Temporal inference and SLAM

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 23



Course announcements

« Homework 6 has been posted and is due on April 24,
- Any questions about the homework?
- How many of you have looked at/started/finished homework 67

« Homework 7 will be posted on Wednesday and will be due on Friday 3.
- It will be shorter so that it can fit in the 1.5 week you will have for it.
- Do you prefer the deadline to be on May 5™ (with the same content)?
- You can use all of your remaining late days for it.

« Changes to office hours this Wednesday:
- Yannis, 3 -5 pm.
- Neeraj, 5-7 pm.
- All four hours will take place at Smith Hall 225 / graphics lounge.



Any topics you want covered In
the last two lectures?

Current plan is two of the following:
« Color.

« Faces.

¢ Segmentation.

« (Graph-based techniques.



registration week

Lectures 1 -7

| «—
. Image processing. See also 18-793: Image and Video Processing

Lectures 7 — 12

- 1S €
- Geomelry-based vision. See also 16-822: Geometry-based Methods in Vision

Lectures 13 — 16

See also 16-823: Physics-based Methods in Vision
See also 15-462: Computer Graphics

See also 15-463: Computational Photography

. Physics-based vision. <«

Lectures 17 — 20
. Semantic vision. <« See also 16-824: Vision Learning and Recognition
See also 10-703: Deep Reinforcement Learning

Lectures 21 - 24
. Dealing with motion. €<—  5Seealso 16-831: Statistical Techniques in Robotics
See also 16-833: Robot Localization and Mapping



15-463/15-663/15-862
Computational Photography

Learn about scientific and unconventional cameras —and build your own!

cameras that capture video at the speed of light cameras that measure depth in real time

visible
surface |
=

/ i
hidden
source and object

detector

occluder

cameras that see around corners cameras that measure entire lightfields

http://graphics.cs.cmu.edu/courses/15-463/



http://graphics.cs.cmu.edu/courses/15-463/

Overview of today’s lecture

« Leftover from last time: Mean-shift tracking.
* Jemporal state models.

« Temporal inference.

« Kalman filtering.

» Extended Kalman filtering.

« Mono SLAM.



Slide credits

Most of these slides were adapted from:

 Kris Kitani (16-385, Spring 2017).



Temporal state models



Represent the ‘world’ as a set of random variables X

X ={z,y} location on the ground plane
X ={=z,y,2z} position in the 3D world
X ={x,x} position and velocity

X ={z,z,f1,.... f,}

position, velocity and location
of landmarks



Object tracking (localization)

e.g., location on the ground plane

Object location and world landmarks
(localization and mapping)

X ={xz, &, f,....f,}

e.g., position and velocity of robot [ \l" [T -
and location of landmarks EEEEE



At g

The state of the world changes over time -



Xt & | ~

%

The state of the world changes over time

SO we use a sequence of random variables:

XU:XI:"':Xt



X, .,

The state of the world changes over time

o

)

SO we use a sequence of random variables:

XU:XI:"':Xt

The state of the world is usually uncertain so we
think in terms of a distribution

P(Xy, Xq,...,X})

How big Is the space of this distribution?



If the state spaceis X — {:L', y} the location on the ground plane

=z

P(Xo, Xq,...,X})

s the probability over all possible trajectories through a room of length t+1



When we use a sensor (camera),
we don't have direct access to the state but noisy
observations of the state

Loy

X[]:Xla'"1Xt:E1:E21"'1Et:

(all possible ways of observing all possible trajectories)

How big Is the space of this distribution?



all possible ways of observing all possible trajectories of length t

true trajectory
X

observations E




So we think of the world in terms of the distribution

P(X[]axla"':XhElaEQ:"':Et)

unobserved variables observed variables
(hidden state) (evidence)



So we think of the world in terms of the distribution

P(X[]axla"':XhElaEQ:"':Et)

unobserved variables observed variables
(hidden state) (evidence)

How big Is the space of this distribution?



So we think of the world in terms of the distribution

P(-X-Utxlj"'}Xt}EltEQ}"'}Et)

unobserved variables observed variables
(hidden state) (evidence)

How big Is the space of this distribution?

Can you think of a way to reduce the space?



Reduction 1. Stationary process assumption:

‘a process of change that is governed by laws
that do not themselves change over time.’

P(E:| X ) = Py(E4| X )

/the model doesn’t change over time



Reduction 1. Stationary process assumption:

‘a process of change that is governed by laws
that do not themselves change over time.’

P(E|X) = ft(Et\Xt)

/the model doesn’t change over time

Only have to store one model.

Is this a reasonable assumption?



Reduction 2. Markov Assumption:

the current state only depends on a finite history
of previous states.’

First-order Markov Model: P(X¢|X:—1).
Xg— X1 — X9 — X3 — X4

Second-order Markov Model:  P(X | X;—1, X¢_2)

N e

Xg— X1 — X9 — X3 — X4

(this relationship is called the motion model)



Reduction 2. Markov Assumption:

‘the current observation only depends on current state.’

The current observation is usually
most influenced by the current state

P(E;| X ;)

(this relationship is called the observation model)

Can you think of an observation of a state?



For example, GPS is a noisy observation of location.

But GPS tells you that you are here

you are
actually here

1

with probability P (E,| X ;)



Reduction 3. Prior State Assumption:

‘we know where the process (probably) starts’

X

. welll start here

x



Applying these assumptions,
we can decompose the joint probability:

T
P(XoX1,...,.X7,E1E;,...,E7) = P(X)y) HP(Xt‘Xt—I)P(Et‘Xt)

t=1

Stationary process assumption:
only have to store models

(assuming only a single variable for state and observation)

Markov assumption:
This is a model of order ____

We have significantly reduced the number of parameters



Joint Probability of a Temporal Sequence

P(Xo) | | P(X¢| X 1) P(E:| X )

state prior motion model sensor model
prior transition model observation model



Joint Probability of a Temporal Sequence

P(Xo) | | P(X¢| X 1) P(E:| X )

state prior motion model sensor model
prior transition model observation model

Joint Distribution for a Dynamic Bayesian Network

specific instances of a DBN
covered In this class

Hidden Markov Model Kalman Filter

(typically taught as discrete but not necessarily) (Gaussian motion model, prior and observation model)



Hidden Markov Model



Hidden Markov Model example

‘In the trunk of a car of a
sleepy driver model

left

binary random variable (left lane or right lane)

A N A A A

T = {Zleft, Tright A

two state world!




From a hole in the car you can see the ground

binary random variable (road is yellow or road is gray)

€ = {egra}r; eyellnw}



Nice visualization here: http://setosa.io/ev/markov-chains/?utm content=buffer5e504

P(xi|xi—1) | Tleft Tright
Lleft Lright : :

Lle What needs
P(:BU) 0.5 0.5 left 0.7 0.3 tcr)]sumt(()j

Tright | 0.3 0.7

rg — &3 —— L2 —— T3 —— L4 What'’s the
S— ~ ~— ~—— — probability
of staying in
the left lane
if 'm in the

e | 82 83 84 left lane?

P(ei|x:) | Tieft Lright
What lane E.YEHGW O . 9 O . 2

amlinifl

see yellow? Egray 0.1 0.8



http://setosa.io/ev/markov-chains/?utm_content=buffer5e504

visualization of the motion model

RRR : ‘ 5SR °

P(zye, 1) | Ty—1 = R T 1 =239




Is the stationary assumption true?



Is the stationary assumption true?

visibility at night?
visibility after a day in the car?
still swerving after one day of driving?

L \\_“‘/ \ \\_“‘/ N \\\_‘/ \,\u/ N ,\\\_‘/‘/ p

| | .



Is the stationary assumption true?

visibility at night?
visibility after a day in the car?
still swerving after one day of driving?

€1 €7 €3 €4

Is the Markov assumption true?



Is the stationary assumption true?

visibility at night?
visibility after a day in the car?
still swerving after one day of driving?

€1 €7 €3 €4

Is the Markov assumption true?

what can you learn with higher order models?
what if you have been in the same lane for the last hour?

In general, assumptions are not correct but they simplify the problem
and work most of the time when designed appropriately



Temporal inference



Basic Inference Tasks

Filtering
P(Xtlei.t)

Posterior probability over the current
state, given all evidence up to present

Prediction

P(Xt+k‘61:t)

Posterior probability over a future
state, given all evidence up to present

Smoothing
P(Xlelt)

Posterior probability over a past state,

given all evidence up to present

Best Sequence

argxmax P(X1.le1t)

Best state sequence given all evidence
up to present




Filtering

P(Xt‘elzt)

Posterior probability over the current state, given all evidence up to present

Where am | now?



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lene1) < Pes1| X e1) ) P(X 41| X o) P(Xler)

nosterior observation model X, motion model prior



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)

observation model X, motion model A

!

What is this? e



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)

A Xt A

N !

— same type of ‘'message’



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)

A Xt A

N !

— same type of ‘'message’

called a belief distribution

sometimes people use this annoying notation instead: Bel(mt)

a belief is a reflection of the systems (robot,
tracker) knowledge about the state X



Filtering

Can be computed with recursion (Dynamic Programming)

P(X¢i1lerit1) o< Ple1|Xe1) Y P(Xe11]X 1) P(X¢ler)
X

Where does this equation come from?

(scary math to follow...)



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)
X

just splitting up the notation here

P(Xt+1‘€1:t+1) — P(Xt+1‘et+1; 61:t)



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)
X

P(XtJrl ‘el:tJrl) — P(-Xt—{—l ‘et+1: el:t) Apply Bayes' rule (with evidence)



Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)
T e AN

P(Xt+1‘€1:t+1) — P(Xt+1‘€t+1, 61:t)
Pleir1|Xi11,e1:4) P(Xiy1]er:t) Apply Markov

p— assumption on

P(Bt_|_1 ‘el:t) observation model




Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)
T e AN

P(Xt+1‘€1:t+1) — P(Xt+1‘et+1; 61:t)
B P(et—l—l‘Xt—H;el:t)P(Xt—l—l‘el:t)
B P(€t+1‘61:t)
= aP(ei41|X¢41)P(X¢y1]€1:t) grgv]%ﬂgns;qeﬂ;z




Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lerer1) < Ples1]|Xer1) ) P(Xe41| X o) P(X¢ler:)
T e AN

P(Xt+1‘€1:t+1) — P(Xt+1‘et+1; el:t)
_ P(et—l—l‘Xt+1:el:t)P(Xt—l—l‘el:t)
P(€t+1‘61:t)
= GfP(EHl Xt+1)P(Xt+1‘el:t)
= aP(eiq1 Xt+1)ZP(XtJrl‘Xt:el:t)P(Xt‘el:t)

X ¢ Apply Markov assumption on motion model




Filtering

Can be computed with recursion (Dynamic Programming)

P(Xii1lene1) < Pes1| X e1) ) P(X 41| X o) P(Xler)
T e AN

P(Xt—l—l‘el:t—l—l) — P(Xt+1‘et+1; 61:t)
P(et—l—l‘XH—l; el:t)P(Xt—l—l‘el:t)
P(€t+1‘€1:t)
= aP (€41 X¢41)P(X¢y1]€1:4)

= aP(ei41|X41) ZP(Xt—l—l‘Xt:el:t)P(Xt‘el:t)




Hidden Markov Model example

‘In the trunk of a car of a
sleepy driver model

left

binary random variable (left lane or right lane)

A N A A A

L = {$left; $right}



From a hole in the car you can see the ground

binary random variable (center lane is yellow or road is gray)

€ = {egra}r; eyellnw}



Lleft

Lright

P(xzp) | 0.5

N

This is filtering!
\

0.5

e

P(zi|lzi—1) | Tleft  Tright
Lleft O _ 7 O _ 3 What needs
to sum to
Tright | (0.3 0.7 ¢

A N~ ~—

€1 € €3 €4
P(ei|x:) | Tleft  Lright
Eyellow | 0.9 0.2
Egray 0.1 0.8

\\} What’s the probability of being in the left lane at t=47



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright

0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8

Filtering: P(X¢t1lent1) o« Pes1]|Xe41) Y P(X141|X:)P(X4|er:e)
X

What is the belief distribution if | see yellow at t=1 P(&1|€1 = €yellow) ="

Prediction step: p(:I‘:l) = Z:I’:D p(:I?l ‘.T:g)p(:ltg)

Update step: p(xile1) = a p(ei|x1)p(e1)



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright
0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8
Filtering: P(Xer1lers1) o Plecr1|X 1) Y P(X 41| X 1) P(X¢ler.e)

0.7 0.3](0.5)

0.7 0.3
0.3 0.7

71(0.5)
0.5

05



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright

0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8

Filtering: P(X¢t1lent1) o« Pes1]|Xe41) Y P(X141|X:)P(X4|er:e)
X

What is the belief distribution if | see yellow at t=1 P(&1|€1 = €yellow) ="

Update step: p(ml\el) = p(el‘:l’:l)p(:ﬂl)



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright

0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8

Filtering: P(X¢t1lent1) o« Pes1]|Xe41) Y P(X141|X:)P(X4|er:e)
X

What is the belief distribution if | see yellow at t=1 P(&1|€1 = €yellow) ="

a p(e1|x1)p(x1)
(84 (09 02) X (05 05) observed yellow

Update step: p(:Bl ‘61)

09 00]|]o05] [ 045
%100 02][05] | 01
- 0.818

0

more likely to be in which lane?

| 0.182



P(xzg) | Tleft <Lright P(xs|zi—1) | Tleft Lright

0.5 0.5 Lleft 0.7 0.3

Lright 0.3 0.7

P(et|x:) Tleft <Lright
Eyellow 0.9 0.2
€gray 0.1 0.8

X ¢

Filtering: P(X¢t1lent1) o« P(ery1|X11) Y P(X 11| X1)P(Xler:)

What is the belief distribution if | see yellow at t=1 P(&1|€1 = €yellow) ="

Summary

Prediction step: p(:]l’l) = Z:Bﬂ p(:]:l ‘mg)p(mg)

-1 03|

Update step: p(xile1) = a p(ei|x1)p(e1)

| 0.818
~ | 0.182



P(zo)

Tleft Lright

0.5 0.5

P(x¢|x—1) Tleft <Lright
Lleft 0.7 0.3
Lright 0.3 0.7

P(et|x:) Tleft <Lright
Eyellow 0.9 0.2
€gray 0.1 0.8

Filtering:

P(X ty1]er:t41) o< Plect1|Xet1) D P(Xo11|X o) P(X tlex:c)

X ¢

What if you see yellow again at t=2 p(::cg ‘81} 82)

—7



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright
0.5 0.5 Lleft 0.7 0.3 Cyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8
Filtering: P(X¢t1lent1) o« Pery1]Xe11) Y P(X141|X ) P(X¢le1:)
X ¢

What if you see yellow again at t=2 p(:]:g\el, 82) =7

Prediction step:

Update step:

p(x2le1) = Zml p(x2|x1)p(T1]e1)

p(x1le1,e2) = a p(e1|z1)p(x1)



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright
0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8
Filtering: P(X¢t1lent1) o« Ples1]| X t41) Y P(X 11| X 1) P(X e
X ¢

What if you see yellow again at t=2 p(:Bg ‘81} 82) =7

Zml p(x2|x1)p(x1lel)

Prediction step:

p(x2le1)

0.7 0.3

0.3 0.7

- 0.818

| 0.182

- 0.627

| 0.373

Why does the probability of being in
the left lane go down?



P(xzo) | Tleft <Lright P(xi|zi—1) | Tleft Lright P(eix:) | Tleft <Lright

0.5 0.5 Lleft 0.7 0.3 Eyellow 0.9 0.2
Lright 0.3 0.7 Cgray 0.1 0.8

Filtering: P(X¢t1lent1) o« P(ery1|X11) Y P(X 11| X1)P(Xler:)
X

What if you see yellow again at t=2 p(:]:g\el, 82) =7

a p(ez|x2)p(x2ler)

09 00 ][ 0.627
0.0 0.2 || 0373

08831

0117

Update step: p(ﬂ:z‘elj 32)

87

Q




Basic Inference Tasks

Filtering
P(Xtlei.t)

Posterior probability over the current
state, given all evidence up to present

Smoothing
P(Xlelt)

Posterior probability over a past state,

given all evidence up to present

Prediction

P(Xt+k‘el:t)

Posterior probability over a future
state, given all evidence up to present

Best Sequence

arimax P(X1.le1t)

Best state sequence given all evidence
up to present




Prediction

P(Xt+k|€1 t)

Posterior probability over a future state, give

Where am | going”



Prediction

same recursive form as filtering but...

| "
P(Xt+k+1‘el:t) = Z P(Xt+k+1‘$t+k)P(iBt+k‘€1:t)

CBH&
- NO new evidence!

What happens as you try to predict further into the future?



Prediction

P(Xt+k+1‘el:t) = Z P(Xt—Hc—H‘-T’t—l—k)P(:Bt—l—k‘el:t)

CBHE
Nno new evidence

What happens as you try to predict further into the future?

Approaches its ‘stationary distribution’



Basic Inference Tasks

Filtering
P(Xtlei.t)

Posterior probability over the current
state, given all evidence up to present

Smoothing
P(Xlelt)

Posterior probability over a past state,

given all evidence up to present

Prediction

P(Xt+k‘el:t)

Posterior probability over a future
state, given all evidence up to present

Best Sequence

arimax P(X1.le1t)

Best state sequence given all evidence
up to present




Smoothing

P(Xk|el t)

or probability over a past state, given all eviden

Wait, what did | do yesterday?



Smoothing

v

P(Xk\el:t) 1 £k<t

P(Xk‘el:t) — P(Xk‘elzk: ek+1:t)
= aP(Xgler.r)Pleks1:t
= aP(Xgler.r)Pleks1:t

-~ some time in the past

Xk, e1xr)
X)

forward’ ‘backward’
message message

\

this is just filtering

My

this is backwards
filtering
Let me explain...



Backward message

P(ert1:t|Xk) = Y  P(ert1:4| Xk, Trt1) P(®py1| Xj) oo

copied from last slide £ k+1



Backward message

P(ert1:t|Xk) = Y  P(ert1:4| Xk, Trt1) P(®py1| Xj) oo

copied from last slide £ k+1

> P(ers1t|Trtr) P(@pr1]| X k) veromsme

L1



Backward message

P(ert1:t|Xk) = Y  P(ert1:4| Xk, Trt1) P(®py1| Xj) oo

copied from last slide £ k+1

> P(ers1t|Trtr) P(@pr1]| X k) veromsme

L1

Z P(ek—i—laek+2:t‘mk+1)P($k+1‘Xk) split

4 ]



Backward message

P(ek-i-l:t‘-xk) Z P(ek—}—lzt‘xk,33,1;+1)P(.’Bk_|_1‘_xk) conditioning

copied from last slide £ k41
— Z P(ek+1t‘mk+1)P(mk+1‘Xk) Markov Assumption
L1
— Z P(€k+1j €k+2:t‘$k+1)P(ﬂ3k+1‘X;€) split
L1
= Z P(ekt1|Trt1)P(ert2:¢|Trt+1) P(Try1| X k)
:Bk:—l— . observation model e el motion model

recursive message

This is just a ‘backwards’ version of filtering where

Initial message P(et_l:t\Xt) =1



Basic Inference Tasks

Filtering
P(Xtlei.t)

Posterior probability over the current
state, given all evidence up to present

Prediction

P(Xt+k‘el:t)

Posterior probability over a future
state, given all evidence up to present

Smoothing
P(Xlelt)

Posterior probability over a past state,

given all evidence up to present

Best Sequence

arg max P(X 1.;|e1.¢)

Xl:t

Best state sequence given all evidence
up to present




Best Sequence

ar%max P(X1.tle1.t)

Best state sequence given all evidence up to present

| must have done something right,
right”



Best Sequence Viterbi Algorithm

max P(xi,...,x:, Xir1le1s41)
L] yeeegdly
= aP(e; 1| Xq1) max [P(Xt+1|::ct) _ max P(xy,...,xi-1,X¢|e1.)
+ lseeeselbt—1

recursive message

|dentical to filtering but with a max operator

p— Filtering equation

P(X¢t1lerit1) & Plew1|Xe1) ) P(X i1 X o) P(Xlers)
X+

recursive message



Now you know how to answer all the important questions in life:

Where am | now?
Where am | going?

Wait, what did | do yesterday?

| must have done something right,
right”



Kalman filtering



Examples up to now have been discrete (binary) random variables

Kalman “filtering’ can be seen as a special case of a temporal
iInference with continuous random variables

€1 €7 €3 €4

Everything is continuous...

xr e Pz Plelr) P(xiz 1)

probability distributions are no longer tables but functions



Making the connection to the ‘filtering’ equations

(D|Screte) F||ter|ng Tables Tables Tables

P(X ii1lerit1) < Pes1|Xei1) ) P(Xe11]X ) P(X¢lers)
X

Kalman Fllterlng Gaussian Gaussian Gaussian

P(Xt+1\€1:t+1) X P(€t+1‘Xt+1) / P(XtJrl‘mt)P(:Bt‘el:t)dmt

observation model motion model belief

integral because
continuous PDFs



Simple, 1D example...




Tt =Tt—1 T ST T¢

ri ~ N(0,0R)

‘sampled from’

System (motion) model



Tt =Tt—1 TS+ Tt

ry ~ N(0,0R)

know velocity noise

How do you represent the motion model?

P($t|$t—1)



Tt =Tt—1 TS+ Tt

ry ~ N(0,0R)
: \ e —— ©  E——
S r2
know velocity noise

How do you represent the motion model?

A linear Gaussian (continuous) transition model

P(z¢|zi—1) = N(x; 241 + 8, 07)

standard

mean o
deviation

How can you visualize this distribution?



know velocity

A linear Gaussian (continuous) transition model

P(z¢|zi—1) = N(x; 241 + 8, 07)

Why don’t we just use a table as before?



sensor
error
GPS measurement Zl i 1 True position

2t = Tt + Q¢

qi ~ N(O: gQ)

sampled from a Gaussian

Observation (measurement) model



Zt = Tt T+ Q¢

C— gt ~ N (0} o Q)
q1
sensor
error
GPS measurement Zl i 1 True position

How do you represent the observation (measurement) model?

P(e|x)

e represents z



Zt = Tt T+ Q¢
qi NN(O}JQ)
q1

sensor
error
GPS measurement Zl i 1 True position

How do you represent the observation (measurement) model?

Also a linear Gaussian model

P(Zt|$t) — N(Zt, iBt}JQ)



@ GPS GPS measurement .2:1 __

2t = Tt + Q¢
"\t NN(O}JQ)

True position

How do you represent the observation (measurement) model?

Also a linear Gaussian model

P(Zt|$t) — N(Zt, iBt}JQ)



‘[ 1?:3:;‘3@(3&735.‘-& '
Sem—

Zo

true position initial estimate

initial estimate uncertainty JU

Prior (initial) State



true position initial estimate

How do you represent the prior state probability?



true position initial estimate

How do you represent the prior state probability?

Also a linear Gaussian model!

P(i‘g) — N(i‘g; L0, {TD)



initial estimate 0 0 -

true position

How do you represent the prior state probability?

Also a linear Gaussian model!

P(ig) — N(igg L0, {TD)



Inference

So how do you do temporal filtering with the KL?



Recall: the first step of filtering was the ‘prediction step’

prediction step

P(Xt+1‘€1:t+1) X P(et+1‘xt+1) / P(XtJrl‘mt)P(mt‘el:t)dmt

£+ motion model belief

A

compute this! "/)

It's just another Gaussian

need to compute the ‘prediction’ mean and variance...



Prediction
(Using the motion model)

How would you predict 1 given Zg?

using this ‘cap’ notation to - - -~
g :I:l — $0 _|_ S (This is the mean)

denote ‘estimate’

2 2

o] = g‘% —+ 0,. (Thisisthe variance)



prediction step

P(Xt—l—l‘el:t—l—l) X P(€t+1‘Xt+1) / P(Xt+1‘il3t)P($Bt‘€1:t)d-‘Bt

£+ motion model belief

the second step after prediction is ...



... Update step!

compute this —j

(using results of the prediction step)



In the update step, the sensor measurement
corrects the system prediction

initial system sensor
estimate prediction estimate
Lo L1 <]
2 2
01 g,
uncertainty uncertainty

Which estimate is correct? Is there a way to know?

Is there a way to merge this information?



Intuitively, the smaller variance mean less uncertainty.

system 2 sensor 2

prediction g1 estimate Jq

SO we want a weighted state estimate correction

2 2
something ;f;—l_ _ Jq :il | 01 2
. . — |

This happens naturally in the Bayesian filtering (with Gaussians) framework!



Recall the filtering equation:

. __o__kzs__e__r__v__a__ti_o__n__ . one step motion prediction
P(Xt+1‘€1:t+1) 0.¢ EP(€t+1‘Xt+1)EJ P(XtJrl‘mt)P(mt‘el:t)dmtE
o wey oo ;
Gaussian Gaussian

What Is the product of two Gaussians?



Recall ...

When we multiply the prediction (Gaussian) with
the observation model (Gaussian) we get ...

... a product of two GGaussians

2 2
_ H105 T 4207 0705
o 2 2 2 2

applied to the filtering equation...



P(Xt+1\€1:t+1) X P(et+1‘Xt+1) / P(XtJrl‘ﬂ’t)P(-'Bt‘el:t)d:Bt

{

mean: <]
variance: 9q

new mean.
$102 + zlﬂr%
-+ _ “1%
L1 = 2 | 2
O T+ 0]

‘plus’ sign means post
‘update’ estimate

]
\ mean: T1

variance: 01

new variance:

9 92

~24+ qul

01 = 2 1 2
02 + 01



system 2 sensor 2

prediction g1 estimate Jq
With a little algebra...
£10% + 210% o2 o2
~+ q A q | 1
LTy = 2 o2 lgay g2 TRl a2
Jq 0'1 O'q 0'1 O'q 0'1

We get a weighted state estimate correction!




Kalman gain notation

With a little algebra...

2
mfza:l | (z1 —21) =21 + K(21 — 21)
2 2
o5 T 07 -- |
q A
‘Kalman gain’ ‘Innovation’
With a little algebra...
2 .2 2
10 )
1
o = =11 = o =(1-K)o7
1 q 1 q




Summary (1D Kalman Filtering)

To solve this...

P(Xt+1‘61:t+1) X P(et+1‘Xt+1) P(Xt+1‘mt)P(mt‘61:t)dmt

Lt

Compute this...

At A ” 24 2 2

‘Kalman gain’

.-ﬁ—I—_.-ﬂ - 2 . 2 2
] =21+ K(21 — 21) o0yt =07 — Koy

mean of the new Gaussian variance of the new Gaussian



X

Simple 1D Implementation

n
@
X
<
N

< X
+ +
Q w

Just 5 lines of code!



or just 2 lines

KF(x,Vv, Z)
(x+s)+(v+q) / ((v+g *(z-(x+s));
(v+q) = (v+qg) / ((v+qg) +r) *v;

4
B



Bare computations (algorithm) of

Bayesian filtering:

KalmanFllter(ﬂt 15 Yit_1, Uty 2¢)

motion

rfndeic;tn l-llt — Atl—‘l’t 1 —I— But ‘old” mean

Prediction

K, = ztcj (ctz:tcT +Q,)" ! Gan

vation model

e = e+ K2 — Ctﬂt)
e B = (I — KyCy)X

Update



Simple Multi-dimensional Implementation
(also 5 lines of code!)

[x P] = KF(x,P, z)
X = A*x;
P = A*P*A' + Q;

K = P*C'/ (C*P*C' + R);

= X + K*¥(z - C*x);
P = (eye(size(K,1))—-K*C)*P;

X
|



2D Example



state measurement

r = A

Constant position Motion Model

Ly — A:I:t_l + B‘ut + €



state measurement
r = A
Y] Y

Constant position Motion Model

Ly — A:I:t_l + B‘ut + €

system noise

€t NN(OjR)

Constant position

— 0 1 —

Bu

o O

R

1 0 0] C 2 “

0




state measurement

r = A

Measurement Model

24 — Ctﬂ?t —+ 6t



state measurement

€T — prAp—

Measurement Model

z; = Oy + 04

Zero-mean measurement noise
1 0] 5, ~ N(0.Q Q__o'g 0
1o 1| *NO L= g 4




Algorithm for the 2D object tracking example

1 0 1 0
4= 0 1 C'= 0 1
motion model observation model
General Case Constant position Model
py = Agpy—1 + Buy Ty = Tp—1
it — Atzt_lA;_ + R E_t — Et_]_ —|— R
Kt — itct_l_(ctitog_ + Qt)_l Kt — E_t(z_t —+ Q)_l
Ht = ﬂt + Kt(Zt — Ctﬂt) r; — §3t } Kt(zt — ;f;t)

e = (I — Ktct)z_t Dy = (I — Kt)z_t



Just 4 lines of code

X
av,
|

KF constPos(x,P, z)
P =P + Q;

K =P/ (P + R);

X
|

= x + K * (z - X);
(eye(size(K,1))-K) * P;

J
|

Where did the 5th line go?



General Case Constant position Model

ﬁ’t — At”t—l —+ B’H;t

itZAtEt—lA;_+R Z_tZEt—l + R
K, =500 (CECT +Q)™ | K, =55+ Q)
Ut = ﬁ't + Kt(Zt — Otﬁrt) E Ly — -(E't + Kt(zt o ‘{i"t)

Et — (I — KtCt)E_t Et — (I — Kt)z_t



Extended Kalman filter






Motion model of the Kalman filter is linear

L1 — A$t—1 -+ B’H;t + €4

but motion Is not always linear




Visualizing linear models

1D motion model

p(x
(> t) example
%
Output /)’o N
utput. o 17 ) W I x. N\
Gaussian (Prediction) t ,of)zio v%(
| AN
%\

p(zi—1) |

Tr—1 T

Can we use the Kalman nout
Fllter’) Gaussian (Belief)

(motion model and observation model are linear)



Visualizing non-linear models

P(:Ft)

Output:
NOT 4T I
Gaussian

P(ﬂ?t—l) 1

Can we use the Kalman

Filter?

(motion model is not linear)

Tr—1

Input:

Gaussian (Belief)

1D motion model
example



ow do you deal with non-linear models?

1D motion model

p(zs)
> example

Output: \\@@
NOT mt """"""""""""""""" : 8"\])
GGaussian

Tr—1 T

Input:
(Gaussian



ow do you deal with non-linear models?

approximate with a
Output: linear function
' I
Gaussian !
P(il?t—l)‘\
TV
T -

When does this trick work? Input:

(Gaussian



Extended Kalman Filter

. Does not assume linear Gaussian models

. Assumes Gaussian noise

. Uses local linear approximations of model to keep
the efficiency of the KF framework

Kalman Filter Extended Kalman Filter

linear motion model non-linear motion model

Ty =— Aﬂ'}t_]_ -+ B’H;t + € Ty — g(ﬂjtglj ut) + €t




Motion model linearization

ag (H’t—l ) u‘t)
0Ts_1

g($t—1: ’U}t) ~ Q(Ht—la u’t) | ($t—1 — )u't—l)

Taylor series expansion



Motion model linearization

99 (g1, u
Q($t_1,ut) Hg(ﬂt—lgut) | g(g;tll f)

(ib“t—l — ,th—1)

~ g(pe—1,ut) + Gy (Tp—1 — ht—1)

A

|

What’s this called?



Motion model linearization

99 (g1, u
Q($t_1,ut) Hg(ﬂt—lgut) | g(g; 11 f)
$_

(ib“t—l — ,th—1)

~ g(pe—1,ut) + Gy (Tp—1 — ht—1)

A

| Jacobian Matrix

What's this called? ‘the rate of change in X’
‘slope of the function’



Motion model linearization

99 (g1, u
Q($t_1,ut) Hg(ﬂt—lgut) | g(g; 11 f)
$_

(ib“t—l — ,th—1)
~ g(pe—1,ut) + Gy (Tp—1 — ht—1)

Jacobian Matrix

‘the rate of change in X’
‘slope of the function’

Sensor model linearization

pae) = i) + 5 P (@ — )

~ h(pe) + Hy (x4 — fig)



New EKF Algorithm

(pretty much the same)

Kalman Filter -xtended KF
pe = Ay 1 + Buy e = g(pe—1, ug)
it — AtEt_lA;r -+ R it — G’tit_l(}’? + R
Kt — itct—l_(ctitct—r —I— Qt)_l Kt — EthT (HtitHT —|— Q)_l
pe = e + Ki(2e — Celie) ur = iy + Ke(ze — h(fit))

Zt — (I — Ktct)z_t Et — (I — Kth)it



2D example

-




state: position-velocity

position

velocity

position

SCIL A P

velocity

bearing constant velocity motion model

displacement y

b0 "1 At 0 0 ]
, aj
? sp/ac%e% A — ? 0
0

At
1

oo o =

1
0
0

with additive Gaussian noise

Motion model is linear but ...



bearing

y -
,/41

displacement y

measurement: range-bearing

r

6

Y E

measurement model

Is the measurement model linear?

z = h(r,0)

with additive Gaussian noise



bearing

b <
v

displacement y

measurement: range-bearing

r

6

Y E

measurement model

Is the measurement model linear?
z = h(r,0)
with additive Gaussian noise
non-linear!

What should we do?



linearize the observation/measurement model!

r
vl
tan™" (y/z)
or or Or
ox ox oy
99 06 00
ox ox oy

0z
— =9
H T

What is the Jacobian?



N
|

0z
— =9
H T

What is the Jacobian?

Jacobian used in the Taylor series expansion looks like ...

- Or
ox

06

or
oz

ole)
oz

cos(d) 0 sin(d) O

—sin(f)/r 0 cos(f)/r 0 |



[x P]

-

g X
|-

g X

EKF (x, P, z,dt)

= sqgrt (x(1)"2+x(3)"2);
= atan2(x(3),x(1));
= [r; bl
[ cos (b) 0 sin(b)
—-sin(b)/r 0 cos(b)/r
= F'*x;
= BP*P*F'" 4+ Q;
P*H'/ (H*P*H' + R);

= x + K*(z - y);

Parameters:

Q
R

F

I
(O
|_|- -
Q
«Q

0; extra computation for
0 ] . the EKF measurement
4 model Jacobian

(eye (size (K, 1)) -K*H) *P;



Problems with EKFs

Taylor series expansion = poor approximation of non-linear functions
success of linearization depends on limited uncertainty and amount of
local non-linearity

Computing partial derivatives is a pain

Drifts when linearization is a bad approximation

Cannot handle multi-modal (multi-hypothesis) distributions



SLAM



1052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007

MonoSLAM: Real-Time Single Camera SLAM

Andrew J. Davison, lan D. Reid, Member, IEEE, Nicholas D. Molton, and
Olivier Stasse, Member, IEEE

Abstract—We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a
previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from
mobile robotics to the “pure vision” domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible
to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural
landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the
use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation
estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera
hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We
present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live
augmented reality with a hand-held camera.

Index Terms—Autonomous vehicles, 3D/stereo scene analysis, tracking.

+




Simultaneous Localization and Mapping

Given a single camera feed,
estimate the 3D position of the camera and
the 3D positions of all landmark points in the world



Real-Time
Camera Tracking

INn Unknown Scenes




MonoSLAM is just EKF!

P(@e|z14) & P(z|@:) / P(@|@1-1)P(01|2110-1)dTs 1

Lt—1

Step 1: Prediction

Pz 21 1) = / Pzy|z 1) P(2o 1|20 1 )dTe s

Lt—1

Step 2: Update:
P(mt‘zl:t) = P(Zt‘mt)P(mt‘zl:t—l)



MonoSLAM is just EKF!

P@‘Zl:t) X P(zt@ P(@@P( 4 zl:t—l)dmt—l

Lt—1

What Is the state representation?
Step 1: Prediction

Pz 21 1) = / Pzy|z 1) P(2o 1|20 1 )dTe s

Lt—1

Step 2: Update:
P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)



What is the camera (robot) state?

What are the
dimensions?

position

velocity

r
q rotation (quaternion)
v
",

angular velocity

13 total




What is the camera (robot) state?

What are the
dimensions?

position 3

velocity 3

r
q rotation (quaternion) 4
v
W

angular velocity 3

13 total




What Is the world (robot+environment) state?

XL‘
Y1

state of the camera

location of feature 1

location of feature 2

location of feature N

What are the
dimensions?



What Is the world (robot+environment) state?

XL‘
Y1

state of the camera

location of feature 1

location of feature 2

location of feature N

What are the
dimensions?

13

13+3N total



What Is the covariance (uncertainty) of the world state?

What are the dimensions?
(13+3N) x (13+3N)



MonoSLAM is just EKF!

P(mt‘zl:t) 0.¢ P(Zt‘&'t) P(mt‘mt—l)P(mt—l‘zl:t—l)dmt—l

Lt—1

What are the observations?
Step 1: Prediction

Pz 21 1) = / Pzy|z 1) P(2o 1|20 1 )dTe s

Lt—1

Step 2: Update:
P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)



MonoSLAM is just EKF!

P(::ct\@ X P@mt) P(xy|xi_1)P(xs_1 @)dﬂ:t_l

Lt—1

What are the observations?
Step 1: Prediction

Pz 21 1) = / Pzy|z 1) P(2o 1|20 1 )dTe s

Lt—1

Step 2: Update:
P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)



Observations are...

detected visual features of landmark points.
(e.g., Harris corners)




MonoSLAM is just EKF!

P(mt‘zl:t) 0.¢ P(Zt‘ﬂ?t) P(mt‘mt—l)P(mt—l‘zl:t—l)dmt—l

Lt—1

Step 1: Prediction_ ] -

|

P(xi|z1.4-1) = / P(xi|xi—1)P(xi—1|21.4—1)dxs_1
Lt—1

—

What does the prediction step look like?
Step 2: Update:

P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)



What is the motion model? P(:Bt “-’Bt—l)

What Is the form of the belief? P(iBt ‘let—l)



What is the motion model? P(ax:|axi—1)

Landmarks: Camera:
constant position constant velocity .y
(identity matrix) (not identity matrix and non-linear)

What iIs the form of the belief? P(ﬂft ‘let—l)



What is the motion model? P(ax:|axi—1)

Landmarks: Camera:
constant position constant velocity
(identity matrix) (not identity matrix and non-linear)

What iIs the form of the belief? P(ﬂft ‘let—l)

Gaussian!
(everything will be parametrized by a mean and variance)



Constant Velocity Motion Model

I“t — rt—l —|— Vt_lﬂt position

(Q[t — Qt—l X [q(w) At] rotation (quaternion)
Vi — Vi_1 velocity

Wt — wt_l angular velocity



(GGaussian noise uncertainty (only on velocity)

Vi — Vi1 —|—V

W — W1 ()

o, 0 O
V~NO,{ 0 o, 0 |)
0 0 o,
g, O 0

Q~NO,|] 0 o, 0 |)




Prediction (mean of camera state):

P(e|z1:-1) = f P(@|@e-1)P(@1-1]21:e-1)dws1

Ltr—1

I's ' 1 -+ Vt_lﬂt
F— | A | = | D1 + q(w)i—1At
| V¢ | | Vi—1
Wi Wi—1




Prediction (covariance of camera state):

P(e|z1:-1) = f P(@|@e-1)P(@1-1]21:e-1)dws1

Ltr—1

change .
new old around system noise
covariance covariance (process noise)
new state new state

Where does this motion model
approximation come from?



change in
camera state

change in
position

3Vt

ors_1

Svt

3(.:&

ors_1

8Ldt

oq¢—1

al‘t

0q+_1

3Vt

0q+_1

8(.:&

ovi_1

Srt

Ovi_1

3qt

ovi_1

Svt

ovi_1

8i.dt

Owy_1

Owi_1

Ow_1

Owy 1

What are the dimensions?



of;

OX¢—1

Skipping over many details...

I

0 LAt
0q:
oqs_1 0
0 1
0 0

6{.1.)1;

0q+_1




Prediction (covariance of camera state):

P(e|z1:-1) = f P(@|@e-1)P(@1-1]21:e-1)dws1

Ltr—1

of, '
Yx o+ Qq

change .
new old around system noise
covariance covariance (process noise)
new state new state

)

Bit of a pain to compute this term...



We just covered the prediction step for the camera state

Pz 21 1) = / Pzl 1) P(ze 1|21 1)dms 1

Ltr—1

Iy ry_1 T Vi1
o | A | | - 1 +q(w)i—1
i Vi | Vi—1
| Wt | i Wi—1 |
_ of, _ Of, '
E}cx — T Qt

- ooxT T ox

Now we need to do the update step!



General Filtering Equations

P(mt‘zl:t) 0.¢ P(Zt‘&'t) P(mt‘mt—l)P(mt—l‘zl:t—l)dmt—l

Lt—1

Prediction:

Pz 21 1) = / Pzy|z 1) P(2o 1|20 1 )dTe s

Lt—1

?l P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)



Belief state State observation Predicted State

P(mt‘zl:t) = P(zt‘mt)P(mt‘zlzt—l)

!

What are the observations?

2D projections of 3D landmarks



Recall, the state includes What Is the projection

the 3D location of from 3D point to 2D
landmarks iImage point?
XC
Y1
X = }r2

YN




Observation Model

P(z¢|xy)

If you know the 3D location of a landmark, what is the 2D projection?

4L Py

observation model

2D Image Camera 3D World
Point matrix Point

P =K |R|T] "oe

How do we make the observation model linear?



 oh

A

(2n x 13)

n: number of visible points

| will spare you the pain of deriving the partial derivative...



P(mt‘zl:t) = P(Zt‘mt)P(mt‘zl:t—l)

Update step (mean):

Kalman gain
=X; + K — h(y;
X; = Xy 1 (24 (V; X))
Updated Predicted Matched 2D 2D projection of
state state features 3D point

Update step (covariance):

|dentit
SnHty Kalman gain

Et — (I — Kth)Zt

Covariance Jacobian Covariance
(updated) (predicted)



Kintinuous: Spatially Extended Kinect
Fusion

Thomas Whelan, John McDonald
National University of Ireland Maynooth, Ireland

Michael Kaess, Maurice Fallon, Hordur Johannsson,
John J. Leonard

Computer Science and Artificial Intelligence IH 1 r]

" F\ ™ Laboratory, MIT, USA

et “CSAIL
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