Allgnment ana tracking

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2019, Lecture 22

Course announcements

« Homework 6 has been posted and is due on April 24,
- Any questions about the homework?
- How many of you have looked at/started/finished homework 67

« Joday’s office hours will be covered by Yannis.
- Same hour, 4-6 pm.
- In Smith Hall 225 and/or graphics lounge.
- Yannis’ Friday office hours will take place as usual.

Overview of today’s lecture

* Motion magnification using optical flow.
* |mage alignment.

* Lucas-Kanade alignment.

« Baker-Matthews alignment.

* Inverse alignment.

« KLT tracking.

* Mean-shift tracking.

« Modern trackers.

Slide credits

Most of these slides were adapted from:

 Kris Kitani (16-385, Spring 2017).

Motion magnification using
optical flow

How would you achieve this effect?

original motion-magnified

« Compute optical flow from frame to frame.
» Magnify optical flow velocities.
* Appropriately warp image intensities.

How would you achieve this effect?

naively motion-magnified motion-magnified

« Compute optical flow from frame to frame.
» Magnify optical flow velocities.
* Appropriately warp image intensities.

In practice, many additional steps
are required for a good result.

Some more examples

Original Sequence

Some more examples

Image alignment

@ IntrakFace

http://www.humansensing.cs.cmu.edu/intraface/

....oo.-......
T A . ‘.t.‘

.

How can | find in the iImage?

|dea #1: Template Matching

Fal s e =y - N .."~ | <)

.ﬁ‘ P . e - - . “\' ‘| ‘I »' .‘\' :‘D
- W
p -

TN

) S

Slow, combinatory, global solution

ldea #2: Pyramid Template Matching

Faster, combinatory, locally optimal

|dea #3: Model refinement

(when you have a good initial solution)

Fastest, locally optimal

Some notation before we get into the math...

2D image transformation - Translation

W (z;p)

2D image coordinate

€T
€T —
Y
Parameters of the transformation - Affine

p=1{p1,-..,PN}

Warped image

I(z') = I(W (z; p))

Pixel value at a coordinate

Some notation before we get into the math...

2D image transformation

W (z;p)

2D image coordinate

€Tr —

x
Y

—

Parameters of the transformation

pP=1p1,-..

:pN}

Warped image

I(z') = I(W (z; p))

Pixel value at a coordinate

- Translation

T+
W(x;p) =
(@ P) Yt P2 }
_ 1 0 P1 } i
i 0 1 Do 1
transform c_oordinat-e
- Affine

Some notation before we get into the math...

2D image transformation

W (z;p)

2D image coordinate

€Tr —

x
Y

—

Parameters of the transformation

pP=1p1,-..

:pN}

Warped image

I(z') = I(W (z; p))

Pixel value at a coordinate

- Translation N
T+
W(x;p) =
(@ P) Yt P2 }
_ 1 0 P1 } i
i U 1 Do i 1 -
transform coordinate
- Affine \

- p1Z + pay + D3
W .
(@;P) | P4T + Ps5Y + DPe }

- T
_ | b1 P2 P3 } ’
P4 D5 De 1

affine transform - -

coordinate

can be written in matrix form when linear
affine warp matrix can also be 3x3 when last row is [0 0 1]

W (x;p) takes a as input and returns a

W (x;p) is afunction of variables
W (x;p) returns a of dimension ___ x__
p=1{p1,.---, PN} WhereNis for an affine model

I(x") = I(W(x;p)) this warp changes pixel values?

iImage alignment

(problem definition)

mmz I(W(z;p)) — T(x)]

warped image template image

Find the warp parameters p such that the
SSD is minimized

Find the warp parameters p such that the
SSD is minimized

I(x

SRR

.&\

I'(z)

iImage alignment

(problem definition)

mmz I(W(z;p)) — T(x)]

warped image template image

Find the warp parameters p such that the
SSD is minimized

How could you find a solution to this problem?

This is a non-linear (quadratic) function of a
non-parametric function!

(Function | is non-parametric)

mlﬂz I(W(z;p)) — T()]°

Hard to optimize

What can you do to make it easier to solve?

This is a non-linear (quadratic) function of a
non-parametric function!

(Function | is non-parametric)

mlﬂz I(W(z;p)) — T()]°

Hard to optimize

What can you do to make it easier to solve?

assume good Initialization,
inearized objective and update incrementally

| ucas-Kanade alignment

(pretty strong assumption)

you have a good Initial guess p...

> (W (x;p)) — T(x)]”

can be written as ...

Y " I(W(z; p + Ap)) — T(z))?

£

(a small incremental adjustment)
(this is what we are solving for now)

This is still a non-linear (quadratic) function of a
non-parametric function!

(Function | is non-parametric)
Y " [I(W(z; p + Ap)) — T ()]’
£Ir

How can we linearize the function | for a really small perturbation of p?

This is still a non-linear (quadratic) function of a
non-parametric function!

(Function | is non-parametric)
Y " [I(W(z; p + Ap)) — T ()]’
£Ir

How can we linearize the function | for a really small perturbation of p?

Taylor series approximation!

" [H(W(x;p+ Ap)) - T(=))

flz,y) = f(a,b) + fz(a,b)(z — a) + fy(a,b)(y —b)

chain rule

hhhhhhhhhh

r' = W(x;p)
I(Wiaip) + 20 “Pap
[(Wiaip) + o PO D
[(W(aip)) + VI Ap

Ap

" [H(W(x;p+ Ap)) - T(=))

£

flz,y) = f(a,b) + fz(a,b)(z — a) + fy(a,b)(y — b)

Linear approximation

> -I(W(:B;p)) + VI

OW

op

Ap — T'(x)

What are the unknowns here?

7 2

" [H(W(x;p+ Ap)) - T(=))

£

flz,y) = f(a,b) + fz(a,b)(z — a) + fy(a,b)(y — b)

Linear approximation

> -I(W(:B;p)) + VI

OW

op

Ap — T(x)

N

Now, the function is a linear function of the unknowns ->

7 2

; :I(W(:B;p)) Waajﬂp — T(:B)j

T isa of dimension X
output of W S a of dimension X
p IS a of dimension X

I() is a function of variables

The Jacobian 2¥W

(A matrix of partial derivatives) ap

~ Affine transform

L
_ plf[?—
Ly (@p)=| o
N W’y(mﬁy) i Op1 Ops
~ AW, W, | OW,p T Ip, =0
aw op1 Op2 OpnN
Op oW, W, oW,
| Op1 Op2 OpN aﬂ_ rx 0 vy
op 10 z O
Rate of chanqge of the warp

- P3Y -
~ P4l -

— O

< O
e

> | I(W(xz;p)) + VI

VI IS a

oW

IS a

ApD isa

OW

of dimension X

of dimension X

of dimension X

Ap —T(x)

-I(W(:L';p)) + VI

OW

Ap — T(::r:)—

OW 1°
Ap —T'(x)

-I(W(.‘B; p)) + VI

I(\;f(a:, p)) + VI

£ - A
T \\
pixel coordinate image intensity
(2x1) (scalar)

OW

op

Ap — T(:B)—

warp function
(2x1)

A

~ _.
E I(W(x;p)) + VI
r -~
o\
pixel coordinate irﬁage intensity
(2x1) (scalar)

OW 1°
Ap — T
op P (ﬂf)_

warp function
(2x1)

| warp parameters
(6 for affine)
‘ l

> -I(W(:I: p)) + waw Ap — T(::r:)q

S

pixel coordinate image intensity
(2x1) (scalar)

warp function
(2x1)

| warp parameters
(6 for affine)
l \ 4

> -I(W(:I: p)) + waw Ap — T(::r:)q

l \\ iImage gradient

(1x2)

pixel coordinate image intensity
(2x1) (scalar)

Partial derivatives of warp function
warp function (2 X ©)
(2x1)

| warp parameters
(6 for affine)
l \ 4

Z I(\;f(:n p)) + VIaW Ap — T(::c)—

Op

A

iImage gradient
(1x2)

pixel coordinate image intensity
(2x1) (scalar)

Partial derivatives of warp function
warp function (2 X ©)
(2x1)

| warp parameters
(6 for affine)
\ 4
V42

> -I(W(:B p)) + VIaWAp — T'(x)

Op

T-n\ / X _

image gradient Incremental warp
(1x2) (6x1)

pixel coordinate image intensity
(2x1) (scalar)

Partial derivatives of warp function

warp function (2 X 6)
(2x1) template image intensity

(scalar)
warp parameters

(6 for affine)
\ 4
b 92

> -I(W(:B p)) + VIaWAp — T(x)

N op]
L A /K

A
image gradient Incremental warp
(1x2) (6x1)
pixel coordinate image intensity
(2x1) (scalar)

When you implement this, you will compute everything in parallel and store as matrix ... don't loop over x!

Summary

(of Lucas-Kanade Image Alignment)

Problem:
II%%H Z [I(W(ﬂ:, p)) — T($)]2 Difficult non-linear optimization problem
:]‘: warped image template image
Strategy:
o 2 ssume known approximate solution
Z [I(W(m? p _I_ Ap) o T(ﬂ:)] - ‘ IOSpolve fortinorelr;ent
£
) aW 14 aylor series approximation
Z I(W(-Ta', p)) —+ Vfa—.ﬁp — T(ﬂ:) I P Lineatrize
— | p _

then solve for Ap

OK, so how do we solve this?

I(W(x;p)) + VI

OW

op

Ap — T'(x)

7 2

Another way to look at it...

‘ OW 1°
min I(W(x: +VI—Ap —T(x
A -((z;p)) op P ()_
(moving terms around)
__OW 1°
min VI—Ap —{T(x) — I(W(x;
wp > | VI, Ap— (T(@) - I(W(aip)

vector of
constants

Have you seen this form of optimization problem before?

vector of

. constant
variables

Another way to look at it...

min I(W(x: +VI—Ap — T (x
R 2 | (W(z;p)) op 2P~ T(@)
- aw -
] I—Ap —{T(x) — I(W(x;
IE%] 2 qV op P) {T(x) (NE‘B:P))}_
Qnstant varabﬁ constant
Looks ke = AXT — Db “

OW

How do you solve this?

—

T = a,rgmin HA$ — sz issolvedby I = (ATA)_lATb

I

Applied to our tasks:

| OW 1°
12%1 2 _Vfgﬁp —{T'(x) — I(W(‘I’EP))}_

IS optimized when

after applying

-
Ap=H" ' Z {VI—} T(x) — I(W(x;p))] z=(ATA)TATD

OW1' [_ oW~
where H = Z VI— VI—— AT A
=L Oop] | Op.

Strategy:

Y [I(W(z;p HAp))

D [1(W(a;

:I: -

Solution:

]
Ap=HY V1o | (@) - [(W(aip)

=g |

p)) + VI

minz (W (z;p)) — T("B)F

warped image

template image

—T()]°

OW

op

W
VI@_

o

Ap — T'(x)

Difficult non-linear optimization problem

Assume known approximate solution

Solve for increment

Taylor series approximation
Linearize

Solution to least squares
approximation

Hessian

This Is called...

Gauss-Newton gradient decent
non-linear optimization!

Lucas Kanade (Additive alignment)

1

. Warp 1mage

. Compute gradient
. Evaluate Jacobilan
. Compute Hessian

. Compute

. Update parameters

I(W(z;p))

. Compute error 1image [T(z)— I(W(x;p))]

! x'coordinates of the warped image
VI(:I:) (grac;]ilentts oftL?warpgd?magg)
oW
op
W] [_ oW
H =Y [Vi%] [V
T
Ap se-a S |vill] @) - (W)
p<p+Ap

Just 8 lines of code!

Baker-Matthews alignment

Image Alignment

(start with an initial solution, match the image and template)

Image Alignment Objective Function

2
> [I(W(z;p)) — T(z)]
£
Given an initial solution...several possible formulations

Additive Alignment
> [I(W(z;p+ Ap)) — T(=))

incremental perturbation of parameters

Image Alignment Objective Function

2
> [I(W(z;p)) — T(z)]
£
Given an initial solution...several possible formulations

Additive Alignment Compositional Alignment
Y I(W(z;p+ Ap)) — T(w)]? > [I(W(W(z; Ap)ip) — T(x))’
£ 4 b

incremental perturbation of parameters incremental warps of image

Additive strategy

first shot .

go back, adjust and
again

Compositional strategy

second sho

-(.'

start from he

Additive

Additive W(x;p+Ap)

Additive

W(x:0 + Ap) = W(X;Ap) W(X;p)

Additive

W(x:0 + Ap) = W(X;Ap) W(X;p)

Compositional Alignment

Original objective function (SSD)

111111 Z T(W — T(x)]

Assuming an initial solution p and a compositional warp increment

> [I(W(W(z; Ap);p) — T(=)]”

Compositional Alignment

Original objective function (SSD)

111111 Z T(W — T(x)]

Assuming an initial solution p and a compositional warp increment

> [I(W(W(z; Ap);p) — T(=)]”

Another way to write the composition [dentity warp

W(x;p) o W(x; Ap) = W(W(x; Ap);p) W(:l:; 0)

Compositional Alignment

Original objective function (SSD)

111111 Z T(W — T(x)]

Assuming an initial solution p and a compositional warp increment

> [I(W(W(z; Ap);p) — T(=)]”

Another way to write the composition [dentity warp

W(x;p) o W(x; Ap) = W(W(x; Ap);p) W(:l:; 0)

Skipping over the derivation...the new update rule is

W (z;p) <+ W(z;p) o W(z; Ap)

S0 what's so great about this compositional form?

Additive Alignment Compositional Alignment

Y [I(W(x;p + Ap)) — T ()] > [I(W(W(z; Ap);p) — T(x))*
€T T
linearized form linearized form
; [I(W(:B;p)) +Vi(z)%—ZAP T(x)} ; [)) + VI(z)aw;;; O)AP—T(:B)

Additive Alignment Compositional Alignment

Y [I(W(x;p + Ap)) — T ()] > [I(W(W(z; Ap);p) — T(x))*
T T
linearized form linearized form
; [I(W(:B;p)) +Vi(z)%—ZAP T(x)} ; [)) + VI(z)aw;;; O)AP—T(:B)
Jacobian of W(x;p) Jacobian of
W(x;0)

The Jacobian Is constant.
Jacobian can be precomputed!

Compositional Image Alignment

Minimize

S [I(W(W(x; Ap)ip) — T() 2 ~ 3 [I<w<x; p) + VI(W) W Ap T<x>]

X

W(x;p) o0 W(x;Ap)

— M \/ oo

W(x;0 + Ap) = W(X;Ap)

Jacobian is simple and can be precomputed

Lucas Kanade (Additive alignment)
. Warp image I(W(z;p))
. Compute errorimage [T(x) — I(W (z: p))]?

. Compute gradient VI(z')

OW

. BEvaluate Jacobian =™

op

. Compute Hessian H
. Compute Ap

. Update parameters p <+ p+ Ap

. Evaluate Jacobian

Shum-Szeliski (Compositional alignment)
. Warpimage I(W(xz;p))
. Compute errorimage [T(x) — I(W (z: p))]?

. Compute gradient VI(z')

OW (z; 0)
op

. Compute Hessian H

. Compute Ap

. Update parameters wWi(z; p) + W(x;p) o W(x; Ap)

Any other speed up techniques?

Inverse alignment

Why not compute warp updates on the template?

Additive Alignment Compositional Alignment

S UW@p+ap) LT@P Y UW(W:ap):p) (T(@)
I 4

Why not compute warp updates on the template?

Additive Alignment Compositional Alignment

R TR,

Y " I(W(x; p + Ap)) £T ()] N I(W(W(z;Ap);p) £ T()
xIr €Tr

What happens if you let the template be
warped too?

Inverse Compositional Alignment

ZIT (z; Ap) — I(W (x; p))]

W(X;p) 0 W(x;Ap)

Compositional

W(x;0 + Ap) = W(x;Ap) W(x;p)

Inverse compositional

W(x;p) 0 W(x;Ap)

W(x;0 + Ap) = W(X;Ap)

Compositional strategy

second sho

-(.'

start from he

Inverse Compositional strategy

move the hole

=

S0 what's so great about this inverse compositional form?

Inverse Compositional Alignment
Minimize

T(W(x; Ap) — I(W(z;p ~ x |T'(W + VT —Ap —I(W(x;p
> (())FZ[(()) oW (()}

op
Solution
-
H = ; [VT%—‘:} [VT%—:} can be precomputed from template!
o oW1
Ap=Y H'|VITZ~| [T(@)-I(W(z;p))]
= p
Update

Properties of inverse compositional alignment

Jacobian can be precomputed
It is constant - evaluated at W(x;0)

Gradient of template can be precomputed
It Is constant

Hesslan can be precomputed
H= Z [VT—F [vzraﬂ}
op

Ap=Y A {wa—‘ﬂ T() - I(W(@;p))]

(main term that needs to be computed)

Warp must be invertible

Lucas Kanade (Additive alignment)
. Warp image I(W(z;p))
. Compute errorimage [T(x) — I(W (z: p))]?

. Compute gradient VI(W)

OW

. BEvaluate Jacobian =™

op

. Compute Hessian H
. Compute Ap

. Update parameters p <+ p+ Ap

. Evaluate Jacobian

Shum-Szeliski (Compositional alignment)
. Warpimage I(W(xz;p))
. Compute error image [T(z) — I(W (z; p))]

. Compute gradient VI(z')

OW (z; 0)
op

. Compute Hessian H

. Compute Ap

. Update parameters wWi(z; p) + W(x;p) o W(x; Ap)

Baker-Matthews (Inverse Compositional alignment)
1. Warp image I(W(z;p))
2. Compute errorimage [T(z) — I(W (z; p))]

3. Compute gradient VT'(W)

4. Evaluate Jacobian W

op
5. Compute Hessian H i=y o] [
6. Compute Ap ap= Y [vrO] (1) - 1w (ain))

7. Update parameters W (xz;p) «+ W(z;p) o W(x; Ap)~?

Algorithm

Ferwards Additive

Ferwards
compeositional

Inverse Additive

INVErSE
Compeositional

Efficient

NoO

Yes

Yes

Lucas, Kanade

Shum, Szeliski

Hager, Belhumeur

Baker, Matthews

Kanade-Lucas-lomasi
(KLT) tracker

https://www.youtube.com/watch?v=rwljkECpYOM

-eature-based tracking

Up to now, we've been aligning entire images
but we can also track just small image regions too!

(sometimes called sparse tracking or sparse alignment)

ow should we select the ‘'small images’ (features)?

ow should we track them from frame to frame?”?

History of the

Kanade-Lucas-Tomasi
(KLT) Tracker

An lterative Image Registration Technique
with an Application to Stereo Vision.

1981

I !ka;aae

Detection and Tracking of Feature Points.

1991

The original KLT algorithm

Good Features to Track.

1994

Kanade-Lucas-Tomasi

/

How should we track them from frame to How should we select features?
frame?

L ucas-Kanade Tomasi-Kanade
Method for choosing the
best feature (image patch)
for tracking

Method for aligning
(tracking) an image patch

What are good features for tracking?

What are good features for tracking?

Intuitively, we want to avoid smooth
regions and edges.
But Is there a more Is principled way to
define good features?

What are good features for tracking?

Can be derived from the tracking algorithm

What are good features for tracking?

Can be derived from the tracking algorithm

‘A feature is good If it can be tracked well’

Recall the Lucas-Kanade image alignment method:

error function (SSD) Z (W T(m)]g

incremental update Z I(W(x;p+ Ap)) — T(-‘B)F

Recall the Lucas-Kanade image alignment method:

error function (SSD) Z (W (*’B)]g

incremental update Z I(W(x;p+ Ap)) — T(-‘B)F

linearize Z I(W(:B; jp)) + VI(‘?;ZAP — T(:B)
r L

Recall the Lucas-Kanade image alignment method:

error function (SSD) Z (W (*’B)]g

incremental update Z I(W(x;p+ Ap)) — T(-‘B)F

linearize Z I(W(:B; jp)) + VI(‘?;ZAP — T(:B)
r L

-
Gradient update Ap=H" Z {VI—} T(x) — I(W(z;p))]

-2) [

Recall the Lucas-Kanade image alignment method:

error function (SSD) Z (W (*’B)]g

incremental update Z I(W(x;p+ Ap)) — T(-‘B)F

linearize Z I(W(:B; jp)) + VI(‘?;ZAP — T(:B)
r L

]
Ap=H 'Y VI (T(@) ~ (W)

=25 [

Gradient update

Update p—p+ Ap

Stability of gradient decent iterations depends on ...

_ i 17
Ap =@ Y VIS | [T(e) ~ I(W(a;p)

op

.

Stability of gradient decent iterations depends on ...

.

Inverting the Hessian

H = Z _waﬂ_
— |

- 1T
w%—‘;’_ T(z) - I(W(z; p))

AW

op

I_
_v op

When does the inversion fail?

Stability of gradient decent iterations depends on ...

_ i 17
Ap =@ Y VIS | [T(e) ~ I(W(a;p)

.

Inverting the Hessian

H = Z _waﬂ_
— |

op

AW

op

I_
_v op

When does the inversion fail?

H is singular. But what does that mean?

Above the noise level

A1 >0
Ao > ()

both Eigenvalues are large

Well-conditioned

both Eigenvalues have similar magnitude

Concrete example: Consider translation model

iE——pl— \%\% -1 0—
(@P)= 1y ipy op |0 1
Hessian

T OW] ! [oW
H = VI—— VI—
;_ op| | Op._

1 0 || I, 1 0

_Z 0 1]y [Iﬂ? I’y] 0 1

:I:_. - L -

- %.‘B ?E?E %L’B ﬁy%n _ <—when is this singular?
i rizly £ -Yyy

How are the eigenvalues related to image content?

Interpreting eigenvalues

A2 AN
P o> A

What kind of image patch does
each region represent?

Interpreting eigenvalues

Ao A

‘horizontal’ ‘corner’

- N
L Ay

Interpreting eigenvalues

4 ‘horizontal’ ‘corner’
I— o dge N
Ao >> Aq
7»1 ~ 7\¢2
Ay >> Ao
! ‘vertical’
f \ edge ,

What are good features for tracking?

What are good features for tracking?

min(Aq, Ag) > A

‘big Eigenvalues means good for tracking’

KL T algorithm

1. Find corners satisfying min(Aq, Ag) > A

2. For each corner compute displacement to next frame using
the Lucas-Kanade method

3. Store displacement of each corner, update corner position
4. (optional) Add more corner points every M frames using 1

5. Repeat 210 3 (4)

6. Returns long trajectories for each corner point

Mean-shift algorithm

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Find the region of
- highest density

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Pick a point

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Draw a window

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the
(weighted) mean «

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window -

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean .

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window e

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean .

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window e

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean _ o

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Compute the mean

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window e

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Coﬁqpute the mean -

Mean Shift Algorithm

A ‘'mode seeking’ algorithm
Fukunaga & Hostetler (1975)

Shift the window

(

N’

To understand the theory behind this we need to understand...

Kernel density estimation

To understand the mean shift algorithm ...

Kernel Density estimation

A method to approximate an underlying PDF from samples

Put ‘oump’ on every sample to approximate the PDF

o
Say we have some hidden PDF...
p(x) I
llll--lll- II
1 2 3 4 5 o6 ¢ 8 9 10

probability density function cumulative density function

randomly sample

We can draw samples,
using the CDF...

.I|||

ojdwes Ajwopue.

O y

ojdwes Ajwopue.

samples

Now to estimate the ‘hidden’ PDF
place Gaussian bumps on the samples...

samples

. I . discretized ‘bump’

samples

samples

samples

Y lIIl_-lIl-
1T 2 3 4 5 6 7 8 9 10

Kernel Density
Estimate
approximates the
original PDF

samples

Kernel Density estimation

Approximate the underlying PDF from samples from it

For example...

(L-T;)?
p(m) — Zcz—e 202

?

Gaussian ‘bump’ aka ‘kernel’

but there are many types of kernels!

Put ‘oump’ on every sample to approximate the PDF

Kernel Function

K(x,x')

returns the ‘distance’ between two points

Epanechnikov kernel

, c(l1 — ||le — x'||? x—a'|? <1
K(m’m):{ 0(| " ﬂtherwi!e

¢ |lz—2'[*<1
0 otherwise

K(z,z') = {

Normal kernel

s

K(z,a') = cexp (;Hm _ m’HQ)

These are all radially symmetric kernels

Radially symmetric kernels

...can be written in terms of its profile

K(z,z') =c- k(|z—2'|%)

profile

Connecting KDE and the
Mean Shift Algorithm

Mean-Shift Tracking

Given a set of points:
{:135}5521 xr, € RY

and a kernel:

K(x,x')

Find the mean sample point:
£

Mean-Shift Algorithm

Initialize place we start

While v (‘.’]’3) > € shift values becomes really small

1. Compute mean-shift

K
m(::c) — ZS (ﬂ:, :BS):BS compute the ‘mean’
Zs K(m! ‘{BS)
’U('.'B) — m(a:) — & compute the ‘shift’
2 . Update < T + ’U(:B) update the point

Where does this algorithm come from?

Mean-Shift Algorithm

Initialize @

While w(x) > € Where does this
come from?
1. Compute mean-shift
m(x) = > K(xz,xs)xs
Zs K(m! ‘{BS)

v(x) =m(x) —x

2. Update x <+ z+ v(x)

Where does this algorithm come from?

How Is the KDE related to the mean shift algorithm?

Kernel density estimate

(radially symmetric kernels)

P@) = ve 3 k(e - 2,]?)

We can show that:

Gradient of the PDF is related to the mean shift vector
VP(x) x m(x)

The mean shift vector is a ‘step’ in the direction of the gradient of the KDE

mean-shift algorithm is maximizing the objective function

In mean-shift tracking, we are trying to find this

which means we are trying to...

We are trying to optimize this:

a.rg mMax P (:I:) find the solution that has the highest probability
£

8
|

1 2
argmax e 3 k(e - 2’

\

usually non-linear non-parametric

How do we optimize this non-linear function?

We are trying to optimize this:

arg max P(x)
T

8
|

1 2
argmax e 3 k(e - 2

\

usually non-linear non-parametric

How do we optimize this non-linear function?

compute partial derivatives ... gradient descent!

P@) = ve 3 k(e - 2,]?)

Compute the gradient

P@) = ve 3 k(e - 2,]?)

Gradient VP(:B) — %CZ Vk'(HiB — mnH2)

Expand the gradient (algebra)

P@) = ve 3 k(e - 2,]?)

Gradient VP(:B) — %CZ Vk'(HiB — mnH2)

Expand gradient VP — —2(3 Z(-‘B -T»'n k!(H:B 33?1,H2)

P@) = ve 3 k(e - 2,]?)

Gradient VP(:B) — %CZ Vk'(HiB — mnH2)

Expand gradient VP — —2(3 Z(-‘B -T»'n k!(H:B 33?1,H2)

Call the gradient of the kernel function g

kK'(-) =—g()

P@) = ve 3 k(e - 2,]?)

1
Gradient VP(SB) = NCZ Vk(H:B _ 'T:‘HH2)
Expand gradient VP — —2(3 Z(-‘B -T»'n k!(H:B 33?1,H2)
g = L2 > (@n = @)g(l2 = o)

eep tisinmemory: k' (+) = —g(+)

VP(z) = 3263 (@0 —)9z — 2]

'

multiply it out

VP(@) = 123 @ag(llz — 2al?) — 263 @g(le — wa]?)

too long!
(use short hand notation)

VP(x) = %QCZ:BHQTL — %QCZ.‘BQH

multiply by one!

collecting like terms...

e = e ()

What’s happening here?

mean shift
™N 7

VP(z) = I::TQCZQH (Zﬂ Tndn X‘m)

constant mean shift!

The mean shift is a ‘step’ in the direction of the gradient of the KDE

o v(E) = (ZZ”:;T “’) N ;jclgi)gn

Can interpret this to be
gradient ascent with
data dependent step size

Mean-Shift Algorithm

Initialize @

While wv(x) > €

1. Compute mean-shift

Zs K(:B, :BS):BS
>, Kz, xs)

v(x) =m(x) —x

m(x) =

gradient with

/,-*""—‘"w--h.i adaptive step size
VP(x)

%2(} > On

2. Update x <+ z+ v(x)

Just 5 lines of code!

Everything up to now has been about
distributions over samples...

Mean-shift tracker

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

e P’ P’ e’ e’ e’ e

e P’ P’ e’ e’ e’ e

What can we do?

* Consider a set of points:
.. Associated weights:
Sample mean:

“ Mean shift

Mean-Shift Algorithm

(for images)
Initialize @

While wv(x) > €

1. Compute mean-shift

YL K (e @)z,

™) = [N K (@, .)wlws)

v(x) =m(x) —x

2. Update x <+ z+ v(x)

For images, each pixel is point with a weight

N N N N’ N’ N’ N
S’ S’ S’ \ / N’ N’ S’
S’ S’

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

Finally... mean shift tracking in video!

Goal: find the best candidate location in frame 2

= 7 center coordinate center coordinate of
of target y candidate

target’ '
- ‘candidate’
there are many ‘candidates’ but only one ‘target’
Frame 1 Frame 2

Use the mean shift algorithm
to find the best candidate location

Non-rigid object tracking

hand tracking

Compute a descriptor for the target

F
>
N -

Search for similar descriptor in neighlbborhood in next frame

] L] .
SRS SASAAPAREAA R SEAAARARPAAERPREP

arget Candidate

Compute a descriptor for the new target

Search for similar descriptor in neighlbborhood in next frame

1E

n . L .
LEEEEEEEEL R T haaadd o o a s g

Target Candidate

ow do we model the target and candidate regions?

Modeling the target

M-dimensional target descriptor
qg=1{q1,---,9m}

(centered at target center)

a ‘fancy’ (confusing) way to write a weighted histogram
am = C) k(||&n*)[b(x,) — m) | I
' n A A -*\ T A normalized
i | ortgtome | qpnie o color hstogram
| g (weighted by distance)
sum over Kronecker delta

all pixels function

Modeling the candidate

M-dimensional candidate descriptor

p(y) ={r1(y),...

(centered at location y)

a weighted histogram at y

Pm=C’th(

Y —In
h

bandwidt>

) olb(n) —m] |

Similarity between
the target and candidate

Distance function d(y) — \/]— — P[p(y): Q]

Bhattacharyya Coefficient p(y) =p lp(y) : q] — Z \/pm (y) 4.

Now we can compute the similarity between a
target and multiple candidate regions

larity over image

SIMI

image

et

we want to find this peak

similarity over image

ODbjective function

myin d(y) same as m?jl,x plp(y), q

Assuming a good initial guess

plp(yo +y), 4|

Linearize around the initial guess (Taylor series expansion)

P Z ‘\/pm y{] dm T+ = me \/pm(y{])

function at specified value derivative

Linearized objective

plp(Y),q Z VPm(Yo)am + 5 Zi‘f’m(y \/

(’yo)
2 Rb
) d|b(xn) — m)|

definition of this?

m—chzk(Hy Zn

Fu

y expanded

<3 Va3 Yo s (|15

m o\

) 5[b($n) — m]} \/qug;:o)

Fully expanded linearized objective

y), 4l ~ 5 Z\/pm Yo)dm + 5 Z{Oth(Hy =)ﬂb(“’”) m]}\/pm(yo)

Moving terms around...

Y),q| ~ %Z\/pm(yD)Qm I C;Z’wnk(y_hmn)

Does not depend on unknown 'y

Weighted kernel density estimate

where wp = Z\/ 515 Tp) —m|

Pm yU

Weight is bigger when @m > pm(yo)

OK, why are we doing all this math?

We want to maximize this

mﬁmplp(y)a q]

We want to maximize this

mﬁmplp(y)a q]

Fully expanded linearized objective

1 C — Ty
y)a q] ~ 5 Z \/pm(yU)Qm | 2h ank (J hm
where wp = Z\/ 5[b Tpn) —m|

Pm ?JU

We want to maximize this

mﬁmplp(y)a q]

Fully expanded linearized objective

y),qlm;;m | C;an’“(y_h,mn

doesn’t depend on unknown y

where wn = Z\/ 5[b Tpn) —m|

Pm ?JU

We want to maximize this

mﬁmlp(y)a q|

only need to

. . , , maximize this!
Fully expanded linearized objective

plp(y),q] = % > Jam

doesn’t depend on unknown y

where wy, = Z\/

Pm (yD

We want to maximize this

mﬁmlp(y)a q|

Fully expanded linearized objective

plp(y),q] = % > Jam

doesn’t depend on unknown y

where w, = Z \/pm(’yo o|b(xy) — m])

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

% Wik g~ In 2
2 &7 h
the new sample of mean of this KDE is
)
)

—x,
Zn LnWng (H Jo h
Y, —

| —&
(new candidate yD L
location) Zn wng (| | h

(this was derived earlier)

Mean-Shift Object Tracking

For each frame:

1. Initialize location Yyq
Compute ¢q
Compute p(y,)

2. Derive weights w,,
3. Shift to new candidate location (mean shift) Y1
4. Compute p(y-)

5. If ||lyg — Y| < € return
Otherwise gy, < y, and go back to 2

Compute a descriptor for the target

F
>
N -

Search for similar descriptor in neighlbborhood in next frame

] L] "
SRS SASAAPAREAA R SAAAARAAEAREREEE

arget Candidate

mﬁmlp(y): q|

Compute a descriptor for the new target

Search for similar descriptor in neighlbborhood in next frame

;
b
\
3
3
%
}
5!1.;;&!“!!!‘

. 1L

n W - \
EEIEEEEEEEEEEEEN EEEEEEEEEEEEEE

Target Candidate

mﬁmlp(y): q|

Vlodern trackers

=

el o 1

Learning Multi-Domain Convolutional
Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

References

Basic reading:
e Szeliski, Sections 4.1.4, 5.3, 8.1.

