %rdi and %rsi (%edi and %esi). They are the registers used for the first two arguments, are
immediately preserved on the stack, and used on the code.

3(A)(3) (2 points): How many C Language if statements are likely contained within this code?

Hint: Do not count conditionals that are likely control the repetition of for loops.

One. It chooses which of the two loops should run. It is a conditional forward jump

that doesn’t escape a loop.

3(A)(4) (1 points): If one or more loops are controlled (start at, end at, or otherwise configured)

by an argument, please indicate which argument, if not, please write “NO”. In either case, how do

you know?

2nd argument. %rsi is used as the end of the 1st loop and the beginning of the 2nd

loop.

Continued on next page.

 3. Assembly, Stack Discipline, Calling Convention, and x86-64 ISA, cont.
 Part B: Loops, Conditionals, and Calling Convention (8 points)

Consider the following compiled from C Language code containing a switch statement and no
if statements. It uses a very common form of the switch statement on the shark machines, but
a slightly different one than some prior exams. Rather than keeping absolute addresses, this
jump table keeps offsets from its own start address. The address of each code block is
the address of the beginning of the jump table plus the value of the code block’s jump
table entry. You’ll see this add before the relevant jump in the assembly. It might make things
easier for you to note the address indicated by the lowest jump table entry and think of the
other entries relative to that one.

(gdb) disassemble foo

Dump of assembler code for function foo:

=> 0x0000555555555169 <+0>: endbr64

 0x000055555555516d <+4>: cmp $0xa,%esi

 0x0000555555555170 <+7>: ja 0x5555555551aa <foo+65>

 0x0000555555555172 <+9>: mov %esi,%eax

 0x0000555555555174 <+11>: lea 0xe89(%rip),%rdx # Hint: %rdx =0x555555556004

 0x000055555555517b <+18>: movslq (%rdx,%rax,4),%rax

 0x000055555555517f <+22>: add %rdx,%rax

 0x0000555555555182 <+25>: notrack jmp *%rax

 0x0000555555555185 <+28>: lea 0x3(%rdi),%eax # Hint: 0x55555555600c

 0x0000555555555188 <+31>: ret

 0x0000555555555189 <+32>: lea -0x3(%rdi),%eax# Hint: 0x555555556014

 0x000055555555518c <+35>: ret

 0x000055555555518d <+36>: lea -0x1(%rdi),%eax

 0x0000555555555190 <+39>: ret

 0x0000555555555191 <+40>: add $0x2,%edi

 0x0000555555555194 <+43>: movslq %edi,%rsi

 0x0000555555555197 <+46>: imul $0x55555556,%rsi,%rsi

 0x000055555555519e <+53>: shr $0x20,%rsi

 0x00005555555551a2 <+57>: sar $0x1f,%edi

 0x00005555555551a5 <+60>: mov %esi,%eax

 0x00005555555551a7 <+62>: sub %edi,%eax

 0x00005555555551a9 <+64>: ret

 0x00005555555551aa <+65>: lea (%rsi,%rdi,1),%eax

 0x00005555555551ad <+68>: ret

End of assembler dump.

Consider also the following memory dump.

(gdb) x/20wx 0x555555556000

0x555555556000: 0x00020001 0xfffff1a6 0xfffff1a6 0xfffff181

0x555555556010: 0xfffff1a6 0xfffff185 0xfffff1a6 0xfffff189

0x555555556020: 0xfffff1a6 0xfffff189 0xfffff18d 0xfffff190

0x555555556030: 0x000a6425 0x3b031b01 0x00000038 0x00000006

0x555555556040: 0xffffefec 0x0000006c 0xfffff01c 0x00000094

0x555555556000: 131073 -3674 -3674 -3711

0x555555556010: -3674 -3707 -3674 -3703

0x555555556020: -3674 -3703 -3699 -3696

0x555555556030: 680997 990059265 56 6

0x555555556040: -4116 108 -4068 148

Continued on next page.

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)

Part B: Conditionals, cont. (8 points)

(3)(B)(1) (2 point): At what address does the jump table shown above begin? How do you know?

0x555555556004. It is the base of the indirect jump @ <+18>

(3)(B)(2) (2 points): Is there a default case? If so, at what address does it begin? How do you

know?

Yes. 0x5555555551aa <foo+65>. It is the address that is jumped to by the guard.

(3)(B)(3)(2 points): Which case(s), if any, fall through to the next case after executing some of

their own code? How do you know?

Hint: Give the case number not the address.

Case 9. There is no return before it continue down into assembly code that is, according to
the start point in the jump table, part of case 10.

(3)(B)(2) (2 points): What integer input values are managed by non-default cases of the switch

statement? How do you know?

2, 4, 6, 8, 9, and 10. Their entries in the table are not the start point for the default case as
identified by the initial guard jump.

Continued on next page.

4. Caching, Locality, Memory Hierarchy, Effective Access Time
Part A: Caching (8 points)

Given a model described as follows:

● Associativity: 2-way set associative

● Total size: 128 bytes (not counting meta data)

● Block size:16 bytes/block

● Replacement policy: Set-wise LRU

● 8-bit addresses

4(A)(1) (0 point) How many bits for the block offset?

 4

4(A)(2) (0 point) How many bits for the set index?

 2

4(A)(3) (0 point) How many bits for the tag?

 2

4(A)(4) (8 points, 1 points each): For each of the following addresses, please indicate if it hits,

or misses, and if it misses, if it suffers from a capacity miss, a conflict miss, or a cold miss:

Address Circle one (per row): Circle one (per row):

0x61 Hit Miss Capacity Cold Conflict N/A

0XAC Hit Miss Allocate Replace N/A

0X6A Hit Miss Capacity Cold Conflict N/A

0X7E Hit Miss Allocate Replace N/A

0X7E Hit Miss Capacity Cold Conflict N/A

0XEE Hit Miss Allocate Replace N/A

0XAD Hit Miss Capacity Cold Conflict N/A

0X61 Hit Miss Allocate Replace N/A

Continued on next page.

4. Caching, Locality, Memory Hierarchy, Effective Access Time, cont.

4(B)(1) (2 points): Consider the following code:

short array[ARRAY_SIZE];

int sum=0;

for (int index=0; index<(ARRAY_SIZE-1); index+= step)

sum += array[index]+ array[index+1];

Imagine that the data type increases from a short to an int to a long. As the data size increases,

holding the cache configuration constant, how does each of spatial and temporal locality

change? Please mark the table below.

Spatial Decrease Increase Unaffected

Temporal Decrease Increase Unaffected

4(B)(2) (2 points): Consider the following code:

long array[ROWS][COLS];

long sum=0;

for (int count=0; count < REPEAT; count++)

 for (int row=0; index<ROWS; row +=2)

 for (int col=0; col<COLS; col +=2)

 sum += array[row][col] + array[row][col+1];

Imagine an extremely large array (relative to the cache size), a long size of 8 bytes, and a

cache block size of 16 bytes. To the nearest whole percent or simple fraction, what would you

expect the miss rate for accesses to “array” to be? Why?

 50%.

array[row][col+1] misses each time, but array[row][col] hits each time, because it
was loaded with the prior iteration of the loop. Since the array is huge there is no
benefit from the repetition.

Continued on next page

4. Caching, Locality, Memory Hierarchy, Effective Access Time

Part C: Effective Access Time (3 points)
Imagine a system with a DRAM-based main memory layered beneath an SRAM cache.

● The SRAM cache has a 5nS access time.

● The penalty for an SRAM cache miss is 45nS.

Your goal is to design a system with a system with a memory access time of X, or better. What is the
maximum SRAM cache miss rate that can be tolerated. Round up to a whole number.

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A

SIMPLE FRACTION

What is the maximum acceptable miss rate to achieve a system performance of 20nS?

4(C)(1) (3points) MISS_RATE =

5ns + X*45ns = 20nS
X*45ns = 15ns
X= 15ns/45ns
X = 1/3

Continued on next page.

Question 5: Malloc(), Free(), and User- Memory Allocation (10 points)

5(A)(1) (2 points): When implementing malloc, it was suggested that certain lists be accessed
in a circular fashion vs a head-first fashion. Was this intended to improve throughput, utilization,
both, or neither? Why?

Throughput. It prevented favoring the head-most (or tail-most) parts of the list and,
thereby, draining those areas of the most useful blocks, but walking over them more
frequently, anyway.

5(A)(2) (2 points): In a general purpose allocator utilizing segregated lists, it is often less useful
to perform best-fit within an explicit list than it is in a general purpose allocator with only one
segregated list. Why?

Since the list are already organized by size, the benefit to utilization is more limited,
making it less likely to be worth the throughput cost.

5(A)(3) (2 points): When implementing an explicit list allocator, it was necessary (within the
bounds of reason) to keep the underlying implicit list. Why?

Without it, there’d be no reasonable way to coalesce, since coalescing can only be
performed by physically adjacent blocks.

5(A)(4) (2 points): Why is free() unable to accept a pointer within an allocated block, i.e. why
can it only accept a pointer to the beginning of the payload?

It needs to be able to locate the header from the pointer it is given.

5(A)(5) (2 points): Provide two (2) reasons that malloc might pad the requested payload.

(i) Alignment. It needs to ensure that each payload pointer meets the largest
alignment rule in place on the system.

(ii) Throughput. It is too costly to generate tiny blocks that are unlikely to be used.

Continued on next page.

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical

addresses. Imagine a system has the following parameters:

● Virtual addresses are 12 bits wide.

● Physical addresses are 10 bits wide.

● The page size is 128 bytes.

● The TLB is 4-way set associative with 8 total entries.

● The TLB may cache invalid entries

● A single level page table is used

Part A: Interpreting addresses

6(A)(1)(2 points): Please label the diagram below showing which bit positions are

interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

N N O O O O O O O O

6(A)(2)(2 points): Please label the diagram below showing which bit positions are

interpreted as each of the VPO and VPN (top line) and each of the TLBI and TLBT

(bottom line). Leave any unused entries blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

N N N N N O O O O O O O

TLBI/
TLBT T T T T I

6(A)(3) (2 points): How many entries exist within each page table? Hint: This is the

same as the total number of pages within each virtual address space.

32

6(A)(4) (2 points): How many sets are in the TLB?

2 sets

7. Virtual Memory, Paging, and the TLB (15 points), cont.

Part B: Hits and Misses (7 points)

Shown below are the initial states of the TLB and partial page table.

TLB (X=INvalid, V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Set Tag PPN BITS Scratch space for you

0 0 5 X-RW TLB Miss

0 1 9 X-RW
TLB Miss, PT Miss

0 2 13 X-R TLB Miss, PT Hit

0 3 27 V-RW TLB Hit

1 0 7 V-NR TLB Hit

1 1 11 X-RW TLB Miss, PT-Hit

1 2 15 V-R TLB Hit, PT Hit

1 5 19 X-RW Not needed

Page Table (X=INvalid V=VALID, R=READ, W=WRITE, NR=Not Resident, e.g. swapped):

Index/VPN PPN BITS Scratch space for you

0 5 V-RW PT-Hit

1 7 V-NR PT-Hit

2 9 X-RW PT-Miss

3 11 V-RW PT-Hit

4 13 V-R PT-Hit, Invalid

5 15 V-R PT-Hit, Invalid

6 27 V-RW PT-Hit

Continued on next page.

8. Virtual Memory, Paging, and the TLB (15 points), cont.

Part B: Hits and Misses (7 points), cont.

Consider the following memory access trace e.g. sequence of memory operations

listed in order of execution, as shown in the first two columns (operation, virtual

address). It begins with the TLB and page table in the state shown above.

Please complete the remaining columns

Operation Virtual
Address

TLB
Hit or Miss?

Page Table

Hit or Miss?

Page Fault?

Yes or No?

PPN
If Knowable

Write 0x208 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 13

 Write 0x280 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 15

Write 0x308 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 27

Read 0x100 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

Write 0x180 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 11

Read 0x004 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable 5

Read 0x084 Hit Miss Not knowable Hit Miss N/A Yes No Not knowable

 Question 7: Process Representation and Lifecycle + Signals and Files (10 points)
Part A (4 points):

Please consider the following following process tree:

 . → putchar(‘E’) → putchar(‘F’)

 .

 .

 putchar(‘A’) → putchar(‘B’) → fork() → purchar(‘D’) → *DELAY → putchar(‘F’)

 *DELAY means that the parent should delay at that point until the child is done running.

7(A)(1) (3 points): Please fill in the main() method below such that it implements the specification provided by
the tree above with as few calls to putchar() as possible.

void main(){

 putchar(‘A’);

 putchar(‘A’);

 if (!fork()) {

 putchar(‘E’);

 } else {

 putchar(‘D’);

 wait(NULL);

 }

 putchar(‘F’);

}

7(A)(2) (1 points): How many possible output strings are there?

 Two (2)
 AB (ED/DE) FF

Continued on next page.

Question 7: Process Representation and Lifecycle + Signals and Files (10 points), cont.

Part B: Files (3 points):

Please consider the following code and an input file that consists of “ABCDEFGHIJKLMNOP”:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

void main() {

int fd1, fd2;

char c;

fd1=open("files.txt", O_RDONLY);

read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

dup2(fd1, fd2);

read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

read (fd2, &c, 1); write(STOUT_FILENO, &c, 1);

if (!fork()) {

 read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

 read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

 read (fd2, &c, 1); write(STOUT_FILENO, &c, 1);

 } else {

 read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

}

7(B)(1) (1 points): What are the first three (3) characters of output?

 ABC

7(B)(2) (1 points): How many possibilities are there for the next four (4) characters of output?

28 possibilties

7(B)(3) (1 points): Please explain your answer to 7(B)(2) above.

All of the parent (due to the dup2) and child (nature of fork) file descriptors share
the same file table entry, so they are all sharing the same offset state.

The child’s read() can occur before any of the three read parent read()s or after the
last one. So, it has 4 possible interleavings. The child write can occur any time
after that.

Continued on next page

Question 7: Process Representation and Lifecycle + Signals and Files (10 points), cont.

Part B: Files (3 points), cont :

Let’s label some points:

 if (!fork()) {

 (A)read (fd1, &c, 1);

 (B)write(STOUT_FILENO, &c, 1);

 (C)read (fd1, &c, 1);

 (D)write(STOUT_FILENO, &c, 1);

 (E)read (fd2, &c, 1);

 (F) write(STOUT_FILENO, &c, 1);

 (G)

 } else {

 read (fd1, &c, 1); write(STOUT_FILENO, &c, 1);

}

 A: If the child read occurs here, the child write can, in effect, occur at:
 A, B, C, D, E, F, G
 B: If the child read occurs here, the child write can, in effect, occur at:
 B, C, D, E, F, G
 C: If the child read occurs here, the child write can, in effect, occur at:
 C, D, E, F, G
 D: If the child read occurs here, the child write can, in effect, occur at:
 D, E, F, G
 E: If the child read occurs here, the child write can, in effect, occur at:
 E, F, G
 F: If the child read occurs here, the child write can, in effect, occur at:
 F, G
 G: If the child read occurs here, the child write can, in effect, occur at:
 G

 28 possibilities

Continued on next page.

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part C: Signals (3 points), cont :

7(C)(1) (2 points): Within the SIGCHLD handler of your shell, your waitpid() was within a

loop. Why?

The pending bit of signal state is exactly that, one bit. It is not a queue. It

indicates only whether or not at least one instance of that signal was received.

There is no queue or counter. As a result, it is unclear how many processes are

ready for waitpid(). We just know that it is at least one (1).

7(C)(2) (1 points): Within the SIGCHLD handler of your shell it was necessary to block other

SIGCHLD signals. Why?

The SIGCHLD handler maintained the job list and other state that was not safe
for concurrency. If the signal handler could interleave with itself, the state could
be corrupted.

Continued on next page.

Question 8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

Please consider the following code which defines a singly linked list. Assume that a ”dummy” head node
always exists.

// https://docs.oracle.com/cd/E19683-01/806-6867/6jfpgdcng/index.html#sync-50939

node1_t *delete(node_t startingPoint, int value)

{

 node1_t *prev, *current;

 prev = startingPoint;

 pthread_mutex_lock(&prev->lock);

 while ((current = prev->link) != NULL) {

 pthread_mutex_lock(¤t->lock);

 if (current->value == value) {

 prev->link = current->link;

 pthread_mutex_unlock(¤t->lock);

 pthread_mutex_unlock(&prev->lock);

 current->link = NULL;

 return(current);

 }

 pthread_mutex_unlock(&prev->lock);

 prev = current;

 }

 pthread_mutex_unlock(&prev->lock);

 return(NULL);

}

And recall that mutexes can be initialized, locked, and unlocked as below:

 pthread_mutex_lock(&mutex);

 pthread_mutex_unlock(&mutex);

 pthread_mutex_init(&mutex, NULL); // Intializes as an unlocked mutex

8(A)(1) (2 points) Imagine this code is used for a simple singly linked list with a distinguished,

“dummy” head node such that there is only one startingPoint and it always exists. Is the

code above free of concurrency control problems? If yes, write “Yes”. If not, please write “No”

and explain. Please focus only on concurrency control problems.

Yes.

Continued on next page.

8(A)(2) (3 points) Now imagine the provided code above is used for a singly linked, but

circular, list without a distinguished head node or a dummy. In other words imagine that each

thread using this list might be starting at a different node. Is the code free of concurrency

control problems? If yes, write “Yes”. If not, please write “No” and explain.

Please ignore problems, such as an empty list or the item not being found, that are unrelated

to concurrency control.

To avoid the potential for an endless loop, please assume the following single change:

 while ((current = prev->link) != NULL) {

 ------------ becomes ----------------

 while ((current = prev->link) != startingPoint) {

No. Since the list is circular there an by a circular dependency for the lock.

Imagine a 2-node list and one thread attepting to delete the 1st node and another

thread attempting to delete the 2nd node.

8(B) Designing Concurrency Control (10 points)

Consider the following intersection:

• The north-south road has a single southbound lane, as shown.

• The east-west road has two lanes, one in each direction, as shown.

• Each car knows the road it is on and the turn it wants to take.

• Potential collisions exist in the regions noted with dotted boxes.

Continued on next page.

8(B) Designing Concurrency Control (10 points), cont.

Recall the following:

• int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

o attr is NULL in our use.

• int pthread_mutex_destroy(pthread_mutex_t *mutex);

• int pthread_mutex_lock(pthread_mutex_t *mutex);

• int pthread_mutex_trylock(pthread_mutex_t *mutex);

• int pthread_mutex_unlock(pthread_mutex_t *mutex);

And, assume that consts or typedefs exist for

• NBOUND

• SBOUND

• EBOUND

• WBOUND

As does the following function which actually moves the vehicle,but does no concurrency control:

• void driveThrough(direction_t initial_dir, direction_t turn_to);

8(B)(1) (7 points): Please implement the following:

// Decare and initialize global variables here (3 points)

pthread_mutex_t north_mutex;

pthread_mutex_t south_mutes;

pthread_init(&north_mutex, NULL);

pthread_init(&south_mutex, NULL);

// Moves car into intersection, used by worker threads (4 points)

// CallsDriveThrough(…)

void advance (direction_t initial_dir, direction_t turn_to) {

 if ((SBOUND == initial_dir) && (EBOUND == turn_to)) {

 pthread_mutex_lock(north_mutex);

 pthread_mutex_lock(south_mutex);

 vehicleMovesThroughIntersection(initial_dir, turn_to);

 pthread_mutex_unlock(south_mutex);

 pthread_mutex_unlock(north_mutex);

 return;

 }

 if ((SBOUND == initial_dir) && (WBOUND == turn_to)) {

 pthread_mutex_lock(north_mutex);

 vehicleMovesThroughIntersection(initial_dir, turn_to);

 pthread_mutex_unlock(north_mutex);

 return;

 }

Continued on next page.
8(B) Designing Concurrency Control (10 points), cont.
8(B)(1) (7 points): Please implement the following, cont.:

 if (EBOUND == initial_dir) { // Must stay EBOUND

 pthread_mutex_lock(south_mutex);

 vehicleMovesThroughIntersection(initial_dir, turn_to);

 pthread_mutex_unlock(south_mutex);

 return;

 }

 if (WBOUND == initial_dir) { // Must stay WBOUND

 pthread_mutex_lock(north_mutex);

 vehicleMovesThroughIntersection(initial_dir, turn_to);

 pthread_mutex_unlock(south_mutex);

 return;

 }

 // Should never occur

 handleError (“Invalid direction”, initial_dir, turn_to);

 return;

 }

}

The end. All done. You made it! Happy break!

