
Temporal inference and SLAM

16-385 Computer Vision
Spring 2019, Lecture 23http://www.cs.cmu.edu/~16385/



• Homework 6 has been posted and is due on April 24th. 
- Any questions about the homework?
- How many of you have looked at/started/finished homework 6?

• Homework 7 will be posted on Wednesday and will be due on Friday 3rd. 
- It will be shorter so that it can fit in the 1.5 week you will have for it.
- Do you prefer the deadline to be on May 5th (with the same content)?
- You can use all of your remaining late days for it.

• Changes to office hours this Wednesday:
- Yannis, 3 – 5 pm.
- Neeraj, 5 – 7 pm.
- All four hours will take place at Smith Hall 225 / graphics lounge.

Course announcements



Current plan is two of the following:

• Color.

• Faces.

• Segmentation.

• Graph-based techniques.

Any topics you want covered in 

the last two lectures?



1. Image processing.

2. Geometry-based vision.

3. Physics-based vision.

4. Semantic vision.

5. Dealing with motion.

Lectures 13 – 16

See also 16-823: Physics-based Methods in Vision

See also 15-462: Computer Graphics

See also 15-463: Computational Photography

Lectures 7 – 12

See also 16-822: Geometry-based Methods in Vision

Lectures 1 – 7

See also 18-793: Image and Video Processing

Lectures 17 – 20

See also 16-824: Vision Learning and Recognition

See also 10-703: Deep Reinforcement Learning

Registration week

Lectures 21 – 24

See also 16-831: Statistical Techniques in Robotics

See also 16-833: Robot Localization and Mapping



cameras that see around corners

15-463/15-663/15-862 

Computational Photography
Learn about scientific and unconventional cameras – and build your own!

http://graphics.cs.cmu.edu/courses/15-463/

cameras that capture video at the speed of light

source and 

detector

occluder

hidden 

object

visible 

surface

cameras that measure depth in real time

cameras that measure entire lightfields

http://graphics.cs.cmu.edu/courses/15-463/


• Leftover from last time: Mean-shift tracking.

• Temporal state models.

• Temporal inference.

• Kalman filtering.

• Extended Kalman filtering.

• Mono SLAM.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).



Temporal state models



Represent the ‘world’ as a set of random variables

location on the ground plane

position in the 3D world

position and velocity

position, velocity and location 

of landmarks



Object tracking (localization)

e.g., location on the ground plane

e.g., position and velocity of robot 

and location of landmarks

Object location and world landmarks 

(localization and mapping)



The state of the world changes over time



The state of the world changes over time

So we use a sequence of random variables:



The state of the world changes over time

The state of the world is usually uncertain so we 

think in terms of a distribution

So we use a sequence of random variables:

How big is the space of this distribution?



the location on the ground planeIf the state space is

is the probability over all possible trajectories through a room of length t+1



When we use a sensor (camera), 

we don’t have direct access to the state but noisy 

observations of the state

How big is the space of this distribution?

(all possible ways of observing all possible trajectories)



all possible ways of observing all possible trajectories of length t

true trajectory

x

observations E



So we think of the world in terms of the distribution

observed variables 

(evidence)

unobserved variables 

(hidden state)



So we think of the world in terms of the distribution

observed variables 

(evidence)

unobserved variables 

(hidden state)

How big is the space of this distribution?



So we think of the world in terms of the distribution

observed variables 

(evidence)

unobserved variables 

(hidden state)

How big is the space of this distribution?

Can you think of a way to reduce the space?



Reduction 1. Stationary process assumption:

‘a process of change that is governed by laws 

that do not themselves change over time.’

the model doesn’t change over time



‘a process of change that is governed by laws 

that do not themselves change over time.’

the model doesn’t change over time

Only have to store one model.

Is this a reasonable assumption?

Reduction 1. Stationary process assumption:



Reduction 2. Markov Assumption:

‘the current state only depends on a finite history 

of previous states.’

First-order Markov Model:

Second-order Markov Model:

(this relationship is called the motion model)



The current observation is usually 

most influenced by the current state

Can you think of an observation of a state?

(this relationship is called the observation model)

‘the current observation only depends on current state.’

Reduction 2. Markov Assumption:



you are 

actually here

But GPS tells you that you are here

with probability

For example, GPS is a noisy observation of location.



Reduction 3. Prior State Assumption:

‘we know where the process (probably) starts’

we’ll start here



Stationary process assumption:

only have to store ____ models
(assuming only a single variable for state and observation)

Markov assumption:

This is a model of order ___

Applying these assumptions,

we can decompose the joint probability:

We have significantly reduced the number of parameters



motion model

transition model

sensor model

observation model

state prior

prior

Joint Probability of a Temporal Sequence



motion model

transition model

sensor model

observation model

state prior

prior

Joint Distribution for a Dynamic Bayesian Network

Hidden Markov Model Kalman Filter

specific instances of a DBN

covered in this class

(typically taught as discrete but not necessarily) (Gaussian motion model, prior and observation model)

Joint Probability of a Temporal Sequence



Hidden Markov Model



‘In the trunk of a car of a 

sleepy driver’ model

binary random variable (left lane or right lane)

right

left

Hidden Markov Model example

two state world!



From a hole in the car you can see the ground

binary random variable (road is yellow or road is gray)



0.5 0.5
0.7 0.3

0.70.3

0.9 0.2

0.80.1

What needs 

to sum to 

one?

What’s the 

probability 

of staying in  

the left lane 

if I’m in the 

left lane?

What lane 

am I in if I 

see yellow?

Nice visualization here: http://setosa.io/ev/markov-chains/?utm_content=buffer5e504

http://setosa.io/ev/markov-chains/?utm_content=buffer5e504


0.9 0.1

0.90.1

visualization of the motion model



Is the stationary assumption true?



Is the stationary assumption true?

visibility at night?

visibility after a day in the car?

still swerving after one day of driving?



Is the stationary assumption true?

visibility at night?

visibility after a day in the car?

still swerving after one day of driving?

Is the Markov assumption true?



Is the stationary assumption true?

visibility at night?

visibility after a day in the car?

still swerving after one day of driving?

Is the Markov assumption true?
what can you learn with higher order models?

what if you have been in the same lane for the last hour?

In general, assumptions are not correct but they simplify the problem 

and work most of the time when designed appropriately



Temporal inference



Basic Inference Tasks

Filtering

Posterior probability over the current

state, given all evidence up to present

Prediction

Posterior probability over a future

state, given all evidence up to present

Smoothing

Posterior probability over a past state, 

given all evidence up to present

Best Sequence

Best state sequence given all evidence 

up to present



Filtering

Posterior probability over the current state, given all evidence up to present

Where am I now?



Filtering

Can be computed with recursion (Dynamic Programming)

motion modelobservation model prior
posterior



Filtering

Can be computed with recursion (Dynamic Programming)

motion modelobservation model

What is this?



Filtering

Can be computed with recursion (Dynamic Programming)

same type of ‘message’



Filtering

Can be computed with recursion (Dynamic Programming)

same type of ‘message’

called a belief distribution

a belief is a reflection of the systems (robot, 

tracker) knowledge about the state X

sometimes people use this annoying notation instead:



Filtering

Can be computed with recursion (Dynamic Programming)

Where does this equation come from?
(scary math to follow…)



Filtering

Can be computed with recursion (Dynamic Programming)

just splitting up the notation here



Filtering

Can be computed with recursion (Dynamic Programming)

Apply Bayes' rule (with evidence)



Filtering

Can be computed with recursion (Dynamic Programming)

Apply Markov 

assumption on 

observation model



Filtering

Can be computed with recursion (Dynamic Programming)

Condition on the 

previous state Xt



Filtering

Can be computed with recursion (Dynamic Programming)

Apply Markov assumption on motion model



Filtering

Can be computed with recursion (Dynamic Programming)



‘In the trunk of a car of a 

sleepy driver’ model

binary random variable (left lane or right lane)

right

left

Hidden Markov Model example



From a hole in the car you can see the ground

binary random variable (center lane is yellow or road is gray)



0.5 0.5
0.7 0.3

0.70.3

0.9 0.2

0.80.1

What needs 

to sum to 

one?

What’s the probability of being in the left lane at t=4?

This is filtering!



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

What is the belief distribution if I see yellow at t=1 

Prediction step:

Update step:



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Prediction step:

What is the belief distribution if I see yellow at t=1 



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Update step:

What is the belief distribution if I see yellow at t=1 



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Update step:

What is the belief distribution if I see yellow at t=1 

more likely to be in which lane?

observed yellow



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Prediction step:

Update step:

What is the belief distribution if I see yellow at t=1 

Summary



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

What if you see yellow again at t=2



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Prediction step:

Update step:

What if you see yellow again at t=2



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Prediction step:

What if you see yellow again at t=2

Why does the probability of being in  

the left lane go down?



0.5 0.5 0.7 0.3

0.70.3

0.9 0.2

0.80.1

Filtering:

Update step:

What if you see yellow again at t=2



Basic Inference Tasks

Filtering

Posterior probability over the current

state, given all evidence up to present

Prediction

Posterior probability over a future

state, given all evidence up to present

Smoothing

Posterior probability over a past state, 

given all evidence up to present

Best Sequence

Best state sequence given all evidence 

up to present



Prediction

Where am I going?

Posterior probability over a future state, given all evidence up to present



Prediction

no new evidence!

What happens as you try to predict further into the future?

same recursive form as filtering but…



Prediction

no new evidence

What happens as you try to predict further into the future?

Approaches its ‘stationary distribution’



Basic Inference Tasks

Filtering

Posterior probability over the current

state, given all evidence up to present

Prediction

Posterior probability over a future

state, given all evidence up to present

Smoothing

Posterior probability over a past state, 

given all evidence up to present

Best Sequence

Best state sequence given all evidence 

up to present



Smoothing

Wait, what did I do yesterday?

Posterior probability over a past state, given all evidence up to present



Smoothing

‘forward’ 

message

‘backward’ 

message

some time in the past

this is just filtering this is backwards 

filtering

Let me explain…



Backward message

copied from last slide

conditioning



Backward message

recursive message

observation model motion model

initial message

copied from last slide

conditioning

Markov Assumption

split

This is just a ‘backwards’ version of filtering where



Backward message

recursive message

observation model motion model

initial message

copied from last slide

conditioning

Markov Assumption

split

This is just a ‘backwards’ version of filtering where



Backward message

recursive message

observation model motion model

initial message

copied from last slide

conditioning

Markov Assumption

split

This is just a ‘backwards’ version of filtering where



Basic Inference Tasks

Filtering

Posterior probability over the current

state, given all evidence up to present

Prediction

Posterior probability over a future

state, given all evidence up to present

Smoothing

Posterior probability over a past state, 

given all evidence up to present

Best Sequence

Best state sequence given all evidence 

up to present



Best Sequence

I must have done something right, 

right?

Best state sequence given all evidence up to present



Best Sequence

Identical to filtering but with a max operator

recursive message

recursive message

‘Viterbi Algorithm’

Recall: Filtering equation



Now you know how to answer all the important questions in life:

Where am I now?

Where am I going?

Wait, what did I do yesterday?

I must have done something right, 

right?



Kalman filtering



Examples up to now have been discrete (binary) random variables

Kalman ‘filtering’ can be seen as a special case of a temporal 

inference with continuous random variables

Everything is continuous…

probability distributions are no longer tables but functions



Making the connection to the ‘filtering’ equations

beliefmotion modelobservation model

Gaussian Gaussian Gaussian

integral because 

continuous PDFs

Tables Tables Tables

Kalman Filtering

(Discrete) Filtering



Simple, 1D example…



System (motion) model

know velocity noise

‘sampled from’



know velocity noise

How do you represent the motion model?



know velocity noise

A linear Gaussian (continuous) transition model

How can you visualize this distribution?

How do you represent the motion model?

mean
standard 

deviation



know velocity

A linear Gaussian (continuous) transition model

Why don’t we just use a table as before?



GPS

GPS measurement True position

Observation (measurement) model

sensor 

error

sampled from a Gaussian



GPS

GPS measurement True position

sensor 

error

How do you represent the observation (measurement) model?

e represents z



GPS

GPS measurement True position

sensor 

error

How do you represent the observation (measurement) model?

Also a linear Gaussian model



GPS GPS measurement

True position

How do you represent the observation (measurement) model?

Also a linear Gaussian model



Prior (initial) State

initial estimate

initial estimate uncertainty

true position



initial estimate

How do you represent the prior state probability?

true position



initial estimatetrue position

How do you represent the prior state probability?

Also a linear Gaussian model!



initial estimate

true position

How do you represent the prior state probability?

Also a linear Gaussian model!



Inference

So how do you do temporal filtering with the KL?



Recall: the first step of filtering was the ‘prediction step’

prediction step

beliefmotion model

compute this!

It’s just another Gaussian

need to compute the ‘prediction’ mean and variance…



How would you predict      given      ? 

(This is the mean)

(This is the variance)

Prediction
(Using the motion model)

using this ‘cap’ notation to 

denote ‘estimate’



prediction step

beliefmotion model

the second step after prediction is …



… update step!

predictionobservation

compute this

(using results of the prediction step)



sensor 

estimate

system 

prediction

In the update step, the sensor measurement

corrects the system prediction

Which estimate is correct? Is there a way to know?

initial 

estimate

uncertainty uncertainty

Is there a way to merge this information?



So we want a weighted state estimate correction

Intuitively, the smaller variance mean less uncertainty.

sensor 

estimate

system 

prediction

This happens naturally in the Bayesian filtering (with Gaussians) framework!

something 

like this…



one step motion predictionobservation

Recall the filtering equation:

Gaussian Gaussian

What is the product of two Gaussians?



… a product of two Gaussians

When we multiply the prediction (Gaussian) with 

the observation model (Gaussian) we get …

applied to the filtering equation…

Recall …



mean:

variance:

mean:

variance:

new mean: new variance:

‘plus’ sign means post 

‘update’ estimate



sensor 

estimate

system 

prediction

With a little algebra…

We get a weighted state estimate correction!



Kalman gain notation

With a little algebra…

‘Kalman gain’ ‘Innovation’

With a little algebra…



Summary (1D Kalman Filtering)

‘Kalman gain’

mean of the new Gaussian variance of the new Gaussian

To solve this…

Compute this…



[x p] = KF(x,v,z)

x = x + s;

v = v + q;

K = v/(v + r);

x   = x + K * (z - x);

p   = v - K * v;

Simple 1D Implementation

Just 5 lines of code!



[x P] = KF(x,v,z)

x   = (x+s)+(v+q)/((v+q)+r)*(z-(x+s));

p   = (v+q)-(v+q)/((v+q)+r)*v;

or just 2 lines



Prediction

Gain

Update

Bare computations (algorithm) of Bayesian filtering:

prediction

mean

prediction 

covariance

motion control

‘old’ mean

Gaussian noise

‘old’ covariance

observation model

update

mean

update 

covariance



[x P] = KF(x,P,z)

x = A*x;

P = A*P*A' + Q;

K = P*C'/(C*P*C' + R);

x   = x + K*(z - C*x);

P   = (eye(size(K,1))-K*C)*P;

Simple Multi-dimensional Implementation

(also 5 lines of code!)



2D Example



state measurement

Constant position Motion Model



state measurement

Constant position Motion Model

Constant position

system noise



state measurement

Measurement Model



state measurement

Measurement Model

zero-mean measurement noise



General Case Constant position Model

motion model observation model

Algorithm for the 2D object tracking example



[x P] = KF_constPos(x,P,z)

P = P + Q;

K = P / (P + R);

x   = x + K * (z - x);

P   = (eye(size(K,1))-K) * P;

Just 4 lines of code

Where did the 5th line go?



General Case Constant position Model



Extended Kalman filter





but motion is not always linear

Motion model of the Kalman filter is linear



Visualizing linear models

1D motion model 

example

Input: 

Gaussian (Belief)

Output: 

Gaussian (Prediction)

Can we use the Kalman 

Filter?
(motion model and observation model are linear)



Visualizing non-linear models

1D motion model 

example

Output: 

NOT

Gaussian

Input: 

Gaussian (Belief)

Can we use the Kalman 

Filter?
(motion model is not linear)



How do you deal with non-linear models?

1D motion model 

example

Input: 

Gaussian

Output: 

NOT

Gaussian



How do you deal with non-linear models?

approximate with a 

linear function

Input: 

Gaussian

Output: 

Gaussian

When does this trick work?



Extended Kalman Filter

• Does not assume linear Gaussian models

• Assumes Gaussian noise

• Uses local linear approximations of model to keep 

the efficiency of the KF framework

linear motion model non-linear motion model

linear sensor model non-linear sensor model

Kalman Filter Extended Kalman Filter



Motion model linearization

Taylor series expansion



Motion model linearization

What’s this called?



Motion model linearization

What’s this called?

Jacobian Matrix
‘the rate of change in x’

‘slope of the function’



Motion model linearization

Jacobian Matrix

Sensor model linearization

‘the rate of change in x’

‘slope of the function’



Kalman Filter Extended KF

New EKF Algorithm
(pretty much the same)



2D example



d
is

p
la

c
e

m
e

n
t 

y

bearing

state: position-velocity

position

velocity

position

velocity

constant velocity motion model

with additive Gaussian noise

Motion model is linear but …



d
is

p
la

c
e

m
e

n
t 

y

bearing

measurement: range-bearing

measurement model

Is the measurement model linear?

with additive Gaussian noise



d
is

p
la

c
e

m
e

n
t 

y

bearing

measurement: range-bearing

measurement model

Is the measurement model linear?

with additive Gaussian noise

non-linear!

What should we do?



linearize the observation/measurement model!

What is the Jacobian?



Jacobian used in the Taylor series expansion looks like …

What is the Jacobian?



[x P] = EKF(x,P,z,dt)

r   = sqrt (x(1)^2+x(3)^2);

b   = atan2(x(3),x(1));

y   = [r; b];

H = [ cos(b)   0  sin(b)    0;

-sin(b)/r 0  cos(b)/r  0];

x = F*x;

P = F*P*F' + Q;

K = P*H'/(H*P*H' + R);

x   = x + K*(z - y);

P   = (eye(size(K,1))-K*H)*P;

Parameters:
Q = diag([0 .1 0 .1]);

R = diag([50^2 0.005^2]);

F = [ 1 dt 0 0;

0 1 0 0;

0 0 1 dt;

0 0 0 1];

extra computation for 

the EKF measurement 

model Jacobian



Problems with EKFs

Taylor series expansion = poor approximation of non-linear functions

success of linearization depends on limited uncertainty and amount of 

local non-linearity 

Computing partial derivatives is a pain

Drifts when linearization is a bad approximation 

Cannot handle multi-modal (multi-hypothesis) distributions



SLAM





Simultaneous Localization and Mapping

Given a single camera feed, 

estimate the 3D position of the camera and 

the 3D positions of all landmark points in the world





Step 1: Prediction

Step 2: Update:

MonoSLAM is just EKF!



What is the state representation?
Step 1: Prediction

Step 2: Update:

MonoSLAM is just EKF!



position

rotation (quaternion)

velocity

angular velocity

What is the camera (robot) state?

What are the 

dimensions?

13 total



position

rotation (quaternion)

velocity

angular velocity

What is the camera (robot) state?

What are the 

dimensions?

3

4

3

3

13 total



What is the world (robot+environment) state?

state of the camera

location of feature 1

location of feature 2

location of feature N

What are the 

dimensions?



What is the world (robot+environment) state?

state of the camera

location of feature 1

location of feature 2

location of feature N

What are the 

dimensions?

13

3

3

3

13+3N total



What is the covariance (uncertainty) of the world state?

What are the dimensions?

(13+3N) x (13+3N)



What are the observations?
Step 1: Prediction

Step 2: Update:

MonoSLAM is just EKF!



What are the observations?
Step 1: Prediction

Step 2: Update:

MonoSLAM is just EKF!



Observations are…

detected visual features of landmark points.

(e.g., Harris corners)



What does the prediction step look like?

Step 1: Prediction

Step 2: Update:

MonoSLAM is just EKF!



What is the motion model?

What is the form of the belief?



What is the motion model?

What is the form of the belief?

Camera: 

constant velocity
(not identity matrix and non-linear)

Landmarks: 

constant position
(identity matrix)



What is the motion model?

What is the form of the belief?

Gaussian!
(everything will be parametrized by a mean and variance)

Camera: 

constant velocity
(not identity matrix and non-linear)

Landmarks: 

constant position
(identity matrix)



Constant Velocity Motion Model

position

rotation (quaternion)

velocity

angular velocity



Gaussian noise uncertainty (only on velocity)



Prediction (mean of camera state):



Prediction (covariance of camera state):

system noise

(process noise)

old

covariance

change 

around 

new state

new

covariance

change 

around 

new state

Where does this motion model 

approximation come from?



change in 

camera state

change in 

position

What are the dimensions?



Skipping over many details…



Prediction (covariance of camera state):

system noise

(process noise)

old

covariance

change 

around 

new state

new

covariance

change 

around 

new state

Bit of a pain to compute this term…



We just covered the prediction step for the camera state

Now we need to do the update step!



Prediction:

Update:

General Filtering Equations



Predicted State

What are the observations?

State observationBelief state

2D projections of 3D landmarks



Recall, the state includes 

the 3D location of 

landmarks

What is the projection 

from 3D point to 2D 

image point?



Observation Model

If you know the 3D location of a landmark, what is the 2D projection?

Camera 

matrix

3D World 

Point

2D Image 

Point

What do we know 

about P?

Non-linear 

observation model

How do we make the observation model linear?



(2n x 13)

n: number of visible points

I will spare you the pain of deriving the partial derivative…



Update step (mean):

Update step (covariance):

2D projection of 

3D point

Matched 2D 

features
Predicted 

state
Updated 

state

Covariance 

(predicted)

Covariance 

(updated)
Jacobian

Kalman gain

Kalman gain
Identity





References

Basic reading:
• Szeliski, Appendix B.


