
Andrew ID:
Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read
your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read either
your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Fall 2021 Final Exam
Practice

Instructions:
● Make sure that your exam is not missing any sheets (check page numbers at bottom)
● Write your Andrew ID and full name on this page (and we suggest on each and every

page)
● This exam is closed book and closed notes (except for 2 double-sided note sheets).
● You may not use any electronic devices or anything other than what we provide, your

notes sheets, and writing implements, such as pens and pencils.
● Write your answers in the space provided for the problem.
● If you make a mess, clearly indicate your final answer.
● The exam has a maximum score of 100 points.
● The point value of each problem is indicated.
● Good luck!

Problem # Scope Max Points Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Page 1 of 26

Question 1: Representation: “Simple” Scalars (10 points)

Part A: Integers (5 points, 1 point per blank)

Assume we are running code on two machines using two’s complement arithmetic for signed
integers.

● Machine 1 has 6-bit integers
● Machine 2 has 4-bit integers.

Fill in the five empty boxes in the table below when possible and indicate “UNABLE” when
impossible.

Machine 1: 6-bit
w/2s complement signed

Machine 2: 4-bit
w/2s complement signed

Binary representation of -7
decimal

Soln: 111001 Soln: 1001

Binary representation of -17
decimal

Soln: Unable

Decimal value of +Tmax Soln: 011111 = 31

Binary representation of -1
decimal

Soln: 1111

Continued on next page.

Page 2 of 26

Part B: Floats (5 points, 1/2 point per blank)
For this problem, please consider a floating point number representation based upon an IEEE-
like floating point format as described below.

● Format A:
○ There are 5 bits
○ There is 1 sign bit s.
○ There are k = 2 exponent bits.
○ You need to determine the number of fraction bits.

● Format B:
○ There are 6 bits
○ There is 1 sign bit s.
○ The bias is 1.

Fill in the empty (non grayed-out) boxes as instructed.

Format A Format B

Total Number of Bits
(Decimal)

5 6

Number of Sign Bits (Decimal) 1 1

Number of Fraction Bits
(Decimal)

Soln: 2 Soln: 3

Number of Exponent Bits
(Decimal)

2 Soln: 2

Bias (Decimal) Soln: 1 1

Smallest magnitude negative
number (Decimal value)

Soln: ⅛
100001 = ⅛ x 20

+Infinity (Binary bit pattern) Soln: 01100

110110
(Decimal value, unrounded)

Soln: -7/4 = -1-1/2
E=(2-1)=1

(1+½+¼) x 20

00011
(Decimal value, unrounded)

Soln: 3/4
E = (1 - 1) = 0

(½+¼) x 20

011100
Interpretation of bit pattern

Circle one: Soln:NaN
Normalized/Denormalized/Infinity/Nan

// x and y are floats
// x and y are positive
(x+y) > (x)

Circle one: Soln: Depends
Always equal
Always unequal
It depends

Page 3 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part A: Arrays (5 points)

Consider the following code running in an x86-64 system with 8-byte pointers and 4-byte ints.
Assume it successfully prints each and every element of the numbers array.

void fn(int **numbers) {
 for (int row=0; row < 3; row++)
 for (int col=0; col < 2; col++)
 printf (“numbers[%d][%d]=%d”, row, col, numbers[row][col]);
}

2(A)(1) (1 point): How many bytes are allocated to numbers? (Write “UNKNOWN” if not
knowable).
Hint: Think sizeof()

Soln: 8-Bytes (The size of a pointer)

2(A)(2) (1 point): What is the minimum size of the memory allocation directly referenced by
numbers?

Soln: 24-bytes (The size of 3 pointers, one for each element of the array directly referenced by
numbers).

2(A)(3) (3 points) Write C Language code to free all dynamic memory associated with
numbers. It is not necessary to set the numbers pointer to NULL once done.

void fn(int **numbers) {

 // Soln
 for (int row=0; row < 3; row++)
 free (numbers[row])
 free (numbers)
}

Continued on next page.

Page 4 of 26

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Part B: Structs, Unions, and Alignment (5 points)

For this question please assume “Natural alignment”, in other words, please assume that each
type must be aligned to a multiple of its data type size.

Please consider the following struct:

struct {
 char c1; // 1-byte type
 int i; // 4-byte type
 char c2;
} partB;

2(B)(1) (1 point): What would you expect to be the value of the expression below?

 sizeof(struct partB)

Soln:
cXXXiiiicXXX
12 bytes

2(B)(2) (1 points): Rewrite the struct above to minimize its size after alignment-mandated
padding:

Soln: Answers may vary but should all be the same size as this:

struct {
 char c1; // 1-byte type
 char c2;
 int i; // 4-byte type
} partB;

2(B)(3) (1 points): How many bytes are required for the struct you designed for 2(B)(2) above?

Soln: 8-bytes

Continued on next page.

Page 5 of 26

2(B)(3) (1 points): How many bytes are required for the following union?
Hint: Think sizeof()

union {
 int i; // 4-byte type
 short s; // 2-byte type
 long l; // 8-byte type
} u;

Soln: 8-bytes, the size of the largest type

2(B)(4) (1 points): Given the definition above and the code below, and assuming an x86-64
host, is the code below guaranteed to print the same value twice? Why or why not?

union u;

scanf(“%d”, &u.i);

printf (“%d\n”, u.i);
printf (“%ld\n”, u.l);

Soln: No. Although longs and ints use the same form of representation, the scanf() reding the
int won’t reset the high order bits of the long. Since they are initialized, they can be anything.

Page 6 of 26

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 ISA

Part A: Loops and Calling Convention (7 points)

Consider the following code:

function:
.LFB0:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movl %edi, -20(%rbp)
 movl %esi, -24(%rbp)
 movl -20(%rbp), %eax
 movl %eax, -4(%rbp)
 jmp .L2
.L5:
 movl $0, -8(%rbp)
 jmp .L3
.L4:
 movl $88, %edi # 88 is ASCII for ‘X’
 call putchar
 addl $1, -8(%rbp)
.L3:
 movl -8(%rbp), %eax
 cmpl -24(%rbp), %eax
 jl .L4
 movl $10, %edi # 10 is ASCII for ‘\n’
 call putchar
 subl $1, -4(%rbp)
.L2:
 cmpl $0, -4(%rbp)
 jg .L5
 nop
 leave
 ret

3(A)(1) (2 points): How many loops does this function have? How do you know?

Soln: 2. There are two backward jumps.

3(A)(2) (1 points): How many arguments does this function receive (and use)?

Soln: 2

Continued on next page.

Page 7 of 26

3(A)(3) (2 points): For each argument you listed, please indicate either (a) which specific
register was used to pass it in, or (b) that it was sourced from the stack (you don’t need to give
the address). Please leave any extra blanks empty (Hint: You won’t need all of them).

Argument Specific register or “Stack”

1st Soln: %edi

2nd Soln: %esi

3rd Soln: Unused

4th Soln Unused

5th Soln: Unused

Consider the following function activation. Consistent with your answer to the question above, it
includes more arguments that the function actually requires. Please ignore any extra arguments.

function(10, 9, 8, 7, 6);

3(A)(2) (2 points): How many times does the inner-most loop run?
Hint: If the inner-most loop is nested, you may need to consider the loops in which it is nested.

Solution: 90. The outer loop runs 10 times. The inner loop runs 9 times per iteration of the outer
loop. Thus the inner loop runs 90 times in total.

Continued on next page.

Page 8 of 26

Part B: Conditionals (8 points)

Consider the following code:

Dump of assembler code for function function:
 0x0000000000400533 <+0>: cmp %esi,%edi
 0x0000000000400535 <+2>: jg 0x400563 <function+48>
 0x0000000000400537 <+4>: cmp $0x5,%edi
 0x000000000040053a <+7>: ja 0x400553 <function+32>
 0x000000000040053c <+9>: mov %edi,%eax
 0x000000000040053e <+11>: jmpq *0x400620(,%rax,8)
 0x0000000000400545 <+18>: mov $0x6,%edi
 0x000000000040054a <+23>: lea 0x2(%rdi),%eax
 0x000000000040054d <+26>: retq
 0x000000000040054e <+27>: mov $0xffffffec,%edi
 0x0000000000400553 <+32>: mov %edi,%eax
 0x0000000000400555 <+34>: shr $0x1f,%eax
 0x0000000000400558 <+37>: add %edi,%eax
 0x000000000040055a <+39>: sar %eax
 0x000000000040055c <+41>: retq
 0x000000000040055d <+42>: mov $0x2,%eax
 0x0000000000400562 <+47>: retq
 0x0000000000400563 <+48>: repz retq

Consider also the following memory dump:

0x400610: 0x0000000000020001 0x0000000000000000
0x400620: 0x0000000000400553 0x000000000040055d
0x400630: 0x0000000000400545 0x000000000040054a
0x400640: 0x000000000040054a 0x000000000040054e
0x400650: 0x000000443b031b01 0xfffffdb000000007
0x400660: 0xfffffdf000000090 0xfffffedd00000060
0x400670: 0xfffffee3000000b8 0xffffff15000000d0

(3)(B)(1) (1 points): How many “if statements” are likely present in the C Language code from
which this assembly was compiled? At what addresses of the assembly code shown above
does each occur?

This code was compiled from C Language code containing a switch statement. Please do not
include any “if statement” present in the assembly that is likely part of the switch
statement in the original C code, i.e. do not count any “if statement” that is used to manage one
or more “cases” of a “switch statement”.

Continued on next page.

Page 9 of 26

Soln:
1
There are two forward jumps, which are candidates 0x400535 and 0x40053A. But, the second
one is considering the switch control variable, comparing it to a bound, and jumps into code
listed in the jump table. So, the one at 0x400535 is likely an “if statement” in the C code,
whereas the other is likely handing a “case” of the switch, specifically the default case.

(3)(B)(2) (2 points): What range of integer input values are managed by non-default cases of
the switch statement? How do you know?

Soln: 1-4
Negative values, 0, and values above 5 are managed by the default case. Note that negatives
look like large integers when compared using unsigned “ja”.

(3)(B)(3) (1 point): Is there a default case? If so, at what address does it begin? How do you
know?

Soln: Yes. 0x400553. It is used for both the 0 case and any case larger than 5.

(3)(B)(4) (2 points): Which case(s), if any, share exactly the same code? How do you know?

Soln: Cases 3 and 4. They have the same pointer in the jump table.

(3)(B)(5) (2 points): Which case(s), if any, fall through to the next case after executing some of
their own code? How do you know?

Soln: Cases 2 and 5.

If we look at the code block beginning with where the 2nd entry in the jump table points, it
overlaps the code block pointed to by the next entry (and the entry after that) in the jump table
without a jump or return to prevent it from falling through.

The same is true if we look at the code beginning with the 5th entry in the jump table and the 6th
entry, the default case, that follows.

Page 10 of 26

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part A: Caching (8 points)

Given a model described as follows:
● Associativity: 2-way set associative
● Total size: 512 bytes (not counting meta data)
● Block size: 64 bytes/block
● Replacement policy: Set-wise LRU
● 16-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

Soln: 64 bytes = 6 bits to index

4(A)(2) (1 point) How many bits for the set index?

Soln: (512 bytes) / (64 bytes/block) / (2 blocks/set) = 4 sets; 2 bit indexes 4 sets.

4(A)(3) (1 point) How many bits for the tag?

Soln: (16 bit address) - (6 bits for block offset) - (2 bit for set index) = 8 bits left over for tag

4(A)(4) (5 points, ½ point each): For each of the following addresses, please indicate if it hits,
or misses, and if it misses, if it suffers from a capacity miss, a conflict miss, or a cold miss:

Address Circle one
(per row):

Circle one
(per row):

0xFF30 Hit Miss Capacity Cold Conflict N/A

0XAA00 Hit Miss Capacity Cold Conflict N/A

0XFF07 Hit Miss Capacity Cold Conflict N/A

0X5580 Hit Miss Capacity Cold Conflict N/A

0XAA80 Hit Miss Capacity Cold Conflict N/A

0X0000 Hit Miss Capacity Cold Conflict

0XAA30 Hit Miss Capacity Cold Conflict N/A

0XAA88 Hit Miss Capacity Cold Conflict N/A

0XAAE8 Hit Miss Capacity Cold Conflict N/A

0X0038 Hit Miss Capacity Cold Conflict N/A

Page 11 of 26

 N/A

Part B: Locality (4 points)

4(B)(1) (2 points): Consider the following code:

int array[ARRAY_SIZE];
int sum=0;
for (int index=0; index<(ARRAY_SIZE-1); index+= step)
 sum += array[index]+ array[index+1];

Considering only access to “array”, as “step” increases (significantly), please mark how each
type of locality would be impacted. Please also explain why in the space provided.

Spatial Decrease Increase Unaffected

Temporal Decrease Increase Unaffected

Soln: Spatial locality decreases because the stride skips past parts of the cache. Temporal
locality remains, because it is still accessing adjacent elements, so an access is repeated.

4(B)(2) (2 points): Consider the following code:

int array[ROWS][COLS];
int sum=0;
for (int row=0; index<ROWS; row +=2)
 for (int col=0; col<COLS; col +=2)
 sum += array[row][col]

Imagine an extremely large array, an int size of 4 bytes, and a cache block size of 16 bytes. To
the nearest whole percent or simple fraction, what would you expect the miss rate for accesses
to “array” to be? Why?

Soln: 50%. 4 ints fit per block. The 1st access misses and brings in 4. It skips past the
next one and hits. Then steps to the next block and repeats.

Continued on next page

Page 12 of 26

Part C: Memory Hierarchy and Effective Access Time (3 points)

Imagine a system with a DRAM-based main memory layered beneath an SRAM cache.

● The DRAM has a 100nS access time.
● The SRAM has a 10nS access time.
● In the event of a miss, memory access time and cache access time do not overlap: They

occur 100% sequentially, one after the other.

What is the maximum acceptable miss rate to achieve a system performance of 20nS?

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A
SIMPLE FRACTION

MISS_RATE =

Soln:
EFFECTIVE_ACCESS_TIME = HIT_TIME + MISS_RATE*MISS_PENALTY
Miss penalty = 100nS
20nS = 10nS + MISS_RATE * 100nS
10nS = MISS_RATE*100nS
MISS_RATE = 10nS/100nS
MISS_RATE=1/10th

Page 13 of 26

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Consider the following code:

#define N 4
void *pointers[N];
int i;

for (i = 0; i < N; i++) {
 pointers[i] = malloc(6);
}

for (i = 0; i < N; i++) {
 free(pointers[i]);
}

for (i = 0; i < N; i++) {
 pointers[i] = malloc(42);
}

And a malloc implementation as below:

● Implicit list
● Headers of size 8 bytes
● Footer size of 8 bytes
● Every block is constrained to have a size that is a multiple of 8 (In order to keep

payloads aligned to 8 bytes).
● The structure of the header and footer are the same. Each contain the size of the block

and, encoded within it, a single bit to indicate whether the block is allocated or free.
● A first-fit allocation policy is used.
● If no unallocated block of a large enough size to service the request is found, sbrk is

called for the smallest multiple of 8 that can service the request.
● The heap is unallocated until it grows in response to the first malloc.
● A complete (left+right) constant-time coalesce is employed.
● Block splitting is permitted so “leftover” space after an allocation can be returned to the

free list so long as it is large enough to satisfy the constraints above

NOTE: You do NOT need to simplify any mathematical expressions. Your final answer may
include multiplications, additions, and divisions.

Continued on next page.

Page 14 of 26

4(A) (2 points) After the given code sample is run, how many total bytes have been requested
via sbrk? In other words, how many bytes are allocated to the heap?

Soln: 256B = 4*(8B + 48B + 8B)

4(B) (2 points) After the given code sample is run, how many of those bytes are used for
currently allocated blocks (vs currently free blocks), including internal fragmentation and header
information?

Soln: 256B. Everything is currently allocated.

4(C)(2 points) After the given code sample is run, how much internal fragmentation is there
(Answer in bytes)? (Hint: Free blocks have no internal fragmentation).

Soln: 88B = 4*(8B + 8B + 6B)

4(D)(2 points) How much more or less internal fragmentation would there be if constant-time
coalesce were not used (assume a full left-right coalesce is still done, just not a constant-time
coalesce) and the headers and footers were optimized accordingly?

Soln: 32B. Only headers would be needed, saving 8B per allocated block.

4(E)(2 points) Which of the following best describes the complexity of full (left+right) coalescing
of this data structure without the footers? And, why? Circle one, and write your explanation
below.

Constant time/O(1) Linear time/O(n) Quadratic time/O(N2) Exponential time/O(2n)

Soln: Linear time/O(n). Without the footers, there is no way to “look left”, so, to get
access to neighbors in both directions, one would have to traverse the list.

Page 15 of 26

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical
addresses. Imagine a system has the following parameters:

● Virtual addresses are 12 bits wide.
● Physical addresses are 12 bits wide.
● The page size is 128 bytes.
● The TLB is 2-way set associative with 4 total entries.
● A single level page table is used

Part A: Interpreting addresses

6(A)(1)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the PPO and PPN. Leave any unused entries blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

PPN/
PPO

N N N N N O O O O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are
interpreted as each of the VPO and VPN (top line) and each of the TLBI and TLBT
(bottom line). Leave any unused entries blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

VPO/
VPN

N N N N N O O O O O O O

TLBI/
TLBT

T T T I

6(A)(3) (1 points): How many entries exist within each page table? Hint: This is the
same as the total number of pages within each virtual address space.

Soln: One entry per page. 5 bits per page number means 32 pages.

Continued on next page.

Page 16 of 26

Part B: Hits and Misses (12 points)

Shown below are a TLB and partial page table.
TLB:

Index Tag PPN Valid Scratch space for you

0 0x4 12 1 vpn=0 0000 = 0x10 = 16

0 0x1 6 0 vpn=0 0100 = 0x04 = 4

1 0x4 2 1 vpn=1 0001 = 0x11 = 17

1 0x6 1 0 vpn=1 1001 = 0x15 = 21

Page Table:
Index/VPN PPN Valid Scratch space for you

4 5 1 TLB Miss, No fault

16 12 1 TLB Hit

17 2 1 TLB Hit

21 8 0 TLB Miss, Page Fault

For each address shown below, please indicate if it is a TLB Hit or Miss, whether or not
it is a page fault, or if either can’t be determined from the information provided.
Additionally, if knowable from the information provided, please provide the valid PPN

Virtual
Address

TLB
Hit or Miss?

Page Fault?
Yes or No

PPN
If Knowable

0x22A Hit Miss Not knowable Yes No Not knowable 5

0x82A Hit Miss Not knowable Yes No Not knowable 12

0x8B7 Hit Miss Not knowable Yes No Not knowable 2

0xA87 Hit Miss Not knowable Yes No Not knowable Not knowable

Page 17 of 26

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (3 points):

Please consider the following code:

 void main(){
 printf (“A”); fflush(stdout);
 if (!fork()) {
 printf (“C”); fflush(stdout);
 fork();
 printf (“D”); fflush(stdout);
 } else {
 printf (“B”); fflush(stdout);
 }

}

7(A)(1) (1 points): Give one possible output string

 Soln: Many are possible, e.g ACDDB
 A->C->D
 A->B

7(A)(2) (1 points): Give one output string that has the correct output characters (and number of
each character), but in an impossible order.

Soln: Many possible, e.g. ADCDB

7(A)(3) (1 points): Why can’t the output you provided in 7(A)(2) be produced? Specifically,
what constraint(s) from the code does it violate?

Soln: Many are possible. They should violate one or more of the below:

A->C->D
 A->B

Continued on next page.

Page 18 of 26

Part B (3 points):

Please consider the following code and an input file that consists of “ABCDEFGHIJKLMNOP”:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

void main() {
 int fd1, fd2;
 char c;

 fd1=open("files.txt", O_RDONLY);
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);

 if (!fork()) {
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 fd2=5;
 dup2(fd1, fd2);
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 read (fd2, &c, 1); printf ("%c", c); fflush(stdout);
 } else {
 read (fd1, &c, 1); printf ("%c", c); fflush(stdout);
 }

7(B)(1) (1 points): Give one possible output string:

Soln: ABCDE

7(B)(2) (1 points): How many possible output strings are there?

Soln: 1

7(B)(3) (1 points): Please explain your answer to 7(B)(2) above

Soln: All file descriptors point to the same system-wide open file table entry so
they fully cooperate.

Continued on next page

Page 19 of 26

Part C (4 points):

Please consider the following code:

#include <stdio.h>

void handler (int signo) {

 // Some code here

 printf (“The signal received is: %d\n”, signo);

 // Some code here
}

// Imagine any essential but missing code to be here

void main() {

 printf (“Before handlers installed.\n”);
 signal(SIGNO1, handler);
 signal(SIGNO2, handler);
 signal(SIGNO3, handler);
 printf (“After handlers installed.\n”);

 // Imagine a bunch of truly important code here

 printf (“All done.\n”);
}

7(C)(1) (2 points): The code above is not correct. Specifically, it has a problem related to one or
more shared resources. Please describe what is shared.

Soln: The libc buffers used by printf() are shared.

7(C)(2) (1 points): The code above is not correct. Please explain how a deadlock might result,
even if the code would be correct in light of thread-based concurrency without signal handlers.

Soln: Should these buffers use locking, it is possible that a printf() outside of the handler
will acquire the lock, and then signal handler will run and attempt to acquire the same
lock. Once this happens, deadlock results as the main program can’t run until the signal
handler finishes.

Continued on next page.

Page 20 of 26

7(C)(3) (1 points): The code above is not correct. Despite the error(s), please explain how
correct output might result.

Soln: The execution may interleave the code in such a way that the unsafe concurrency
does not occur.

Page 21 of 26

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW
(15 points)

Consider the goal of writing a concurrent program to achieve the following:

● The main thread creates two peer threads
● Each peer thread is passed a unique integer thread ID (either 0 or 1)
● The main thread then waits for each thread to terminate.
● Each peer thread prints its thread ID and then terminates
● The program is hosted on a Linux Shark Machine
● Each function call within the program returns successfully.

Each of the following 5 programs represent an attempt at a correct solution, but some
suffer from concurrency-related problem(s).

● Please write CORRECT for each correct solution.
● Please write INCORRECT and describe the CONCURRENCY problem(s) for

each incorrect attempt at a solution.

In case it is helpful, please recall that pthread create takes in four arguments:

● 1st argument is where the ID of the new thread is stored upon successful creation.
● 2nd argument represents the attributes, which may be ignored for this problem.
● 3rd contains the routine to be called, (or the function to be executed)
● 4th argument contains the argument passed to the thread routine

Continued on next page.

Page 22 of 26

8(a)(1) (3 points)

void *foo (void *vargp) {
 int myid;

 myid = *((int *) vargp);
 free (vargp) ;
 printf ("Thread %d\n", myid) ;
}

int main () {
 pthread_t tid [2];

 int i, *ptr;

 for (i=0; i<2; i++) {
 ptr = malloc (sizeof(int));
 *ptr = i ;
 pthread_create(&tid[i], 0 , foo, ptr);
 }

 pthread_join (tid[0], 0);
 pthread_join (tid[1] ,0);
}

Your response:

Soln: Correct. Each thread is getting its own copy of the variable via malloc(), so
nothing is shared. This variable is being correctly freed after it is copied into a per-
thread local variable managed by the stack.

Continued on next page.

Page 23 of 26

8(a)(2) (3 points)

void *foo (void *vargp) {
 int myid;
 myid = *((int *) vargp) ;
 printf ("Thread %d\n" , myid);
}

int main() {
 pthread_t tid[2] ;
 int i;

 for (i=0; i<2; i++) {
 Pthread_create (&tid[i], NULL, foo, &i);

 pthread_join(tid[0], NULL);
 pthread_join(tid[0], NULL);

Your response:

Soln: There exists only one copy of “i”, which is being passed by reference and
shared.

8(a)(3) (3 points)

void foo(void *vargp) {
 int myid;
 myid = (int) vargp;
 printf ("Thread %d\n", myid);
}

int main () {
 pthread_t tid[2];
 int i;

 for (i=0; i<2; i++)
 pthread_create (&tid[i], 0, foo, i);

 pthread_join (tid[0], 0);
 pthread_join (tid[1], 0);
}
Soln: In this case, “i” is getting passed by value. So, each thread is getting its own
copy of “i”.

Continued on next page.

Page 24 of 26

8(a)(4) (3 points)

sem_t s ; /* semaphore s */

void foo(void *vargp) {
 int myid;

 P(&s);
 myid = *((int *) vargp);
 V(&s);

 printf ("Thread %d\n", myid);
}

int main () {
 pthread_t tid [2];
 int i;

 sem_init (&s, 0, 1); /* S=1, initially */

 for (i=0; i<2; i++) {
 pthread_create(&tid[i], 0, foo, &i);
 pthread_join(tid[0], 0);
 pthread_join (tid[1], 0);
 }

Soln: Wrapping semaphores around the copt in foo() doesn’t help because it can
still be corrupted by the increment in the for-loop in main().

Continued on next page.

Page 25 of 26

8(a)(5) (3 points)

sem_t s; /* semaphore s */

void *foo (void *vargp) {
 int myid;

 myid = *((int *) vargp);

 V(&s);
 printf("Thread %d\n", myid);
}

int main() {
 pthread_t tid [2];
 int i;

 sem_init (&s , 0 , 0); /* S=0, initially */

 for (i=0; i<2; i++) {
 Pthread_create(&tid[i],0 ,foo , &i) ;
 P(&s);
 }

 pthread_join(tid[0], 0);
 pthread_join(tid[1], 0);
}

Soln: This works. The P(&s) after the create forces the id to be copied into a local
variable before the next one can interfere with it.

Page 26 of 26

	Cover Page
	Question #1-B
	Question #2-C
	Question #3-A
	Question #4-A
	Question #5-B
	Question #6-C
	Question #7-A
	Question #8-C

