Carnegie Mellon

T ——

5213
sesaeit dainsine

<« AN g i taniai

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Exceptional Control Flow: Signals

18-213/18-613: Introduction to Computer Systems
18t Lecture, October 31, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

° void fork7() {
Zombie if (fork() == 0) {
/* Child */
Example printf ("Terminating Child, PID = %d\n", getpid()):
exit (0) ;
} else {

while (1)

; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 }

printf ("Running Parent, PID = %d\n", getpid()):

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks

ps shows child process as

6640 ttyp9 00:00:00 forks <defunct></ “defunct” (i.e., a zombie)

6641 ttyp9 00:00:00 ps
linux> kill 6639

[1] Terminated m Killing parent allows child to
linux> ps be reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" |mplemented as syscall

Parent Process Kernel code

<

Exception . And, potentially other user

w processes, including a child
Returns

of parent

syscall

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);

}
printf ("Bye\n") ;

printf ("CT: child has terminated\n");

} forks.c

Feasible output(s):

HC HP
HP HC
CT CT

Bye Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HC exit
»>®- —»
printf
CT
Bye
HP Y
'3 —»>e re— >0
fork printf wait printf

Infeasible output:
HP

CT

Bye

HC

Another wait Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll() { |

pid t pid[N]; waitpid (-1, &child status, 0)
int 1i;

is equivalent to
int child status;

wait (&child status) ;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant dna U HAAlaror, COMpuUter SYSTEMST A PTOZBrdnmmer S PETSPeECtive, Tmra earton 10

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
» getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= .exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp [n-1] ——> "PWD=/usr/droh"
: envp [0] —> "USER=droh"
environ >
myargv [argc] = NULL
(argc == 3) myargv[2] —> " /usr/include"
myargv[l] 3 "_]t"
myargv ————> iyarey D] —> " /bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]) ;
exit(1l);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

12

Carnegie Mellon

Bottom of stack

Null-terminated

Stru Ctu re Of environment variable strings e
Null-terminated
the StaCk When ___,| command-line arg strings
anew program |) |
Sta rtS ; envp [n-1] | environ
_| (global var)
| envp [0] el PRl gy
E argv[argc] = NULL 1 envp
| argv[argc-1] (in $rdx)
argv ’o argv 0]
(in $rsi)
argc Stack frame for
(in $rdi) libc start main Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

The execwve Function Revisited

User stack } Private, demand-zero ® To load and run a new
program a.out in the
l current process using

execve.

libc.so T

.data [Memory mapped region

m Freevm area struct’s

} Shared, file-backed

text | [forshared libraries and page tables for old areas

1 m Createvm area struct’s

and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
= Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.

a.out = _bss and stack backed by
data |——1 [Initialized data (.data) anonymous files.

Private, file-backed

dext | » Program text (.text)

m Set PCto entry pointin
0 . text

= Linux will fault in code and
data pages as needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Exceptions & Processes - Summary

m Exceptions
= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
®= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Today

m Shells CSAPP 8.4.6
m Signals CSAPP 8.5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Linux Process Hierarchy

.............

(3 e
. .
* .

0
‘e
ey

.
.

EEL Ll

Login shell
Child

w w Note: you can view the
hierarchy using the Linux

pstree command

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Shell Programs

m Ashellis an application program that runs programs on behalf
of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
" csh/tcsh BSD Unix C shell
" bash “Bourne-Again” Shell (default Linux shell)

m Simple shell
= Described in the textbook, starting at p. 753
= |mplementation of a very elementary shell
" Purpose
= Understand what happens when you type commands
= Understand use and operation of process control operations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Simple Shell Example

linux> ./shellex

> /bin/ls -1 csapp.c Note: Must give full pathnames for programs
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 (&) Run program in background
32031 /bin/sleep 10 &
> /bin/ps
PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep Sleep is running in background
32033 pts/2 00:00:00 ps
> quit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Simple Shell Implementation

m Basic loop

= Read line from command line
= Execute the requested operation
= Built-in command (only one implemented is quit)

» Load and execute program from file

int main(int argc, char** argv) . .
{ Executionis a

char cmdline [MAXLINE]; /* command line */ sequence O_f
while (1) { read/evaluate

/* read */ steps
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof (stdin))

exit (0) ;

/* evaluate */
eval (cmdline) ;

shellex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)
parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

shellex.c

Bry 7 ™ T (=] 21

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)

if (argv[0] == NULL) .
return; /* Ignore empty lines */ lgnore empty lines.

shellex.c

22

Bry , - T o ™

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

shellex.c

Bry 23

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

Create child

By ’ , , shellex.c ”

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */
if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

Startargv[O0].
Remember execve only returns on
error.

By shellex.c

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error("waitfg: waitpid error") ;

If running child in
foreground, wait until
it is done. shellex. c

Bry 7 ™ T (=4 ™ 26

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {

int status;

if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error”); |f running child in
}
1 . .
- se}{arintf("%d %s", pid, cmdline) ; baCkgrOund, prlnt pld
y and continue doing
y other stuff.

shellex.c| 27

Bry y - T = ™

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0) .
unix error("waitfg: waitpid error") ; OOpS There IS d
}

else problem with

printf("%d %s", pid, cmdline)

} this code.

return;

shellex.c |
Bry ———r y = - 28

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps
foreground jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

ECF to the Rescue!

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Today

m Shells
m Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Handled in kernel

(partial) Taxonomy T
ECF
Asynchronous Synchronous
Interrupts Traps Faults Aborts
Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Signals

Carnegie Mellon

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a

process

= Signal type is identified by small integer ID’s (1-30)

® Only information in a signal is its ID and the fact that it arrived

ID Name Default Action
2 SIGINT Terminate

9 SIGKILL Terminate

11 SIGSEGV Terminate

14 SIGALRM Terminate

17 SIGCHLD Ignore

Corresponding Event

User typed ctrl-c

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

33

Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)

= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C

(dp]
(40)
-
Q.
w»
..6.. kernel
)

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1] Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
nding for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

0| Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)

= Terminate the process (with optional core dump)

= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received
by process |

curr Y
next

y

(2) Control passes
to signal handler

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1 (3) signal
handler runs

40

Carnegie Mellon

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
"= There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
o
9 Process C
<7
Vs

// kernel

W/ Anding for A Blocked for A

N\ _“ending for B Blocked for B

1] Pending for C Blocked for C

Carnegie Mellon

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 piC?:fo
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

= /bin/kill -9 24818 24788 pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/2 00-00-05 Forks

24820 pts/2 00:00:00 ps
= /bin/kill -9 —-24817 l:f.nux> /bin/kill -9 -24817
linux> ps
Send SIGKILL to every process PID TTY TIME CMD
in process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= SIGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

id=40
pgid=20 pl. _
pgid=40
Background Background
process group 32 process group 40
pgid=20 pgid=20
Foreground

rocess group 20
Bryant and O’ HaIIarv.pw.. s .,ng...,e.. Fepr s o1 wiopeviive, Third Edition 46

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28107 pts/8
28108 pts/8 T
28109 pts/8 R+
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28110 pts/8 R+

|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./forks
./forks
pPs W

COMMAND
-tcsh
pPs w

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader

+: foreground proc group

See “man ps” for more
details

47

Carnegie Mellon

Sending Signals with kill Function

void forkl2()
{

pid t pid[N];
int i;
int child status;

for (i = 0; 1 < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while (1)

}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT);

for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code
kernel code } context switch

Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked

" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

"= The receipt of the signal triggers some action by p

= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
" The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of sighal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Signal Handling Example

void sigint handler (int) /* SIGINT handler */
{

printe£ () ;
sleep(2) ;

printf () ;

fflush (stdout) ;

sleep (1) ;

printf () ;

exit (0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error ()

/* Wait for the receipt of a signal */
pause() ;

return 0O;

} sigint.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

}

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. . I .
Signal delivered —> leyrr I user code (main)
I
to process A kernel code } context switch
I
: user code (main)
I .
] kernel code } context switch
Signal received —> I
I user code (handler)
by process A l ,
: kernel code
I ¢ I .
next I user code (main)
A 4 I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T
(2) Control passes
(1) Program leure to handler S
catches signal s

(4) Control passes
(3) Program to handler T

(7) Main program | ext catches signalt ¥ >

(6) Handler S (5) Handler T
returns to returns to

; handler S
main

program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism
" sigprocmask function

m Supporting functions
" sigemptyset —Create empty set
" sigfillset —Add everysignal number to set
" sigaddset —Add signal number to set
= sigdelset —Delete signal number from set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Temporarily Blocking Signals

sigset t mask, prev_mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG_BLOCK, é&mask, &prev_mask) ;

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, &prev_mask, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures.

= Shared data structures can become corrupted.
m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid
trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Guidelines for Writing Safe Handlers

GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno
G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption
G4: Declare global variables as volatile
"= To prevent compiler from storing them in a register
G5: Declare global flags as volatile sig atomic t

" flag: variable that is only read or written (e.g. flag = 1, not flag++)
" Flag declared this way does not need to be protected like other globals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exlt, write, wait, waitpid, sleep, kill
= Popular functions that are not on the list:
» printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe 1/0 library) from csapp.cin
your handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler(int sig) /* Safe SIGINT handler */

{
Sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep (2) ;

Sio puts("Well...");
sleep (1) ;

Sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Safe Formatted Output: Option #2

m Use the new & improved reentrant sio_printf !
= Handles restricted class of printf format strings

o®

= Recognizes: $¢c $s %d %u %x %
= Size designators ‘1’ and ‘z’

void sigint handler(int sig) /* Safe SIGINT handler */
{
Sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep(2) ;
Sio puts("Well...");
sleep (1) ;
Sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

volatile int ccount = 0;

void child handler (int sig) {
int olderrno errno;
pid t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio puts("Handler reaped child ");
Sio putl ((long)pid) ;
Sio puts(" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid t pid[N];
int i;
ccount = N;
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
4

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

® For each signal type, one
bit indicates whether or
not signal is pending...

= ...thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

forks.c
64

Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child handler2 (int sigq)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio puts("Handler reaped child ") ;
Sio putl ((long)pid) ;
Sio puts(" \n");
}

if (errno !'= ECHILD)
Sio_error("wait error");
errno = olderrno; whaleshark> ./forks 15
} Handler reaped child 23246
Handler reaped child 23247
(Here N = 5) Handler reaped child 23248

Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

= Blocks all signals while running critical code

void handler (int sigqg)

{

int olderrno = errno;
sigset t mask all, prev all;
pid t pid;

Sigfillset (&mask all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask (SIG BLOCK, &mask all, &prev _all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);

}

if (errno '= ECHILD)
Sio error("waitpid error");

errno = olderrno;

} procmaskl.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

66

Carnegie Mellon

Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child.

int main(int argc, char **argv)

{

int pid;

sigset t mask all, prev_all;

int n=N; /* N=5 x/
Sigfillset(&mask all);

Signal (SIGCHLD, handler) ;

initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */
Execve ("/bin/date", argv, NULL) ;
}
Sigprocmask (SIG_BLOCK, &mask all, &prev _all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);
}

exit (0) ;
} procmaskl.c

BI’, 7 ™ 7 =] ™

67

Carnegie Mellon

Corrected Shell Program without Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev_one;
int n = N; /* N=5 */
Sigfillset (&mask all);
Sigemptyset (&mask_one) ;
Sigaddset (&mask one, SIGCHLD) ;
Signal (SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask (SIG_BLOCK, &mask one, &prev one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve (" /bin/date", argv, NULL);
}
Sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}

exit (0) ;
} procmask2.c

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig atomic_t pid;

void sigchld handler (int s)
{

int olderrno = errno;
pid = Waitpid (-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)
{
}

waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Explicitly Waiting for Signals

int main(int argc, char **argv) {
sigset t mask, prev; Similar to a shell waiting
int n = N; /* N =10 */ for a foreground job to
Signal (SIGCHLD, sigchld handler) ; terminate.
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
Sigprocmask (SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n");

Lt (0) ; i i
exit (0) waitforsignal.c

Bryant ¢

Carnegie Mellon

Explicitly Waiting for Signals

while (!'pid)

4

m Program is correct, but very wasteful

" Program in busy-wait loop

while ('pid) /* Race! */
pause () ;

m Possible race condition

= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep (1) ;

m Safe, but slow

= Will take up to one second to respond

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause () ;

sigprocmask (SIG_SETMASK, &prev, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Waiting for Signals with sigsuspend

int main(int argc, char **argv) {
sigset t mask, prev;
int n = N; /* N = 10 */
Signal (SIGCHLD, sigchld handler) ;
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;
Sigaddset (&mask, SIGCHLD) ;
while (n--) {
Sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = O;
while (!pid)
Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
print£(".");

}

printf ("\n") ;

exit(0) ;

sigsuspend.c
Bry , y 7

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= (Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 76

setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

= (Called once, but never returns

® longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set $eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 77

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo(void)

{
if (errorl)
longjmp (buf, 1) ;
bar () ;
}

void bar (void)
{
if (error2)
longjmp (buf, 2);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 78

Carnegie Mellon

setjmp/longjmp
Example (cont)

jmp buf buf;

int errorl = 0;
int error2 = 1;

void foo(void), bar(void) ;

int main ()
{
switch (setjmp (buf)) {
case O:
foo() ;
break;
case 1:
printf ("Detected an errorl condition in foo\n") ;
break;
case 2:
printf ("Detected an error2 condition in foo\n") ;
break;
default:
printf ("Unknown error condition in foo\n");

}
exit (0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 79

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longijmp After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1);
}

Bryant and O’Hamaron, Computer Systems: A PTOGIammer s PETSPECUVE, TTTO EQTON 80

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; P1
P () » P2
{ env
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */ | =) y P2

}
} P2 returns P1
P3() env
{ LD S P3

longjmp (env, 1) ;
} At longjmp

Bryant and O’Ha , - . - - , 81

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include "csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
i s) restart?ng) Ctrl-c
{ processing. .
if ('sigsetjmp(buf, 1)) { processing. ..
Signal (SIGINT, handler) ; restarting
Sio puts("starting\n"); processing. < Ctrl-c
} processing. ..
S _ processing. ..
Sio_puts("restarting\n");
while (1) {
Sleep (1) ;

Sio_puts("processing...\n");

}

exit (0); /* Control never reaches here */

} restart.c
Bryant , - , ° - N 82

	Slide 1
	Slide 2: Exceptional Control Flow: Signals 18-213/18-613: Introduction to Computer Systems 18th Lecture, October 31, 2024
	Slide 3: Reaping Child Processes
	Slide 4: Zombie Example
	Slide 6: wait: Synchronizing with Children
	Slide 7: wait: Synchronizing with Children
	Slide 8: wait: Synchronizing with Children
	Slide 9: Another wait Example
	Slide 10: waitpid: Waiting for a Specific Process
	Slide 11: execve: Loading and Running Programs
	Slide 12: execve Example
	Slide 13: Structure of the stack when a new program starts
	Slide 14: The execve Function Revisited
	Slide 15: Exceptions & Processes - Summary
	Slide 16: Today
	Slide 17: Linux Process Hierarchy
	Slide 18: Shell Programs
	Slide 19: Simple Shell Example
	Slide 20: Simple Shell Implementation
	Slide 21: Simple Shell eval Function
	Slide 22: Simple Shell eval Function
	Slide 23: Simple Shell eval Function
	Slide 24: Simple Shell eval Function
	Slide 25: Simple Shell eval Function
	Slide 26: Simple Shell eval Function
	Slide 27: Simple Shell eval Function
	Slide 28: Simple Shell eval Function
	Slide 29: Problem with Simple Shell Example
	Slide 30: ECF to the Rescue!
	Slide 31: Today
	Slide 32: (partial) Taxonomy
	Slide 33: Signals
	Slide 34: Signal Concepts: Sending a Signal
	Slide 35: Signal Concepts: Sending a Signal
	Slide 36: Signal Concepts: Sending a Signal
	Slide 37: Signal Concepts: Sending a Signal
	Slide 38: Signal Concepts: Sending a Signal
	Slide 39: Signal Concepts: Sending a Signal
	Slide 40: Signal Concepts: Receiving a Signal
	Slide 41: Signal Concepts: Pending and Blocked Signals
	Slide 42: Signal Concepts: Pending/Blocked Bits
	Slide 43: Signal Concepts: Sending a Signal
	Slide 44: Sending Signals: Process Groups
	Slide 45: Sending Signals with /bin/kill Program
	Slide 46: Sending Signals from the Keyboard
	Slide 47: Example of ctrl-c and ctrl-z
	Slide 48: Sending Signals with kill Function
	Slide 49: Receiving Signals
	Slide 50: Receiving Signals
	Slide 51: Default Actions
	Slide 52: Installing Signal Handlers
	Slide 53: Signal Handling Example
	Slide 54: Signals Handlers as Concurrent Flows
	Slide 55: Another View of Signal Handlers as Concurrent Flows
	Slide 56: Nested Signal Handlers
	Slide 57: Blocking and Unblocking Signals
	Slide 58: Temporarily Blocking Signals
	Slide 59: Safe Signal Handling
	Slide 60: Guidelines for Writing Safe Handlers
	Slide 61: Async-Signal-Safety
	Slide 62: Safe Formatted Output: Option #1
	Slide 63: Safe Formatted Output: Option #2
	Slide 64: Correct Signal Handling
	Slide 65: Correct Signal Handling
	Slide 66: Synchronizing Flows to Avoid Races
	Slide 67: Synchronizing Flows to Avoid Races
	Slide 68: Corrected Shell Program without Race
	Slide 69: Explicitly Waiting for Signals
	Slide 70: Explicitly Waiting for Signals
	Slide 71: Explicitly Waiting for Signals
	Slide 72: Waiting for Signals with sigsuspend
	Slide 73: Waiting for Signals with sigsuspend
	Slide 74: Summary
	Slide 75: Additional slides
	Slide 76: Nonlocal Jumps: setjmp/longjmp
	Slide 77: setjmp/longjmp (cont)
	Slide 78: setjmp/longjmp Example
	Slide 79: setjmp/longjmp Example (cont)
	Slide 80: Limitations of Nonlocal Jumps
	Slide 81: Limitations of Long Jumps (cont.)
	Slide 82: Putting It All Together: A Program That Restarts Itself When ctrl-c’d

