
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Details

15-213/15-513: Introduction to Computer Systems
12th Lecture, October 23rd, 2025

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Review concepts from last lecture

 Simple memory system example CSAPP 9.6.4

 Case study: Core i7/Linux memory system CSAPP 9.7

 Memory mapping CSAPP 9.8

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Virtual Addressing

 Virtual address space is an abstraction, not real memory

 Physical memory refers to the actual computer memory (DRAM)

0:
1:

M-1:

physical memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Per-process Virtual Address Space

 Each process has its own virtual address space

 All processes share the same Physical Memory

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1

VP k

...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: VM vs Caches

How does virtual memory interact with the CPU cache(s)?

The cache’s function is to speed up access to whatever data is
most frequently used. The MMU sits “in between” the CPU and
the cache; the cache works only with physical addresses. This
means data from multiple processes may coexist in the cache (or
compete for cache space).

1. MMU uses VA to find PTE & get PA 2. PA is used to look in cache for data

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Page Table

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

 A page table contains page table entries (PTEs) that map
virtual pages to physical pages.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Let’s think.

Does the MMU need to know the virtual address of the
active process’s page table? Or the virtual address? Why?

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Let’s think.

Does the MMU need to know the virtual address of the
active process’s page table? Or the virtual address? Why?

If the MMU knew only a virtual address for the page table,
then, in order to find the page table in memory, it would first
need to look up the physical address of the page table, in the
page table itself, …

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Translation Lookaside Buffer (TLB)

MMU
Cache/
Memory

CPU
VA

1

PA

4

Data

5

TLB

2

VPN

PTE

3

 A small cache dedicated to storing mappings from virtual addresses to
physical addresses (page table entries)

 MMU consults the TLB for each address as its first action. If there is a TLB hit,
it does not need to fetch anything from the page table (avoiding k lookups)

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A little bit of catch-up

 Multi-level page tables

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Are [1-level] Page Tables Practical?

Let’s explore:

 How many entries are in a page table?

 How big is an entry?

 How big is the page table?

 How many page tables are there?

 Where to these page tables live?

 Is this practical? Explain.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Are [1-level] Page Tables Practical?
Let’s explore:

 How many entries are in a page table?
▪ One per process

 How big is an entry?
▪ The size of a PPN+metadata. Estimate a word size.

 How big is the page table?
▪ For a large address space? Huge.

 How many page tables are there?
▪ One per process

 Where to these page tables live?
▪ In DRAM

 Is this practical? Explain.
▪ Nope! It could be more memory than we have, even for a single process!

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables

 Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE

 Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12 * 23 = 239 bytes

 Common solution: Multi-level page table

 Example: 2-level page table
▪ Level 1 table: each PTE points to a page table (always

memory resident)

▪ Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1

Table

..
.

Level 2

Tables

...

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

64 bit addresses, 8KB pages, 8-byte PTEs

Here, addresses
increase from
top to bottom

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Review concepts from last lecture

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example

 Addressing
▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Why is the
VPO 6 bits?

Why is the
VPN 8 bits?

Why is the
PPO 6 bits?

Why is the
PPN 6 bits?

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0x0D → 0x2D

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 16 lines, 4-byte cache line size

 Physically addressed

 Direct mapped

V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

Simple Memory System Cache

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

0D03 1

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

Address Translation Example
Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

0001010 11010

0 0x5 0x0D Y 0x36

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Page table

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

Address Translation Example: TLB/Cache Miss

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

0000000 00111

0 0x8 0x28 N Mem

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Review concepts from last lecture

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation
CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 d-TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trick for Speeding Up L1 Access

 The story so far
▪ MMU accessed before L1 cache

▪ Doesn’t that make L1 cache hits slower?

▪ Yes! So real systems don’t do this…

MMU

Physical address
(PA)

CPU

Virtual address
(VA)

CPU Chip

L1 cache

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trick for Speeding Up L1 Access

 Observation
▪ Bits that determine CI identical in virtual and physical address

▪ Can index into cache while address translation taking place

▪ Generally we hit in TLB, so PPN bits (CT bits) available quickly

▪ “Virtually indexed, physically tagged”

▪ Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trick for Speeding Up L1 Access

 Virtual memory with no impact on memory performance!
▪ MMU moved off critical path (faster than L1 cache)

MMU

Physical address
(PA)

CPU

Virtual
address

(VA)

CPU Chip

L1 cache

Set (tags + data)

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Review concepts from last lecture

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

 Paging = every page of a program’s physical memory is
backed by some page of disk*

 Normally, those pages belong to swap space

 But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process

virtual memory

File on disk

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical

memory

Process 1

virtual memory

File on disk

Process 2

virtual memory

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 fork creates a new
process by copying the
entire address space
of the parent process
▪ That sounds slow

▪ It is slow

Swap space

Physical

memory

Parent

virtual memory

File on disk

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only (PTE permission bits
for all pages set to read-only)

▪ Copy only on write faults

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

 Clever trick:
▪ Just duplicate the page tables

▪ Mark everything read only

▪ Copy only on write faults

Swap space

Physical

memory

Parent

virtual memory

File on disk

Child

virtual memory

Child
wrote to
this page

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping

void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start

▪ start: may be 0 for “pick an address”

▪ prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...

▪ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Uses of mmap

 Reading big files
▪ Uses paging mechanism to bring files into memory

 Shared data structures
▪ When call with MAP_SHARED flag

▪ Multiple processes have access to same region of memory (Risky!)

 File-based data structures
▪ E.g., database

▪ When unmap region, file will be updated via write-back

▪ Can implement load from file / update / write back to file

 Enable Attack Lab
▪ Allow students to execute code on the stack (which is forbidden on

shark machines)

▪ See backup slides for details

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programmer’s view of virtual memory
▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

 System view of virtual memory
▪ Uses memory efficiently by caching virtual memory pages

▪ Efficient only because of locality

▪ Simplifies memory management and programming

▪ Simplifies protection by providing a convenient interpositioning point
to check permissions

 Implemented via combination of hardware & software
▪ MMU, TLB, exception handling mechanisms part of hardware

▪ Page fault handlers, TLB management performed in software

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review Question

For a simple system with a one-level page table, what sub-steps
does the MMU take when it fetches a PTE from a page table?

The MMU has to split the virtual address into VPN and VPO.

The VPN can then be used to index directly into the page table.

If the valid bit is set on the PTE, the entry contains a PPN and the
physical address is PPN followed by PPO (=VPO).

Otherwise, a page fault is triggered.

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register (PTBR)

(CR3 in x86)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Using mmap to Support Attack Lab

 Problem

 Want students to be able to perform code injection attacks

 Shark machine stacks are not executable

 Solution

 Suggested by Sam King (now at UC Davis)

 Use mmap to allocate region of memory marked executable

 Divert stack to new region

 Execute student attack code

 Restore back to original stack

 Use munmap to remove mapped region

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x55586000

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Region created by mmap
0x55586000

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x55586000

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Region created by mmap
0x55586000

Frame for launch

Frame for test

Frame for getbuf

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Restore original %rsp
Use munmap to remove mapped region

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

stack_top = new_stack + STACK_SIZE - 8;

asm("movq %%rsp,%%rax ; movq %1,%%rsp ;

movq %%rax,%0"

 : "=r" (global_save_stack) // %0

 : "r" (stack_top) // %1

);

launch(global_offset);

void *new_stack = mmap(START_ADDR, STACK_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,

 MAP_PRIVATE | MAP_GROWSDOWN | MAP_ANONYMOUS | MAP_FIXED,

 0, 0);

if (new_stack != START_ADDR) {

 munmap(new_stack, STACK_SIZE);

 exit(1);

}

asm("movq %0,%%rsp"

 :

 : "r" (global_save_stack) // %0

);

munmap(new_stack, STACK_SIZE);

Allocate new region

Divert stack to new region & execute attack code Restore stack and remove region

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
▪ Page global directory address

▪ Points to L1 page table

 vm_prot:
▪ Read/write permissions for

this area

 vm_flags
▪ Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Each process has own task_struct, etc

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

	Slide 1
	Slide 2: Virtual Memory: Details 15-213/15-513: Introduction to Computer Systems 12th Lecture, October 23rd, 2025
	Slide 3: Today
	Slide 4: Review: Virtual Addressing
	Slide 5: Review: Per-process Virtual Address Space
	Slide 6: Review: VM vs Caches
	Slide 7: Review: Page Table
	Slide 8: Review: Let’s think.
	Slide 9: Review: Let’s think.
	Slide 10: Review: Translation Lookaside Buffer (TLB)
	Slide 11: Review: Accessing the TLB
	Slide 12: A little bit of catch-up
	Slide 13: Are [1-level] Page Tables Practical?
	Slide 14: Are [1-level] Page Tables Practical?
	Slide 15: Multi-Level Page Tables
	Slide 16: A Two-Level Page Table Hierarchy
	Slide 17: Translating with a k-level Page Table
	Slide 18: Today
	Slide 19: Simple Memory System Example
	Slide 20: Simple Memory System TLB
	Slide 21: Simple Memory System Page Table
	Slide 22: Simple Memory System Cache
	Slide 23: Address Translation Example
	Slide 24: Address Translation Example
	Slide 25: Address Translation Example: TLB/Cache Miss
	Slide 26: Address Translation Example: TLB/Cache Miss
	Slide 27: Today
	Slide 28: Intel Core i7 Memory System
	Slide 29: End-to-end Core i7 Address Translation
	Slide 30: Core i7 Level 1-3 Page Table Entries
	Slide 31: Core i7 Level 4 Page Table Entries
	Slide 32: Core i7 Page Table Translation
	Slide 33: Trick for Speeding Up L1 Access
	Slide 34: Trick for Speeding Up L1 Access
	Slide 35: Trick for Speeding Up L1 Access
	Slide 36: Today
	Slide 37: Memory-Mapped Files
	Slide 38: Memory-Mapped Files
	Slide 39: Memory-Mapped Files
	Slide 40: Copy-on-write sharing
	Slide 41: Copy-on-write sharing
	Slide 42: Copy-on-write sharing
	Slide 43: User-Level Memory Mapping
	Slide 44: User-Level Memory Mapping
	Slide 45: Uses of mmap
	Slide 46: Summary
	Slide 47: Review Question
	Slide 48: Address Translation With a Page Table
	Slide 49: Example: Using mmap to Support Attack Lab
	Slide 50: Using mmap to Support Attack Lab
	Slide 51: Using mmap to Support Attack Lab
	Slide 52: Using mmap to Support Attack Lab
	Slide 53: Using mmap to Support Attack Lab
	Slide 54: Using mmap to Support Attack Lab
	Slide 55: Virtual Address Space of a Linux Process
	Slide 56: Linux Organizes VM as Collection of “Areas”
	Slide 57: Linux Page Fault Handling

