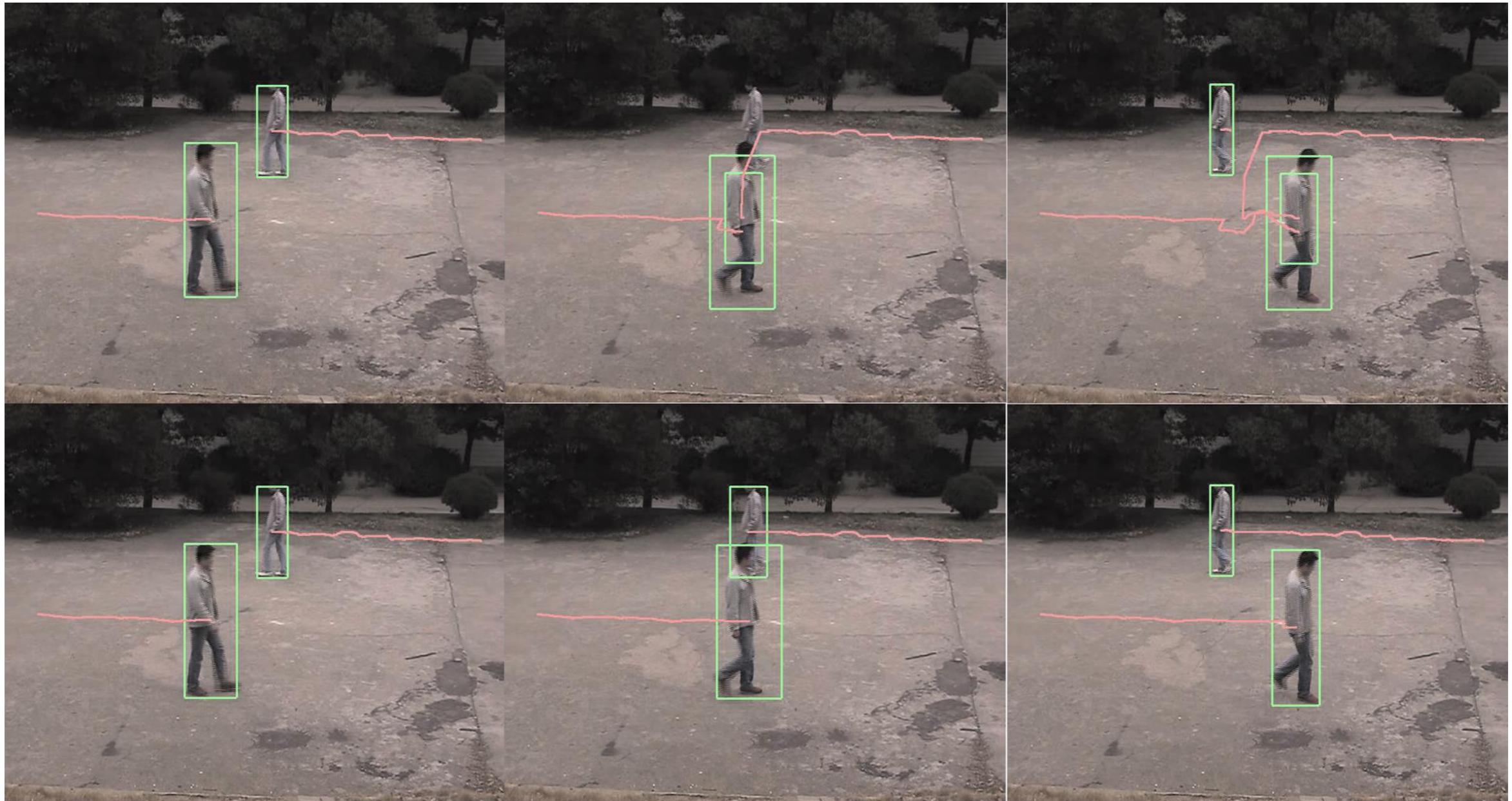


Alignment and tracking



Course announcements

- Homework 6 has been posted and is due on April 24th.
 - Any questions about the homework?
 - How many of you have looked at/started/finished homework 6?
- Today's office hours will be covered by Yannis.
 - Same hour, 4-6 pm.
 - In Smith Hall 225 and/or graphics lounge.
 - Yannis' Friday office hours will take place as usual.

Overview of today's lecture

- Motion magnification using optical flow.
- Image alignment.
- Lucas-Kanade alignment.
- Baker-Matthews alignment.
- Inverse alignment.
- KLT tracking.
- Mean-shift tracking.
- Modern trackers.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).

Motion magnification using
optical flow

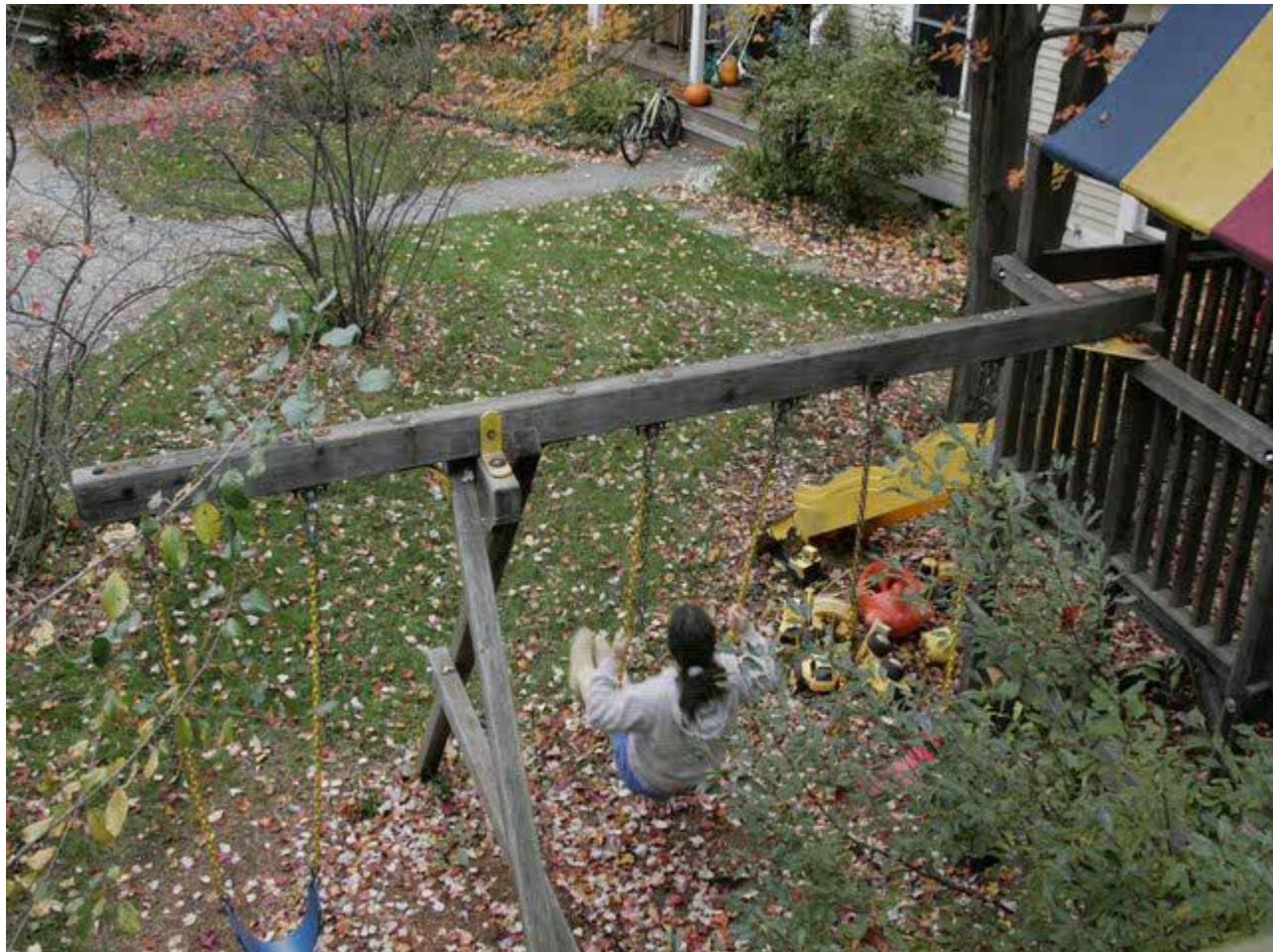
How would you achieve this effect?

original

motion-magnified

- Compute optical flow from frame to frame.
- Magnify optical flow velocities.
- Appropriately warp image intensities.

How would you achieve this effect?



naïvely motion-magnified

- Compute optical flow from frame to frame.
- Magnify optical flow velocities.
- Appropriately warp image intensities.

motion-magnified

In practice, many additional steps are required for a good result.

Some more examples

Some more examples

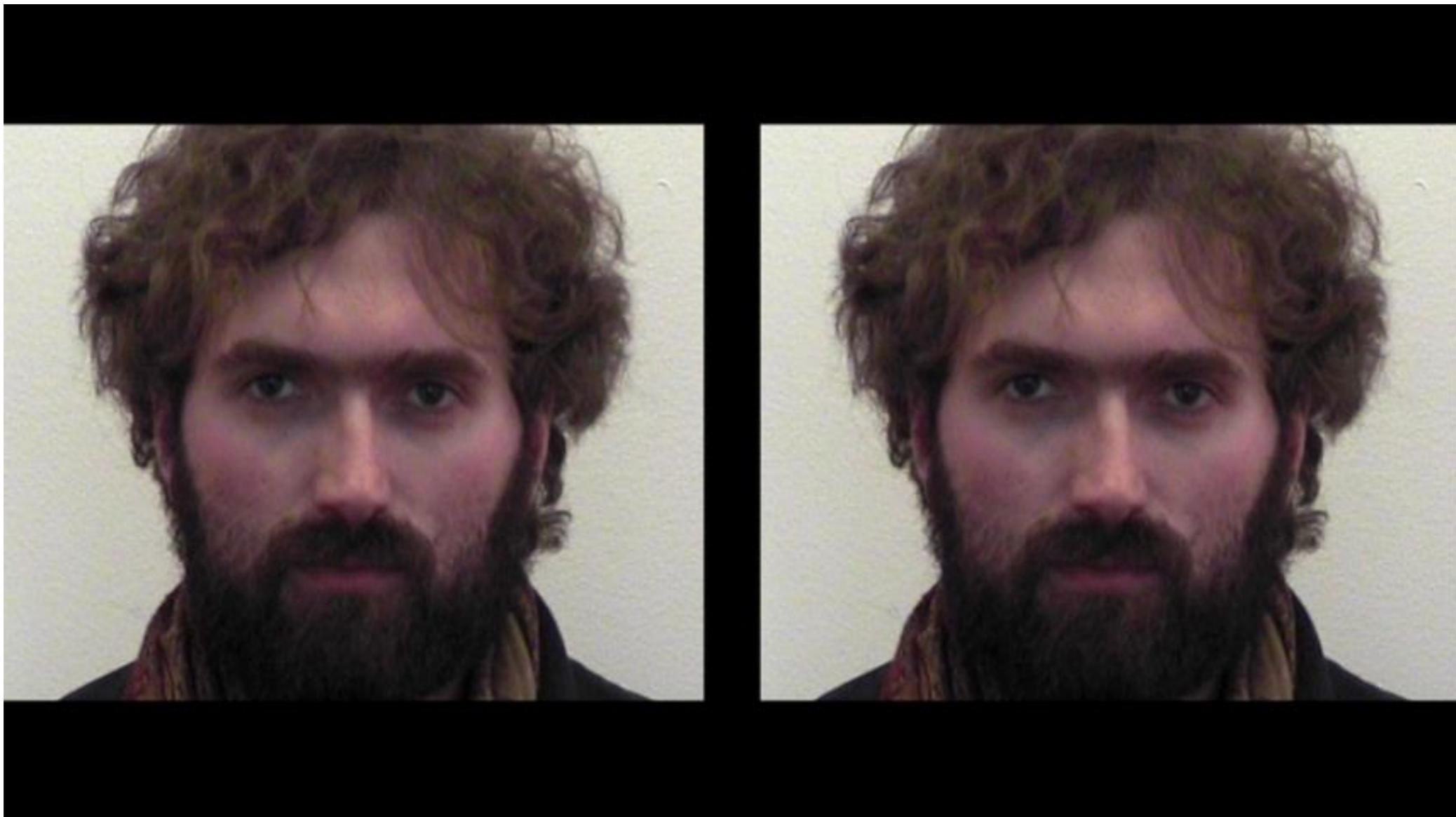
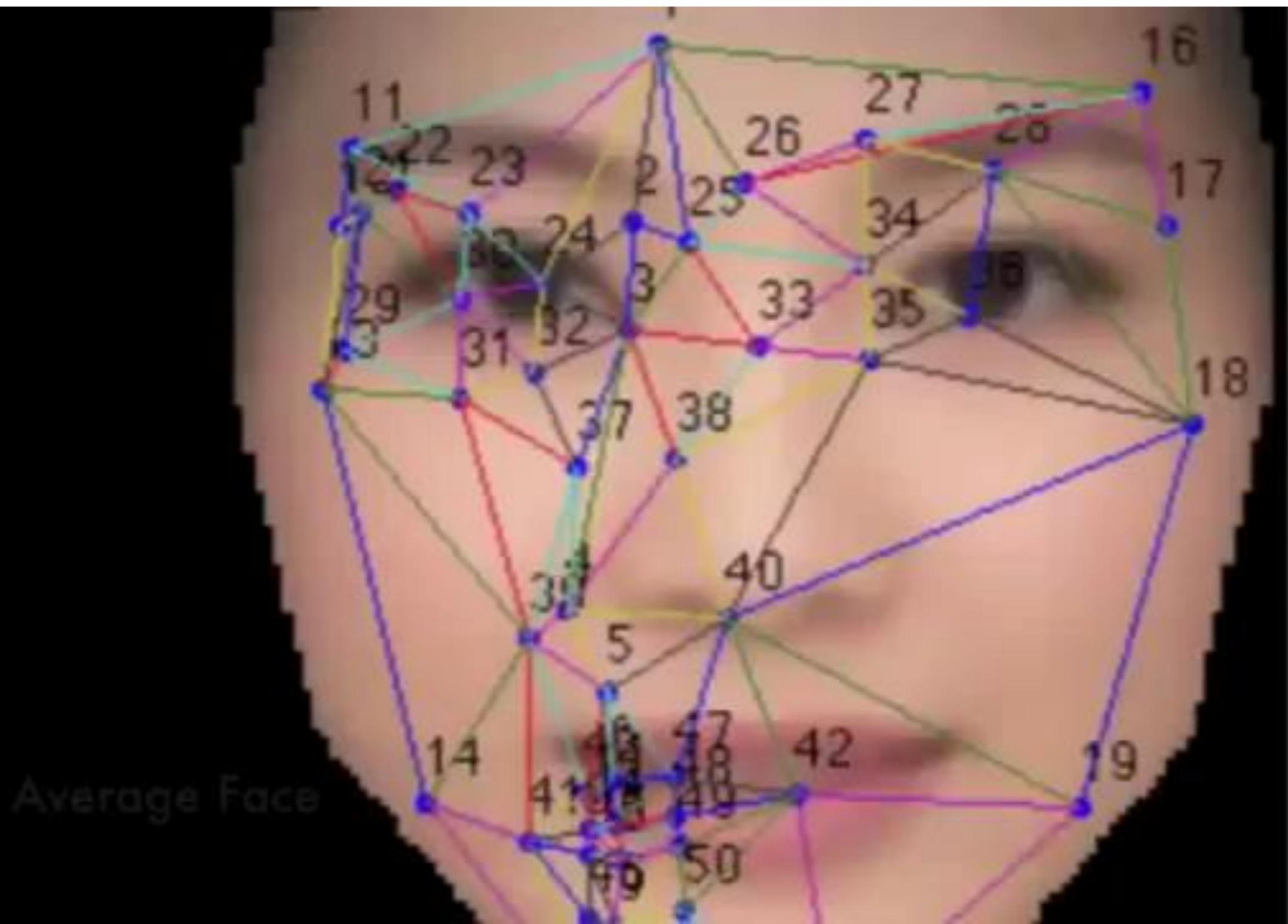
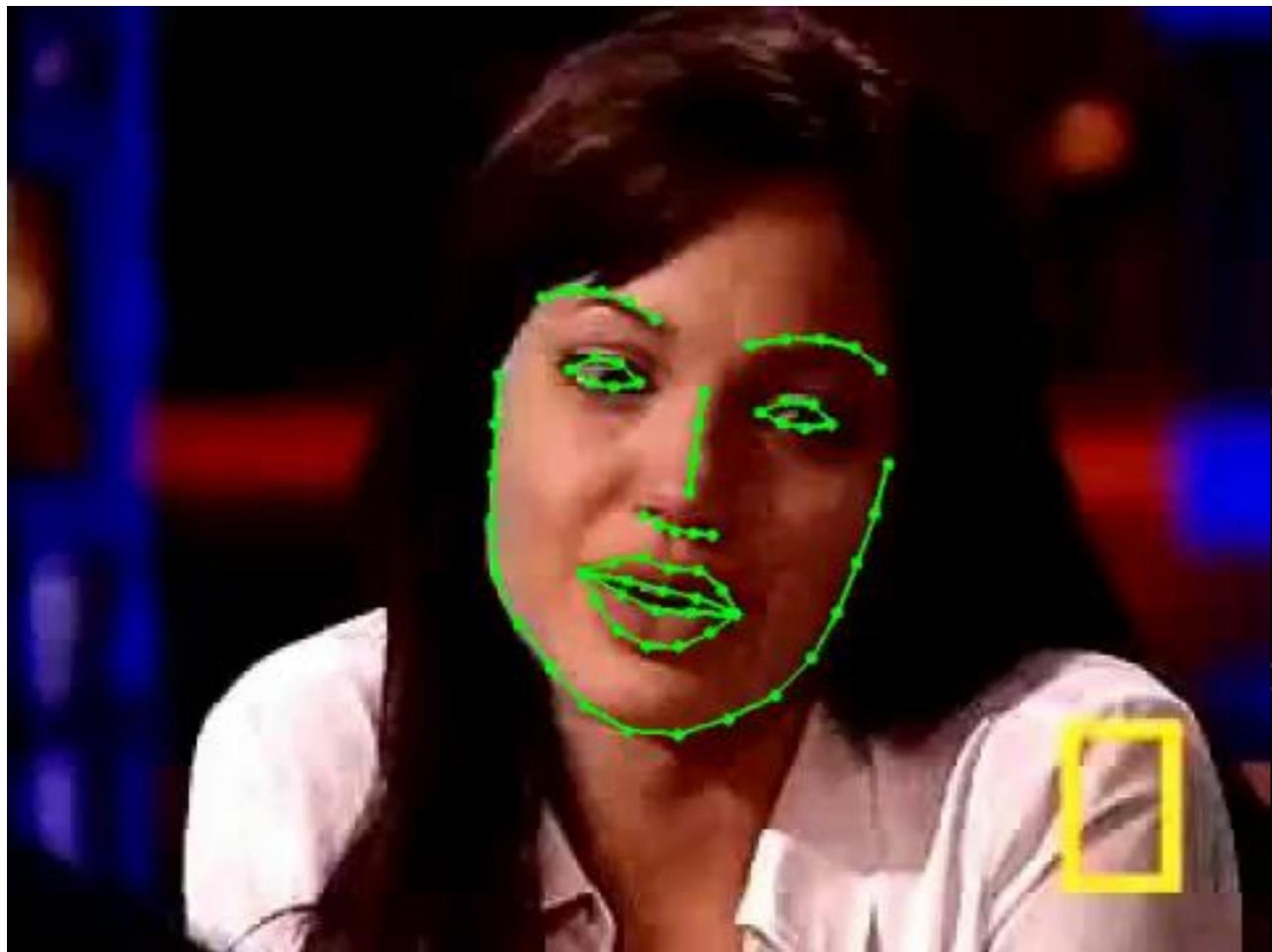
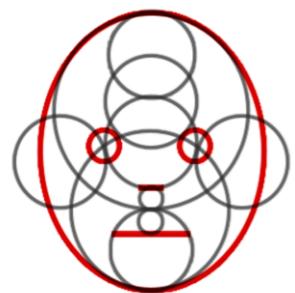


Image alignment





IntraFace

<http://www.humansensing.cs.cmu.edu/intraface/>

How can I find

in the image?

Idea #1: Template Matching

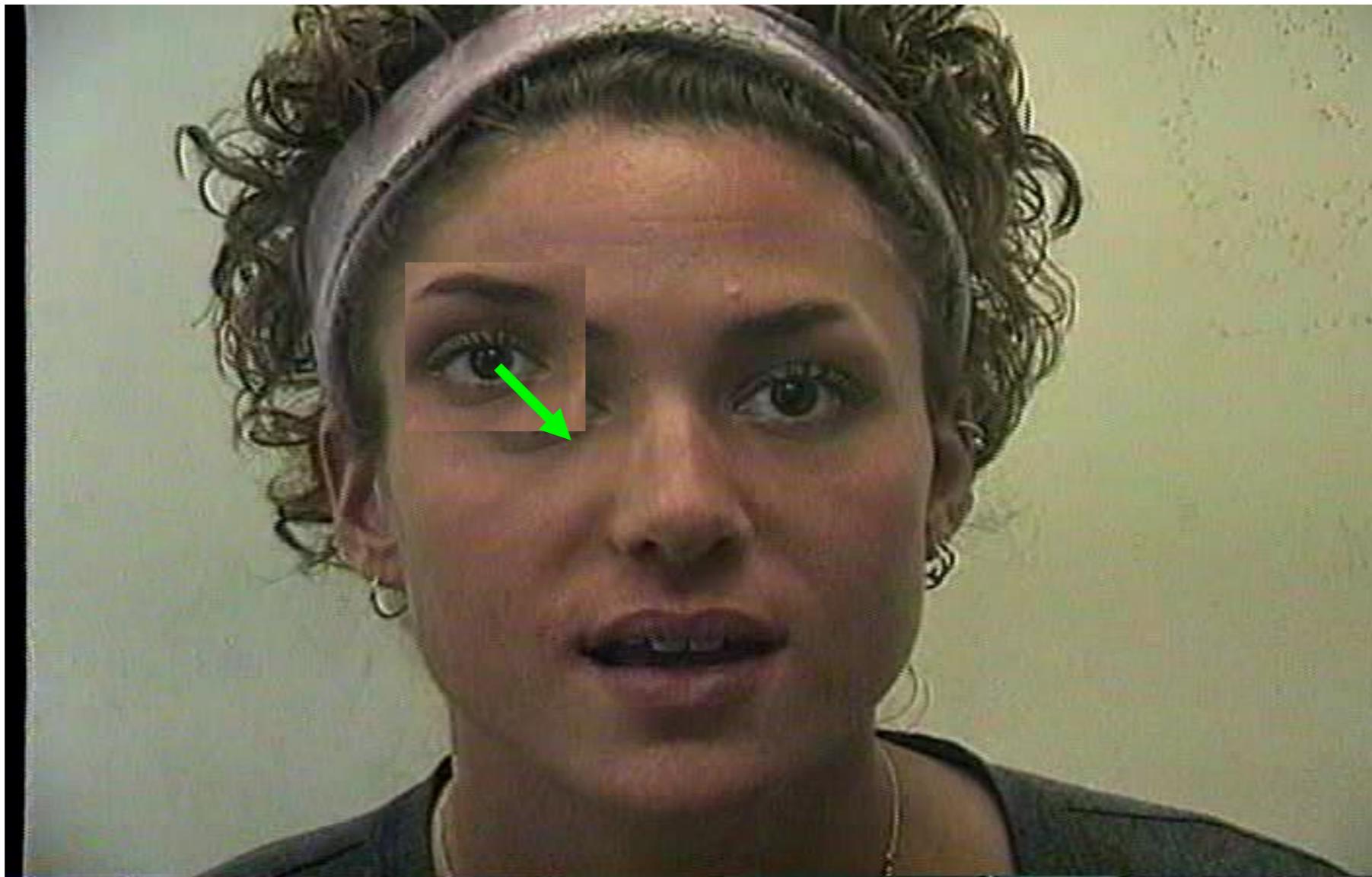
Slow, combinatory, global solution

Idea #2: Pyramid Template Matching

Faster, combinatory, locally optimal

Idea #3: Model refinement

(when you have a good initial solution)



Fastest, locally optimal

Some notation before we get into the math...

2D image transformation

$$\mathbf{W}(\mathbf{x}; \mathbf{p})$$

2D image coordinate

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Parameters of the transformation

$$\mathbf{p} = \{p_1, \dots, p_N\}$$

Warped image

$$I(\mathbf{x}') = I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$$

Pixel value at a coordinate

Translation

Affine

Some notation before we get into the math...

2D image transformation

$$\mathbf{W}(\mathbf{x}; \mathbf{p})$$

2D image coordinate

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Parameters of the transformation

$$\mathbf{p} = \{p_1, \dots, p_N\}$$

Warped image

$$I(\mathbf{x}') = I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$$

Pixel value at a coordinate

Translation

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & p_1 \\ 0 & 1 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

transform

coordinate

Affine

Some notation before we get into the math...

2D image transformation

$$\mathbf{W}(x; p)$$

2D image coordinate

$$x = \begin{bmatrix} x \\ y \end{bmatrix}$$

Parameters of the transformation

$$\mathbf{p} = \{p_1, \dots, p_N\}$$

Warped image

$$I(\mathbf{x}') = I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$$

Pixel value at a coordinate

Translation

$$\mathbf{W}(x; p) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & p_1 \\ 0 & 1 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

transform

coordinate

Affine

$$\mathbf{W}(x; p) = \begin{bmatrix} p_1x + p_2y + p_3 \\ p_4x + p_5y + p_6 \end{bmatrix}$$

$$= \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

affine transform

coordinate

can be written in matrix form when linear affine warp matrix can also be 3×3 when last row is $[0 \ 0 \ 1]$

$\mathbf{W}(\mathbf{x}; \mathbf{p})$ takes a _____ as input and returns a _____

$\mathbf{W}(\mathbf{x}; \mathbf{p})$ is a function of _____ variables

$\mathbf{W}(\mathbf{x}; \mathbf{p})$ returns a _____ of dimension _____ x _____

$\mathbf{p} = \{p_1, \dots, p_N\}$ where N is _____ for an affine model

$I(\mathbf{x}') = I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ this warp changes pixel values?

Image alignment

(problem definition)

$$\min_p \sum_x [I(\mathbf{w}(x; p)) - T(x)]^2$$

warped image
template image

Find the warp parameters \mathbf{p} such that the SSD is minimized

Find the warp parameters \mathbf{p} such that the SSD is minimized

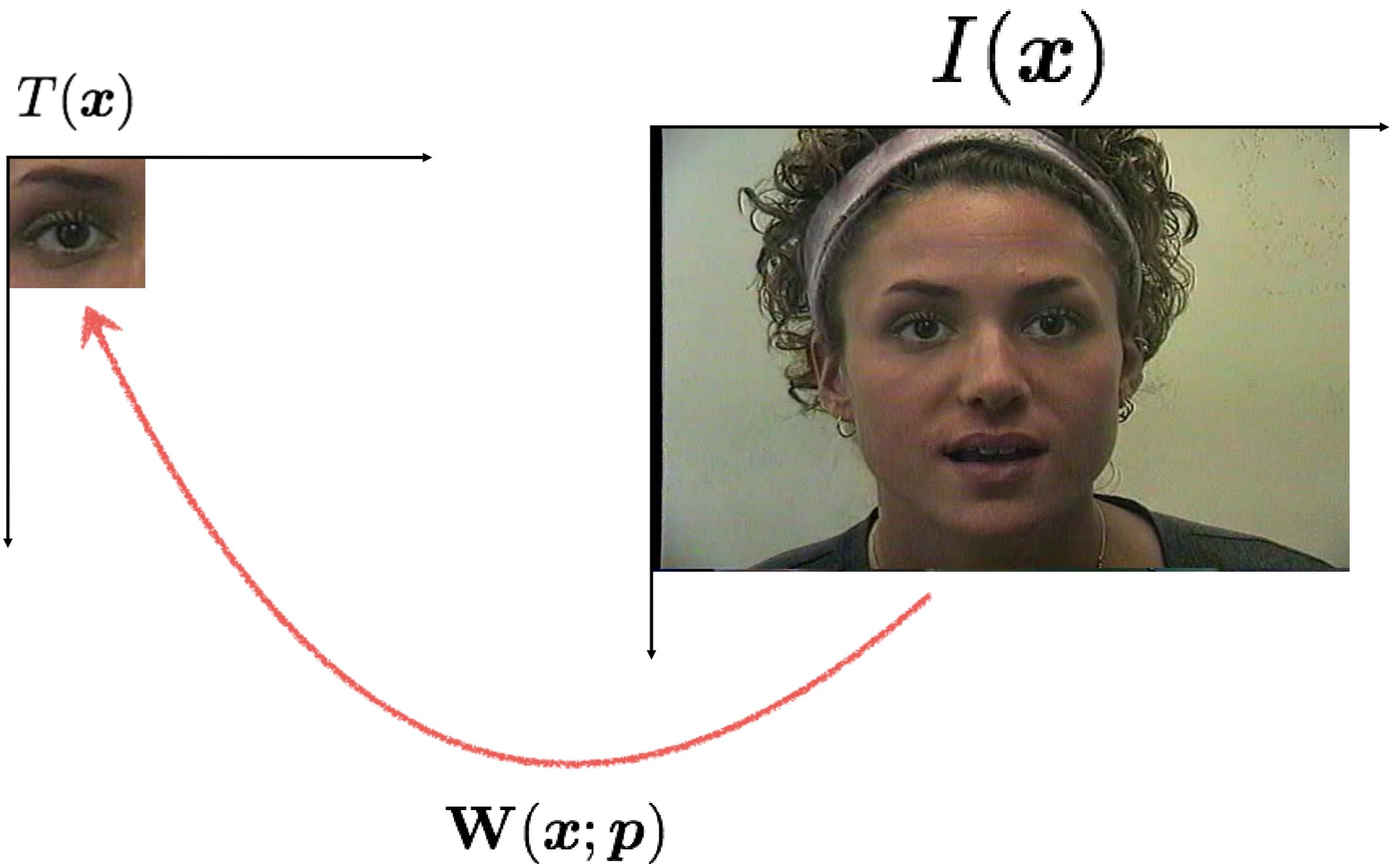


Image alignment

(problem definition)

$$\min_p \sum_x [I(\mathbf{w}(x; p)) - T(x)]^2$$

warped image
template image

Find the warp parameters **p** such that the SSD is minimized

How could you find a solution to this problem?

This is a non-linear (quadratic) function of a non-parametric function!

(Function I is non-parametric)

$$\min_p \sum_x [I(\mathbf{w}(x; p)) - T(x)]^2$$

Hard to optimize

What can you do to make it easier to solve?

This is a non-linear (quadratic) function of a non-parametric function!

(Function I is non-parametric)

$$\min_p \sum_x [I(\mathbf{w}(x; p)) - T(x)]^2$$

Hard to optimize

What can you do to make it easier to solve?

assume good initialization,
linearized objective and update incrementally

Lucas-Kanade alignment

(pretty strong assumption)

If you have a good initial guess \mathbf{p} ...

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

can be written as ...

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

(a small incremental adjustment)

(this is what we are solving for now)

This is **still** a non-linear (quadratic) function of a non-parametric function!

(Function \mathbf{I} is non-parametric)

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

How can we linearize the function \mathbf{I} for a really small perturbation of \mathbf{p} ?

This is **still** a non-linear (quadratic) function of a non-parametric function!

(Function \mathbf{I} is non-parametric)

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

How can we linearize the function \mathbf{I} for a really small perturbation of \mathbf{p} ?

Taylor series approximation!

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

Multivariable Taylor Series Expansion
(First order approximation)

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Multivariable Taylor Series Expansion (First order approximation)

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Recall: $\mathbf{x}' = \mathbf{W}(\mathbf{x}; \mathbf{p})$

$$\begin{aligned} I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) &\approx I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \frac{\partial I(\mathbf{W}(\mathbf{x}; \mathbf{p}))}{\partial \mathbf{p}} \Delta \mathbf{p} \\ &\stackrel{\text{chain rule}}{=} I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \frac{\partial I(\mathbf{W}(\mathbf{x}; \mathbf{p}))}{\partial \mathbf{x}'} \frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{p})}{\partial \mathbf{p}} \Delta \mathbf{p} \\ &\stackrel{\text{short-hand}}{=} I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} \end{aligned}$$

↑
↑
short-hand

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

Multivariable Taylor Series Expansion
(First order approximation)

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Linear approximation

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

What are the unknowns here?

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

Multivariable Taylor Series Expansion
(First order approximation)

$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Linear approximation

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Now, the function is a linear function of the unknowns

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

\mathbf{x} is a _____ of dimension ____ x ____

output of **\mathbf{W}** is a _____ of dimension ____ x ____

\mathbf{p} is a _____ of dimension ____ x ____

$I(\cdot)$ is a function of _____ variables

The Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$

(A matrix of partial derivatives)

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} W_x(x, y) \\ W_y(x, y) \end{bmatrix}$$

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \dots & \frac{\partial W_x}{\partial p_N} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \dots & \frac{\partial W_y}{\partial p_N} \end{bmatrix}$$

Rate of change of the warp

Affine transform

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} p_1x + p_3y + p_5 \\ p_2x + p_4y + p_6 \end{bmatrix}$$

$$\frac{\partial W_x}{\partial p_1} = x \quad \frac{\partial W_x}{\partial p_2} = 0 \quad \dots$$

$$\frac{\partial W_y}{\partial p_1} = 0 \quad \dots$$

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{bmatrix}$$

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

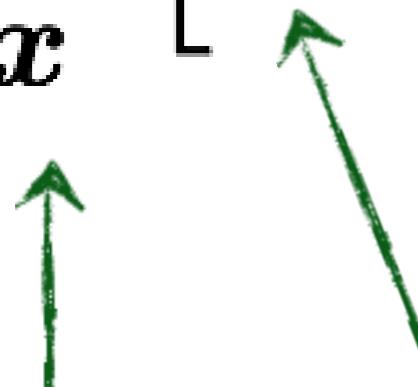
∇I is a _____ of dimension ____ x ____

$\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ is a _____ of dimension ____ x ____

$\Delta \mathbf{p}$ is a _____ of dimension ____ x ____

$$\sum_x \left[I(\mathbf{W}(x;p)) + \nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - T(x) \right]^2$$

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

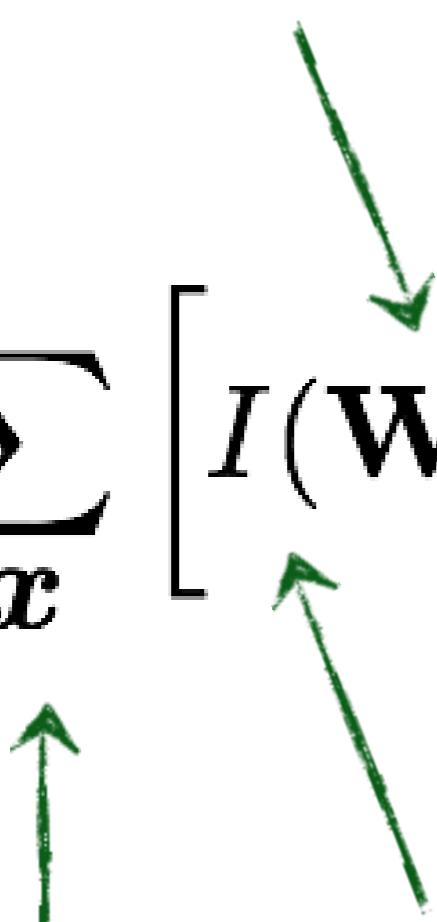


pixel coordinate
(2 x 1)

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

pixel coordinate
(2 x 1)

image intensity
(scalar)



$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

warp function
(2 x 1)

pixel coordinate
(2 x 1)

image intensity
(scalar)

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Diagram illustrating the components of a loss function for image warping:

- warp function (2 x 1)**: Represented by a green arrow pointing to the term $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$.
- warp parameters (6 for affine)**: Represented by a green arrow pointing to the term $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}$.
- pixel coordinate (2 x 1)**: Represented by a green arrow pointing to the variable \mathbf{x} .
- image intensity (scalar)**: Represented by a green arrow pointing to the variable I .

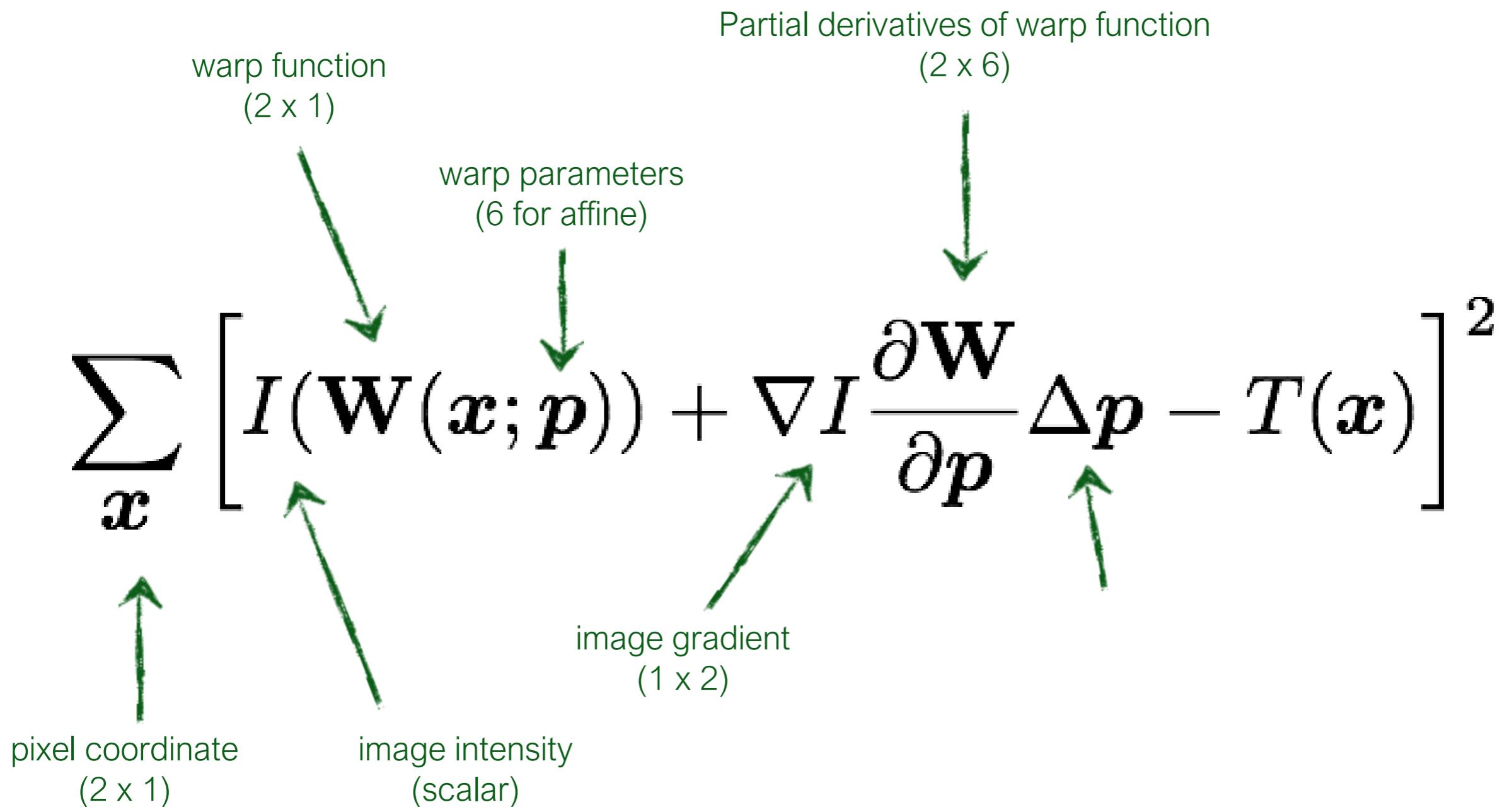
$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

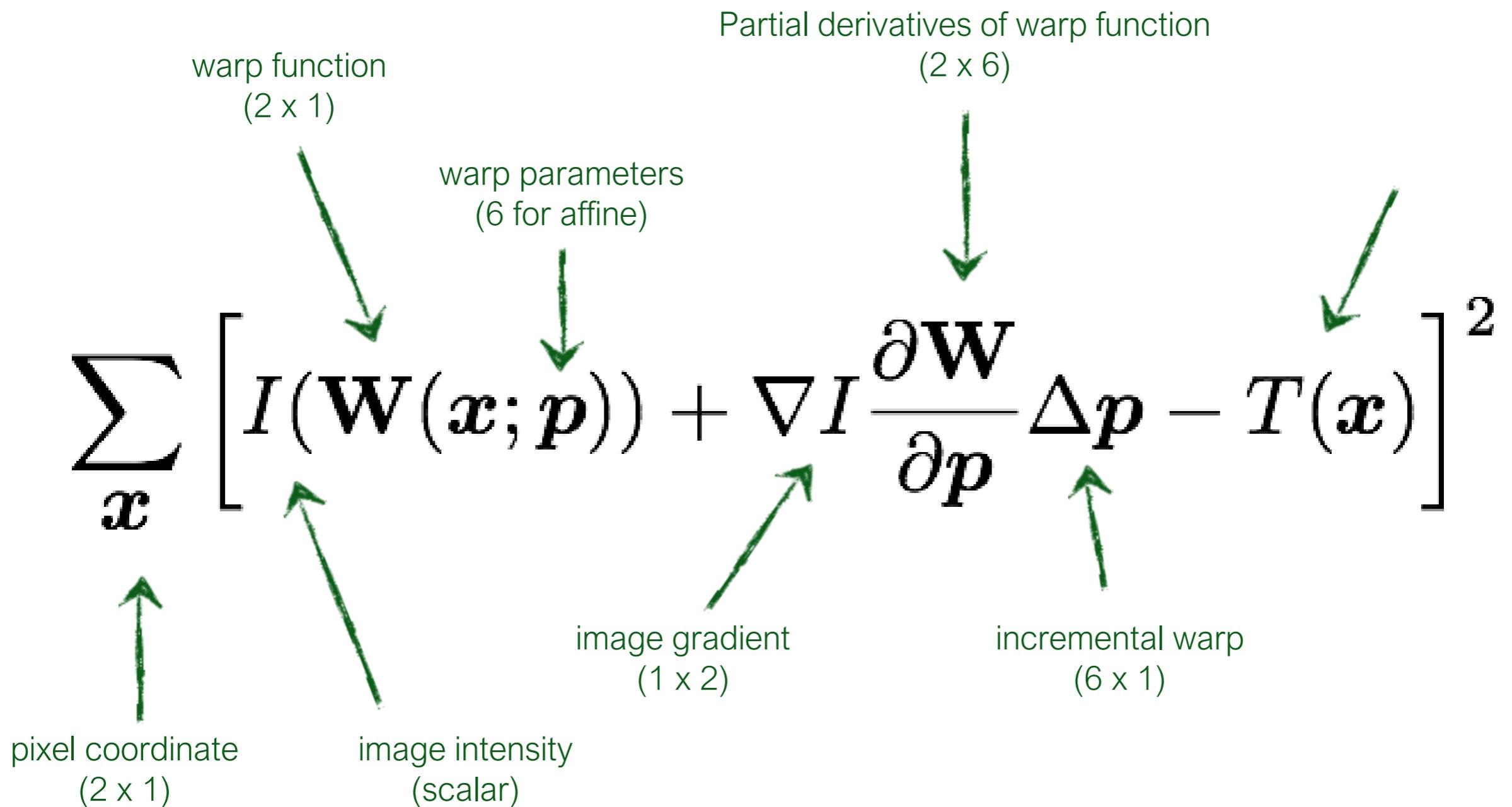
Diagram illustrating the components of a cost function for image registration:

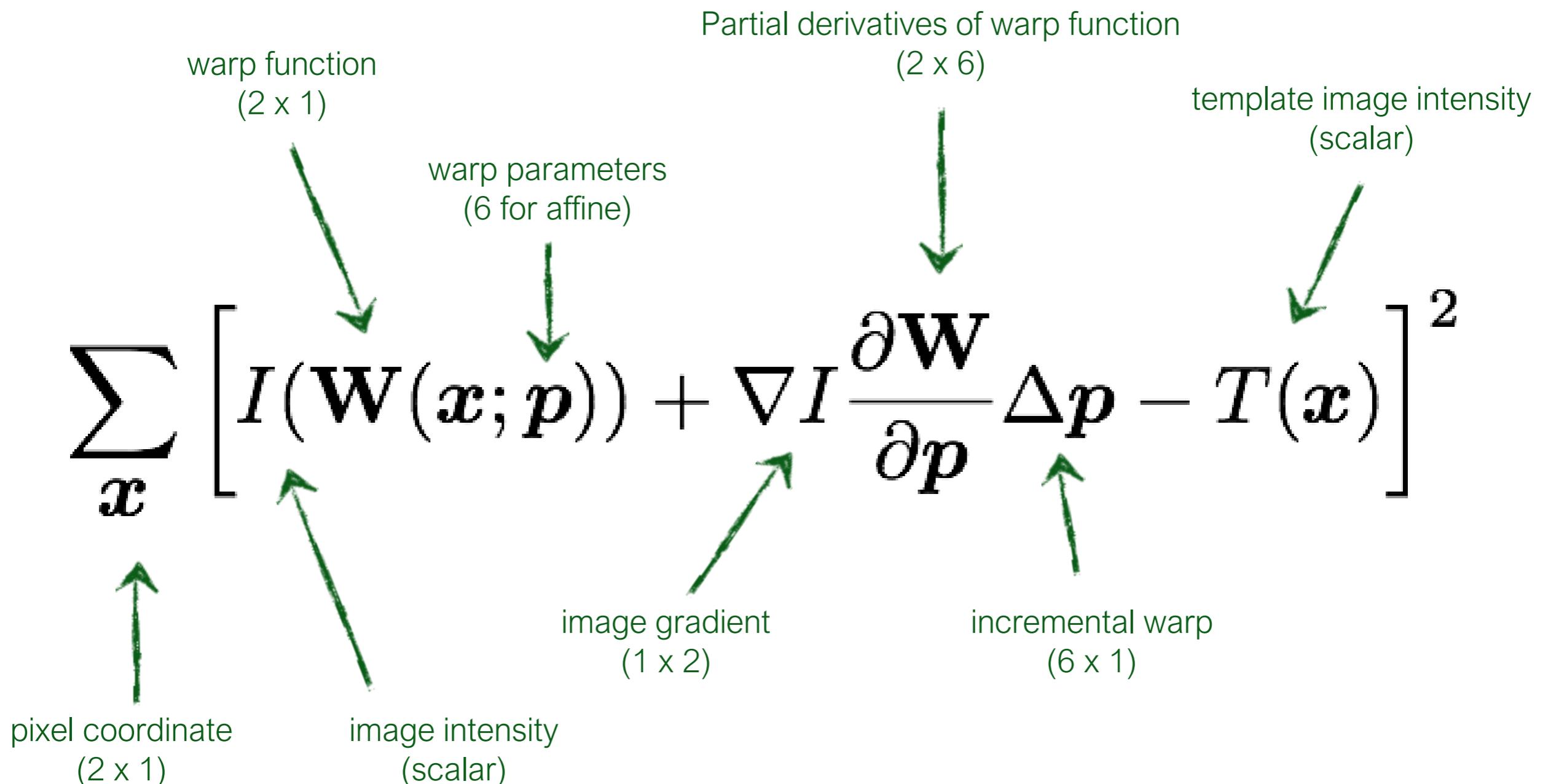
- warp function** (2×1): A vector function that maps pixel coordinates to warped image intensities.
- warp parameters** (6 for affine): The parameters used to define the warp function.
- image gradient** (1×2): The gradient of the image intensity with respect to the pixel coordinates.
- pixel coordinate** (2×1): The coordinates of the pixels in the image.
- image intensity** (scalar): The intensity of the image at a given pixel coordinate.

Arrows indicate the flow of data and parameters into the cost function:

- An arrow points from the warp function to the first term $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$.
- An arrow points from the warp parameters to the term $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}$.
- An arrow points from the image gradient to the term $\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}$.
- An arrow points from the pixel coordinate to the image intensity.







When you implement this, you will compute everything in parallel and store as matrix ... don't loop over x!

Summary

(of Lucas-Kanade Image Alignment)

Problem:

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

warped image template image

Difficult non-linear optimization problem

Strategy:

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

Assume known approximate solution
Solve for increment

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Taylor series approximation
Linearize

then solve for $\Delta\mathbf{p}$

OK, so how do we solve this?

$$\min_{\Delta p} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Another way to look at it...

$$\min_{\Delta p} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; p)) + \nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - T(\mathbf{x}) \right]^2$$

(moving terms around)

$$\min_{\Delta p} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - \{T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; p))\} \right]^2$$

vector of
constants

vector of
variables

constant

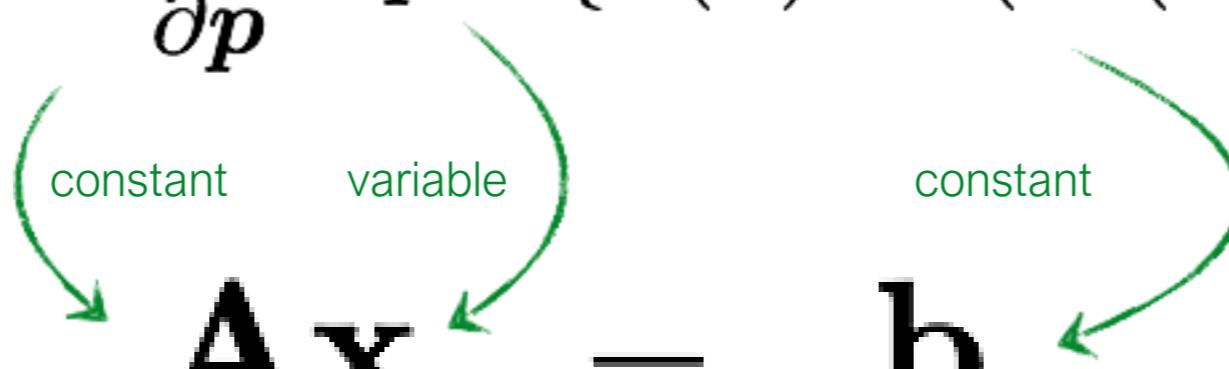
Have you seen this form of optimization problem before?

Another way to look at it...

$$\min_{\Delta p} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; p)) + \nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - T(\mathbf{x}) \right]^2$$

$$\min_{\Delta p} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - \{T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; p))\} \right]^2$$

Looks like $\mathbf{A}\mathbf{x} = \mathbf{b}$



How do you solve this?

Least squares approximation

$$\hat{x} = \arg \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \quad \text{is solved by} \quad \mathbf{x} = (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{b}$$

Applied to our tasks:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - \{T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))\} \right]^2$$

is optimized when

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

after applying
 $x = (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{b}$

where $H = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$

$\mathbf{A}^\top \mathbf{A}$

Solve:

$$\min_p \sum_x [I(\mathbf{W}(x; p)) - T(x)]^2$$

Difficult non-linear optimization problem

Strategy:

$$\sum_x [I(\mathbf{W}(x; p + \Delta p)) - T(x)]^2$$

Assume known approximate solution
Solve for increment

$$\sum_x \left[I(\mathbf{W}(x; p)) + \nabla I \frac{\partial \mathbf{W}}{\partial p} \Delta p - T(x) \right]^2$$

Taylor series approximation Linearize

Solution:

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

Solution to least squares approximation

$$H = \sum_x \left[\nabla I \frac{\partial \mathbf{W}}{\partial p} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial p} \right]$$

Hessian

This is called...

**Gauss-Newton gradient decent
non-linear optimization!**

Lucas Kanade (Additive alignment)

1. Warp image

$$I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$$

2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$

3. Compute gradient

$$\nabla I(\mathbf{x}')$$

x'coordinates of the warped image
(gradients of the warped image)

4. Evaluate Jacobian

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$$

5. Compute Hessian

$$H$$

$$H = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

6. Compute

$$\Delta \mathbf{p}$$

$$\Delta \mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

7. Update parameters

$$\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$$

Just 8 lines of code!

Baker-Matthews alignment

Image Alignment

(start with an initial solution, match the image and template)

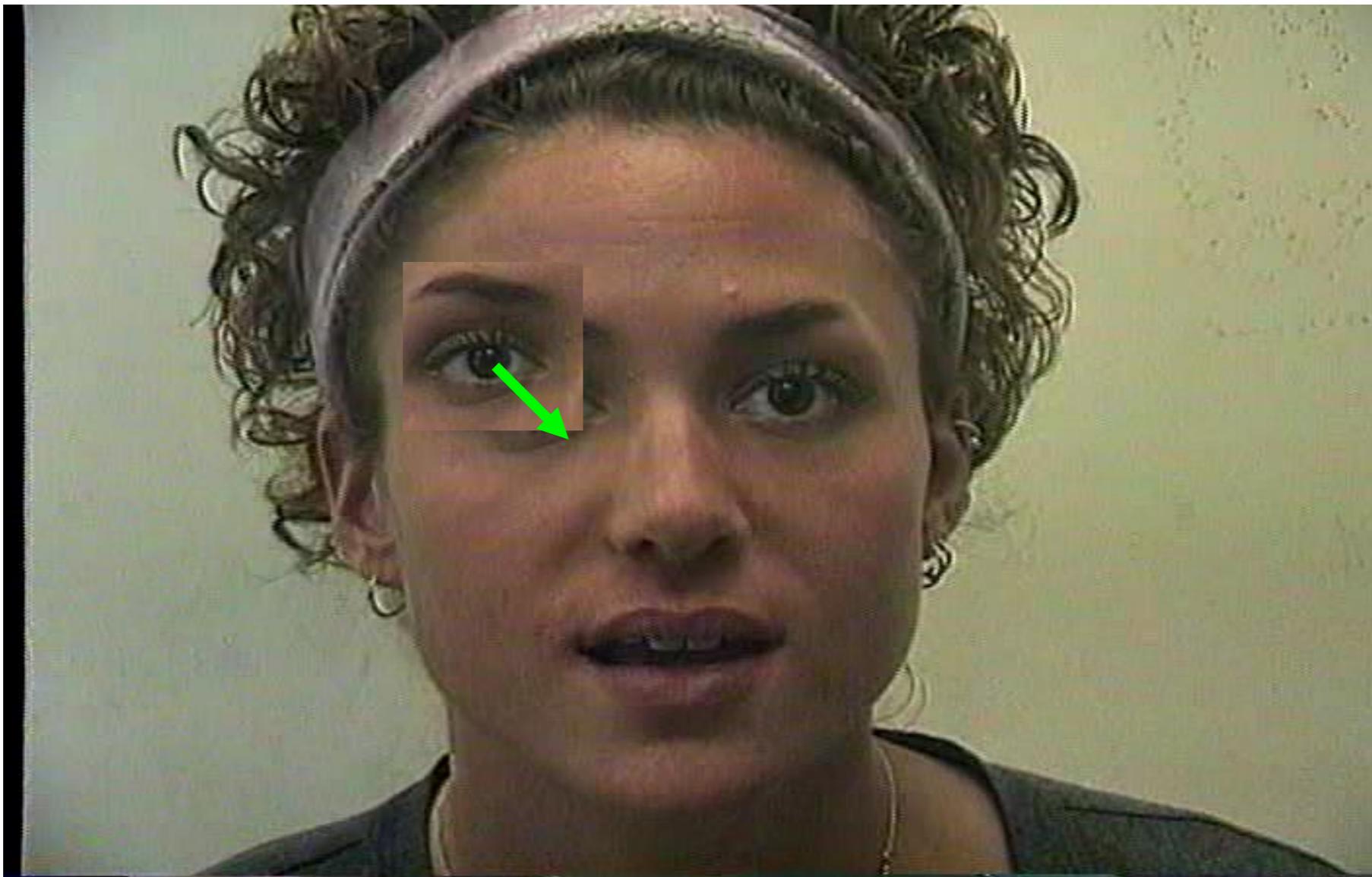


Image Alignment Objective Function

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

Given an initial solution...several possible formulations

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

incremental perturbation of parameters

Image Alignment Objective Function

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

Given an initial solution...several possible formulations

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

incremental perturbation of parameters

Compositional Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

incremental warps of image

Additive strategy

Compositional strategy

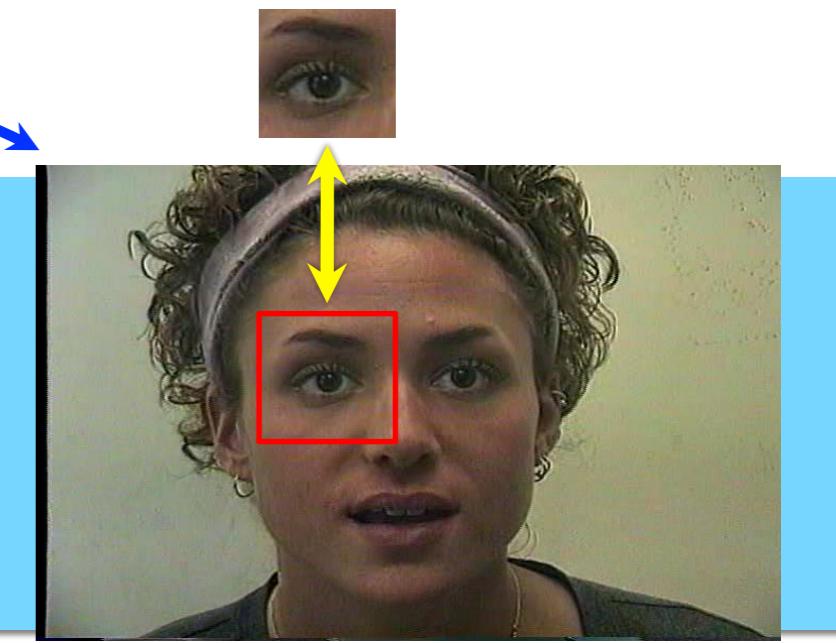
Additive

Additive

$W(x; p + \Delta p)$

$W(x; p)$

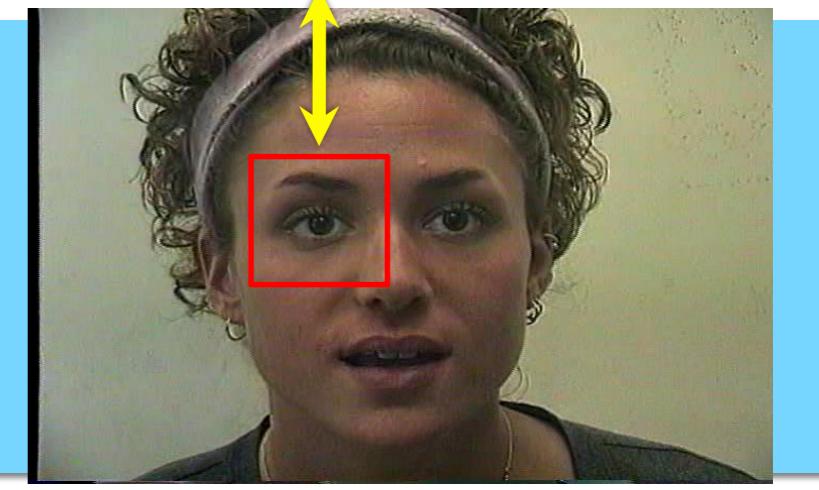
$T(x)$



Additive

$W(x; p + \Delta p)$

$T(x)$



$W(x; p)$

Compositional

$W(x; 0 + \Delta p) = W(x; \Delta p)$

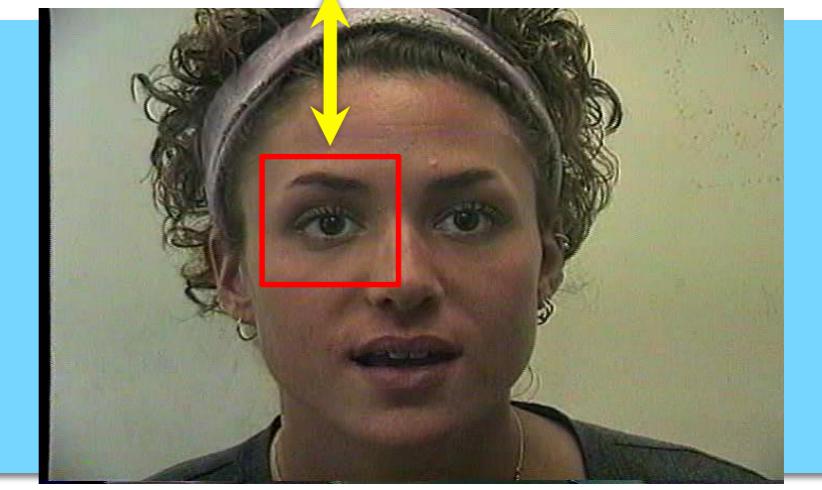
$W(x; p)$

Additive

$$W(x; p + \Delta p)$$

$$T(x)$$

$$W(x; p)$$



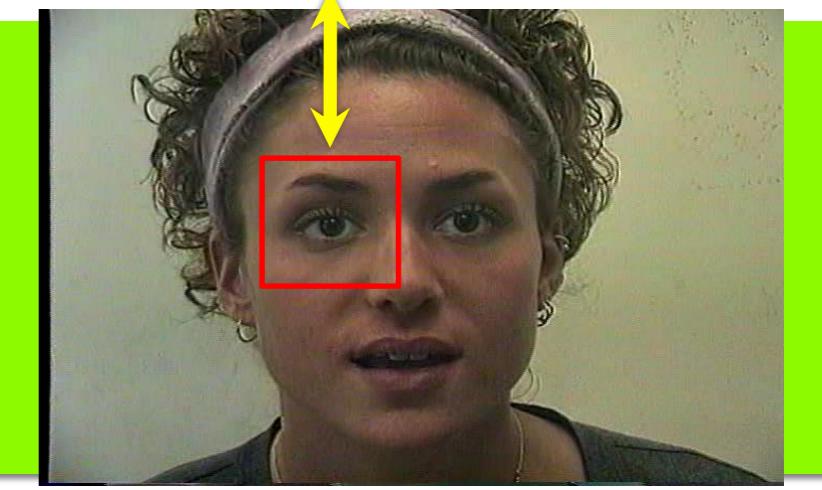
Compositional

$$W(x; p) \circ W(x; \Delta p)$$

$$T(x)$$

$$W(x; 0 + \Delta p) = W(x; \Delta p)$$

$$W(x; p)$$



Compositional Alignment

Original objective function (SSD)

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p}) - T(\mathbf{x})]^2$$

Compositional Alignment

Original objective function (SSD)

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p}) - T(\mathbf{x})]^2$$

Another way to write the composition

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta\mathbf{p}) \equiv \mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})$$

Identity warp

$$\mathbf{W}(\mathbf{x}; \mathbf{0})$$

Compositional Alignment

Original objective function (SSD)

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

Another way to write the composition

Identity warp

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta\mathbf{p}) \equiv \mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})$$

$$\mathbf{W}(\mathbf{x}; \mathbf{0})$$

Skipping over the derivation...the new update rule is

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta\mathbf{p})$$

So what's so great about this compositional form?

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

linearized form

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{x}') \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Compositional Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

linearized form

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{x}') \frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

linearized form

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{x}') \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Jacobian of $\mathbf{W}(\mathbf{x}; \mathbf{p})$

Compositional Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

linearized form

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{x}') \frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

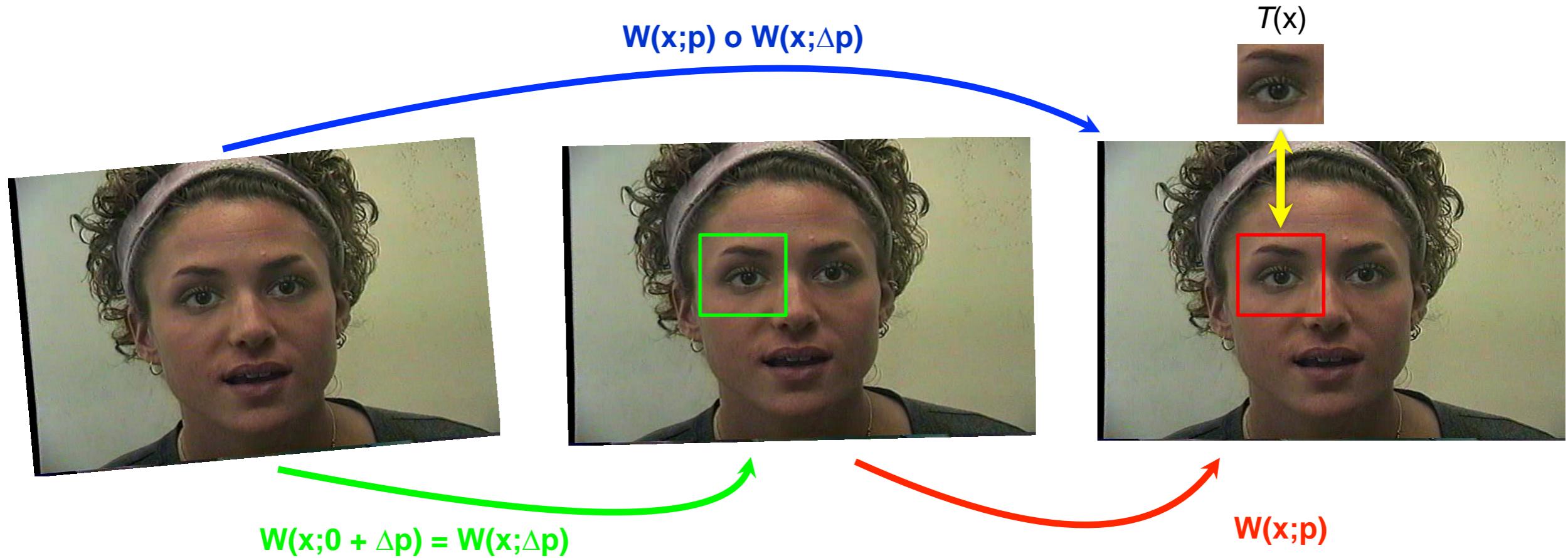
Jacobian of $\mathbf{W}(\mathbf{x}; \mathbf{0})$

**The Jacobian is constant.
Jacobian can be precomputed!**

Compositional Image Alignment

Minimize

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2 \approx \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$



Jacobian is simple and can be precomputed

Lucas Kanade (Additive alignment)

1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
3. Compute gradient $\nabla I(\mathbf{x}')$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
5. Compute Hessian H
6. Compute $\Delta \mathbf{p}$
7. Update parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

Shum-Szeliski (Compositional alignment)

1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
3. Compute gradient $\nabla I(\mathbf{x}')$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}}$
5. Compute Hessian H
6. Compute $\Delta \mathbf{p}$
7. Update parameters $\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})$

Any other speed up techniques?

Inverse alignment

Why not compute warp updates on the template?

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

Compositional Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

Why not compute warp updates on the template?

Additive Alignment

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

Compositional Alignment

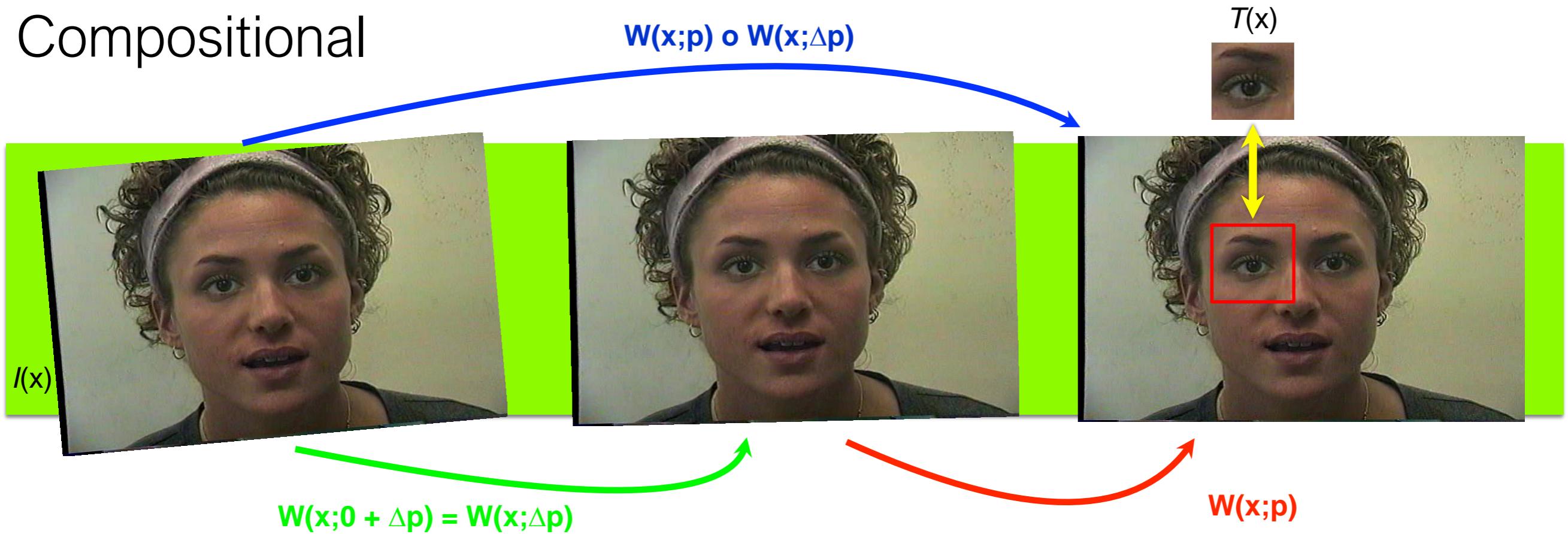
$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p}); \mathbf{p})) - T(\mathbf{x})]^2$$

What happens if you let the template be warped too?

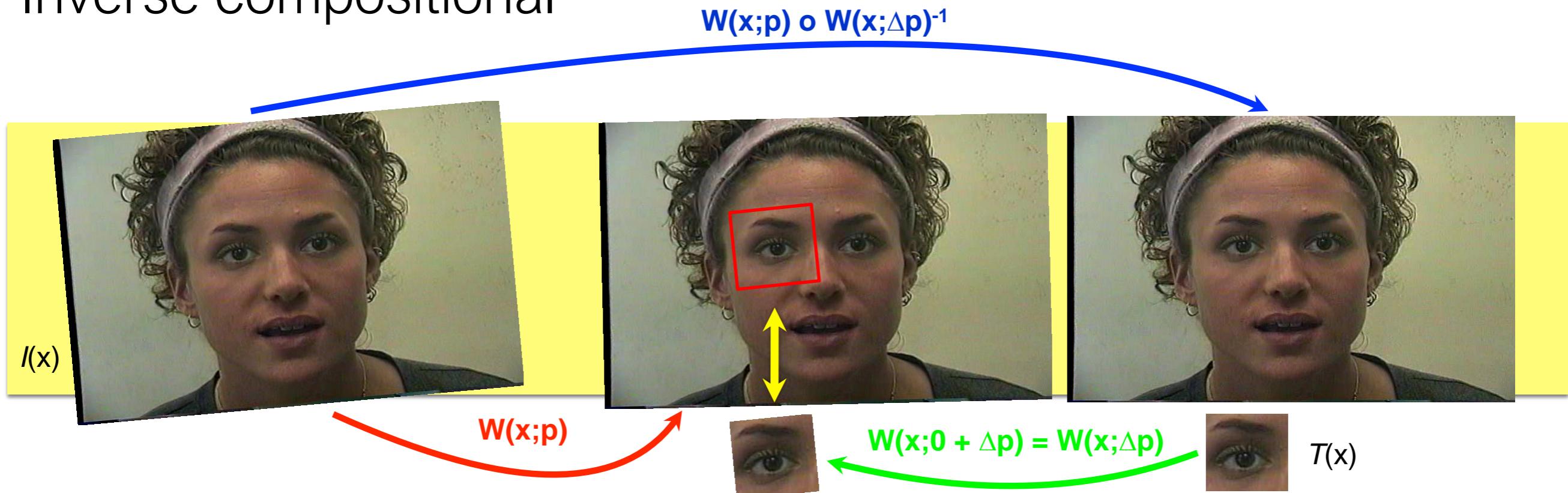
Inverse Compositional Alignment

$$\sum_{\mathbf{x}} [T(\mathbf{W}(\mathbf{x}; \Delta\mathbf{p})) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$$

Compositional



Inverse compositional



Compositional strategy

Inverse Compositional strategy

So what's so great about this inverse compositional form?

Inverse Compositional Alignment

Minimize

$$\sum_{\mathbf{x}} [T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2 \approx \sum_{\mathbf{x}} \mathbf{x} \left[T(\mathbf{W}(\mathbf{x}; \mathbf{0})) + \nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^2$$

Solution

$$H = \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right] \quad \text{can be precomputed from template!}$$

$$\Delta \mathbf{p} = \sum_{\mathbf{x}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

Update

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})^{-1}$$

Properties of inverse compositional alignment

Jacobian can be precomputed

It is constant - evaluated at $W(x; 0)$

Gradient of template can be precomputed

It is constant

Hessian can be precomputed

$$H = \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

$$\Delta \mathbf{p} = \sum_{\mathbf{x}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

(main term that needs to be computed)

Warp must be invertible

Lucas Kanade (Additive alignment)

1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
3. Compute gradient $\nabla I(\mathbf{W})$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
5. Compute Hessian H
6. Compute $\Delta \mathbf{p}$
7. Update parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

Shum-Szeliski (Compositional alignment)

1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$
3. Compute gradient $\nabla I(\mathbf{x}')$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}}$
5. Compute Hessian H
6. Compute $\Delta \mathbf{p}$
7. Update parameters $\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})$

Baker-Matthews (Inverse Compositional alignment)

1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
2. Compute error image $[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$
3. Compute gradient $\nabla T(\mathbf{W})$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$
5. Compute Hessian H
$$H = \sum_{\mathbf{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$
6. Compute $\Delta \mathbf{p}$
$$\Delta \mathbf{p} = \sum_{\mathbf{x}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$
7. Update parameters $\mathbf{W}(\mathbf{x}; \mathbf{p}) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})^{-1}$

Algorithm	Efficient	Authors
Forwards Additive	No	Lucas, Kanade
Forwards compositional	No	Shum, Szeliski
Inverse Additive	Yes	Hager, Belhumeur
Inverse Compositional	Yes	Baker, Matthews

Kanade-Lucas-Tomasi
(KLT) tracker

Feature-based tracking

Up to now, we've been aligning entire images
but we can also track just small image regions too!
(sometimes called sparse tracking or sparse alignment)

How should we select the 'small images' (features)?

How should we track them from frame to frame?

An Iterative Image Registration Technique
with an Application to Stereo Vision.

History of the Kanade-Lucas-Tomasi (KLT) Tracker

1981

Detection and Tracking of Feature Points.

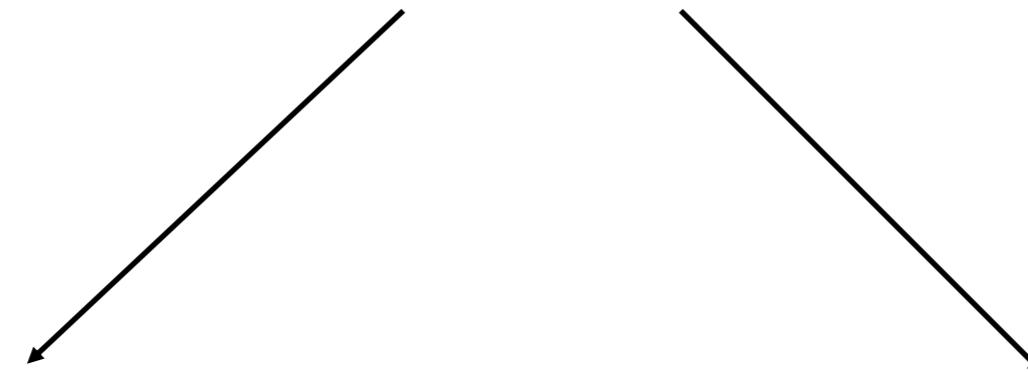
1991

The original KLT algorithm

Good Features to Track.

1994

Kanade-Lucas-Tomasi



How should we track them from frame to frame?

Lucas-Kanade

Method for aligning (tracking) an image patch

How should we select features?

Tomasi-Kanade

Method for choosing the best feature (image patch) for tracking

What are good features for tracking?

What are good features for tracking?

Intuitively, we want to avoid smooth regions and edges.

But is there a more principled way to define good features?

What are good features for tracking?

Can be derived from the tracking algorithm

What are good features for tracking?

Can be derived from the tracking algorithm

‘A feature is good if it can be tracked well’

Recall the Lucas-Kanade image alignment method:

error function (SSD)
$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

incremental update
$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

Recall the Lucas-Kanade image alignment method:

error function (SSD)

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

incremental update

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

linearize

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^2$$

Recall the Lucas-Kanade image alignment method:

error function (SSD)

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

incremental update

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

linearize

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta\mathbf{p} - T(\mathbf{x}) \right]^2$$

Gradient update

$$\Delta\mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

$$H = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

Recall the Lucas-Kanade image alignment method:

error function (SSD)

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x})]^2$$

incremental update

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x})]^2$$

linearize

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta\mathbf{p} - T(\mathbf{x}) \right]^2$$

Gradient update

$$\Delta\mathbf{p} = H^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

$$H = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

Update

$$\mathbf{p} \leftarrow \mathbf{p} + \Delta\mathbf{p}$$

Stability of gradient decent iterations depends on ...

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

Stability of gradient decent iterations depends on ...

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

Inverting the Hessian

$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

When does the inversion fail?

Stability of gradient decent iterations depends on ...

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top [T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$$

Inverting the Hessian

$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

When does the inversion fail?

\mathbf{H} is singular. But what does that mean?

Above the noise level

$$\lambda_1 \gg 0$$

$$\lambda_2 \gg 0$$

both Eigenvalues are large

Well-conditioned

both Eigenvalues have similar magnitude

Concrete example: Consider translation model

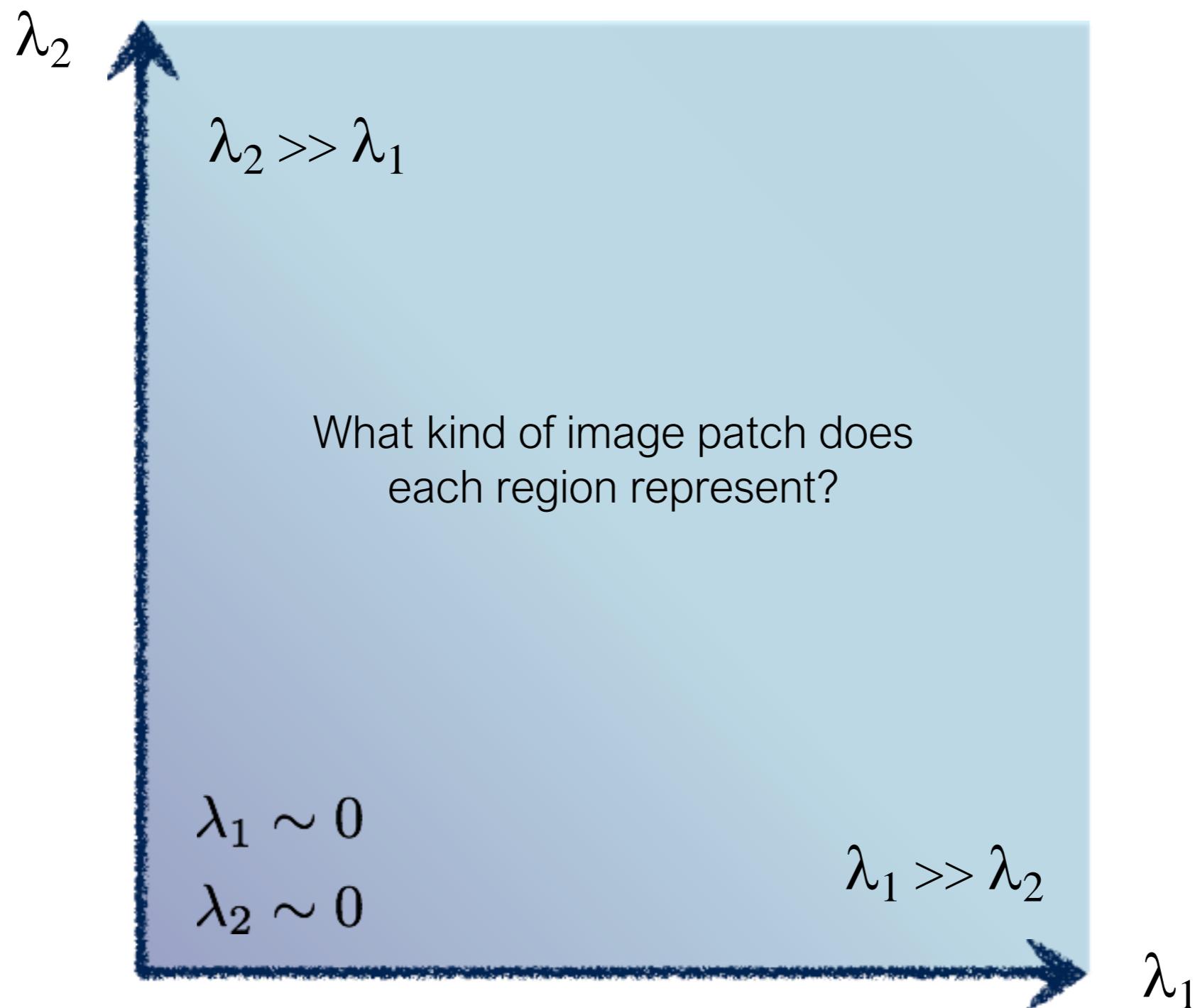
$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix} \quad \frac{\mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Hessian

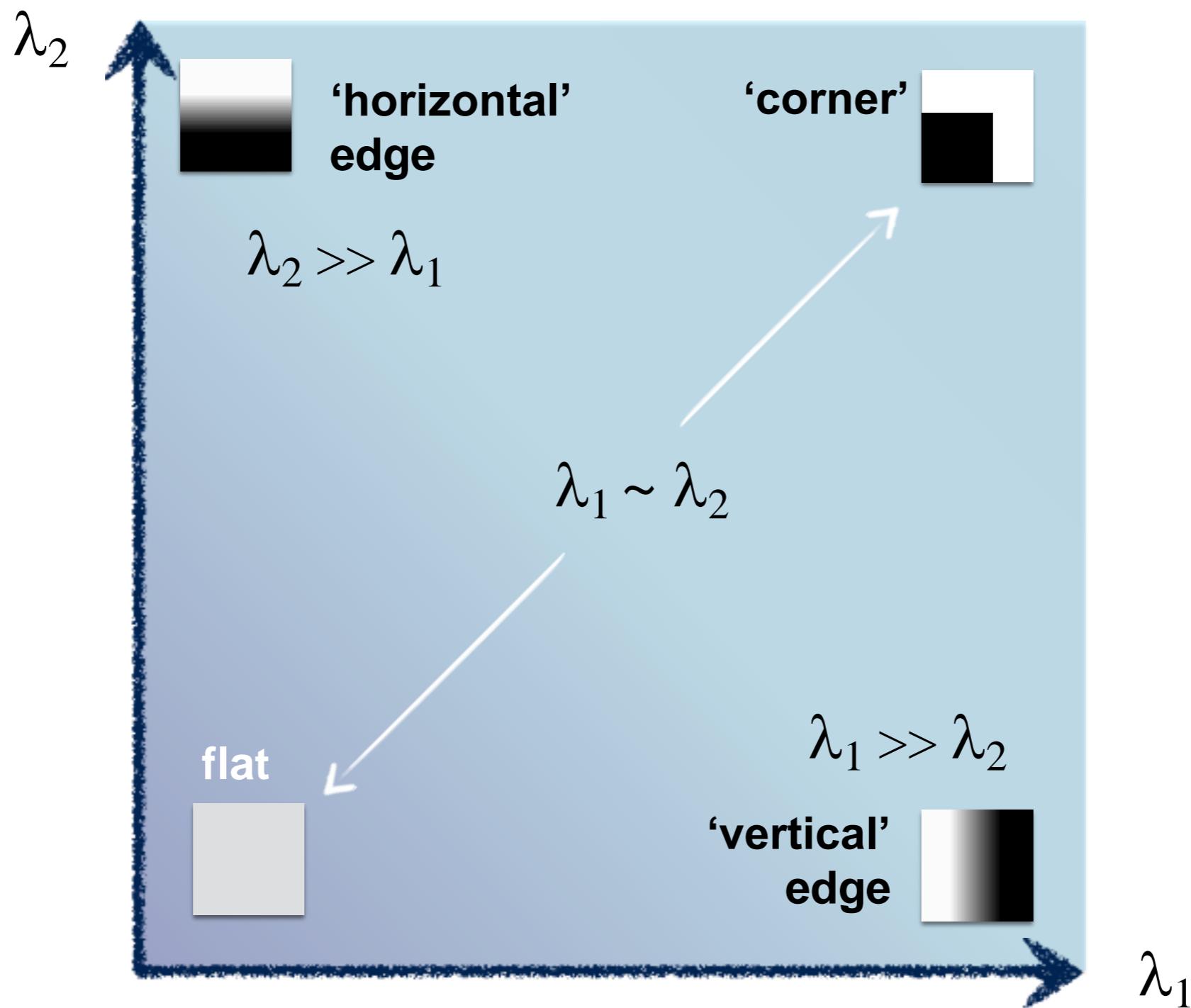
$$\begin{aligned} H &= \sum_{\mathbf{x}} \left[\nabla_I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^\top \left[\nabla_I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right] \\ &= \sum_{\mathbf{x}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \sum_{\mathbf{x}} I_x I_x & \sum_{\mathbf{x}} I_y I_x \\ \sum_{\mathbf{x}} I_x I_y & \sum_{\mathbf{x}} I_y I_y \end{bmatrix} \quad \leftarrow \text{when is this singular?} \end{aligned}$$

How are the eigenvalues related to image content?

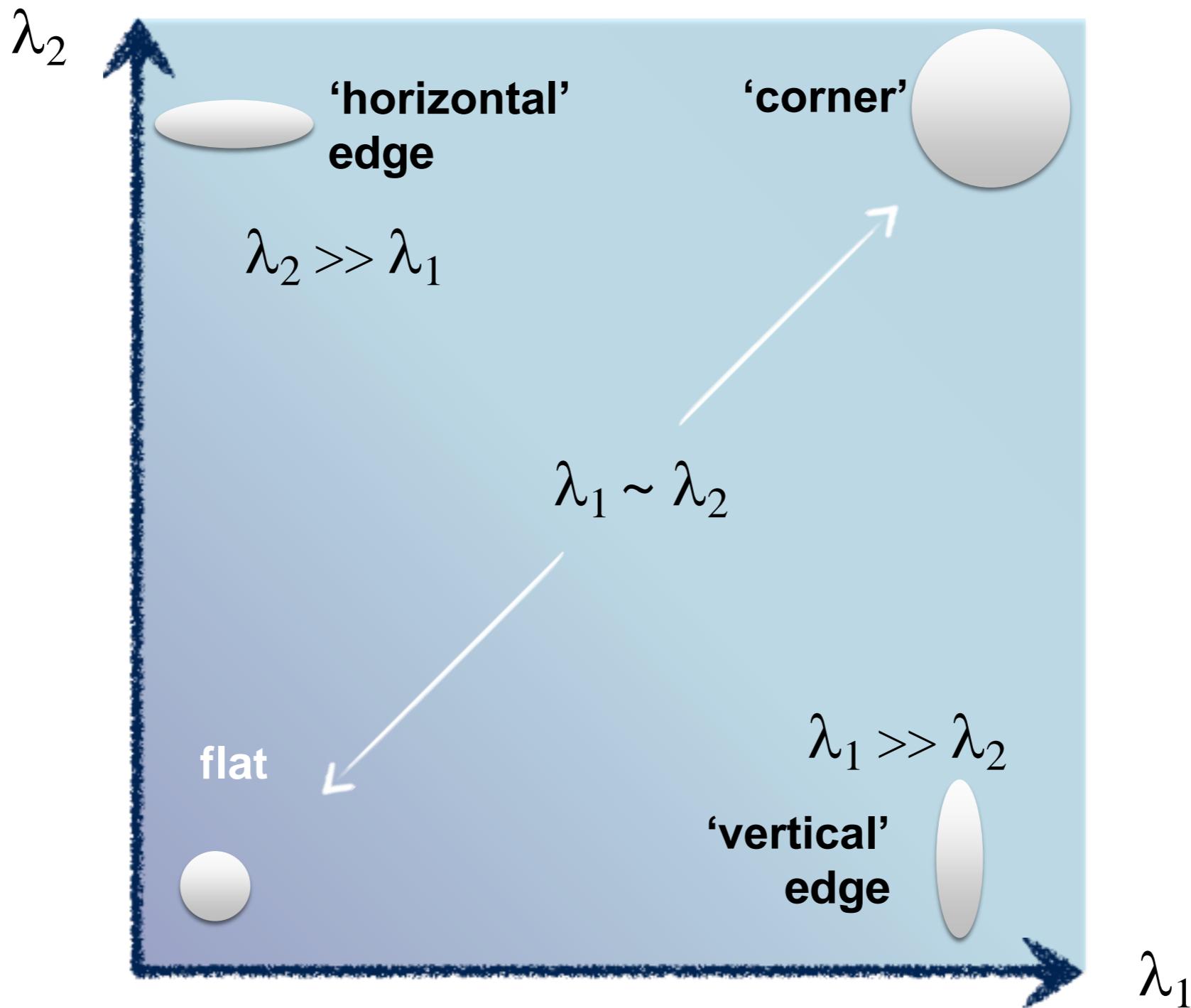
interpreting eigenvalues



interpreting eigenvalues



interpreting eigenvalues



What are good features for tracking?

What are good features for tracking?

$$\min(\lambda_1, \lambda_2) > \lambda$$

‘big Eigenvalues means good for tracking’

KLT algorithm

1. Find corners satisfying $\min(\lambda_1, \lambda_2) > \lambda$
2. For each corner compute displacement to next frame using the Lucas-Kanade method
3. Store displacement of each corner, update corner position
4. (optional) Add more corner points every M frames using 1
5. Repeat 2 to 3 (4)
6. Returns long trajectories for each corner point

Mean-shift algorithm

Mean Shift Algorithm

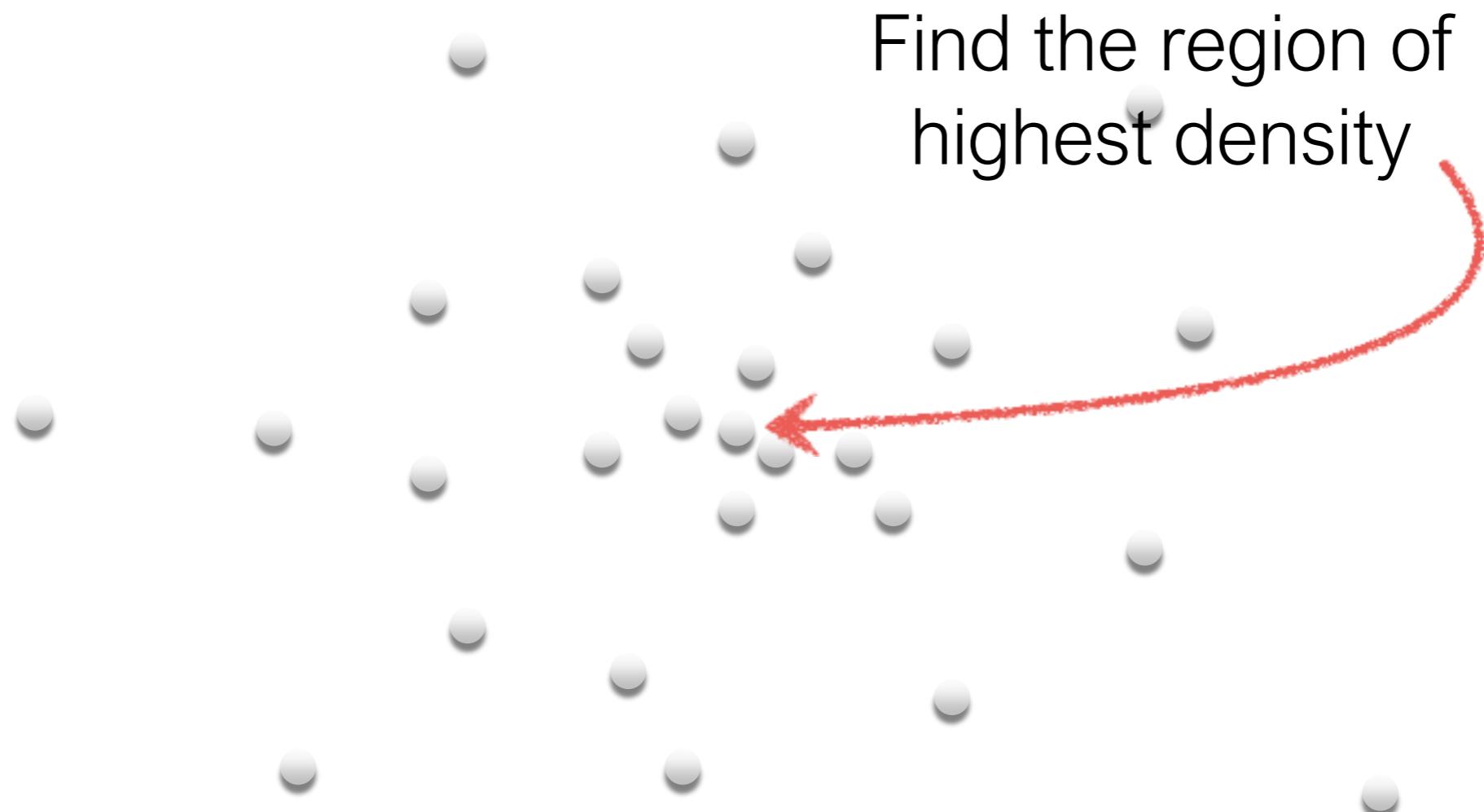
A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

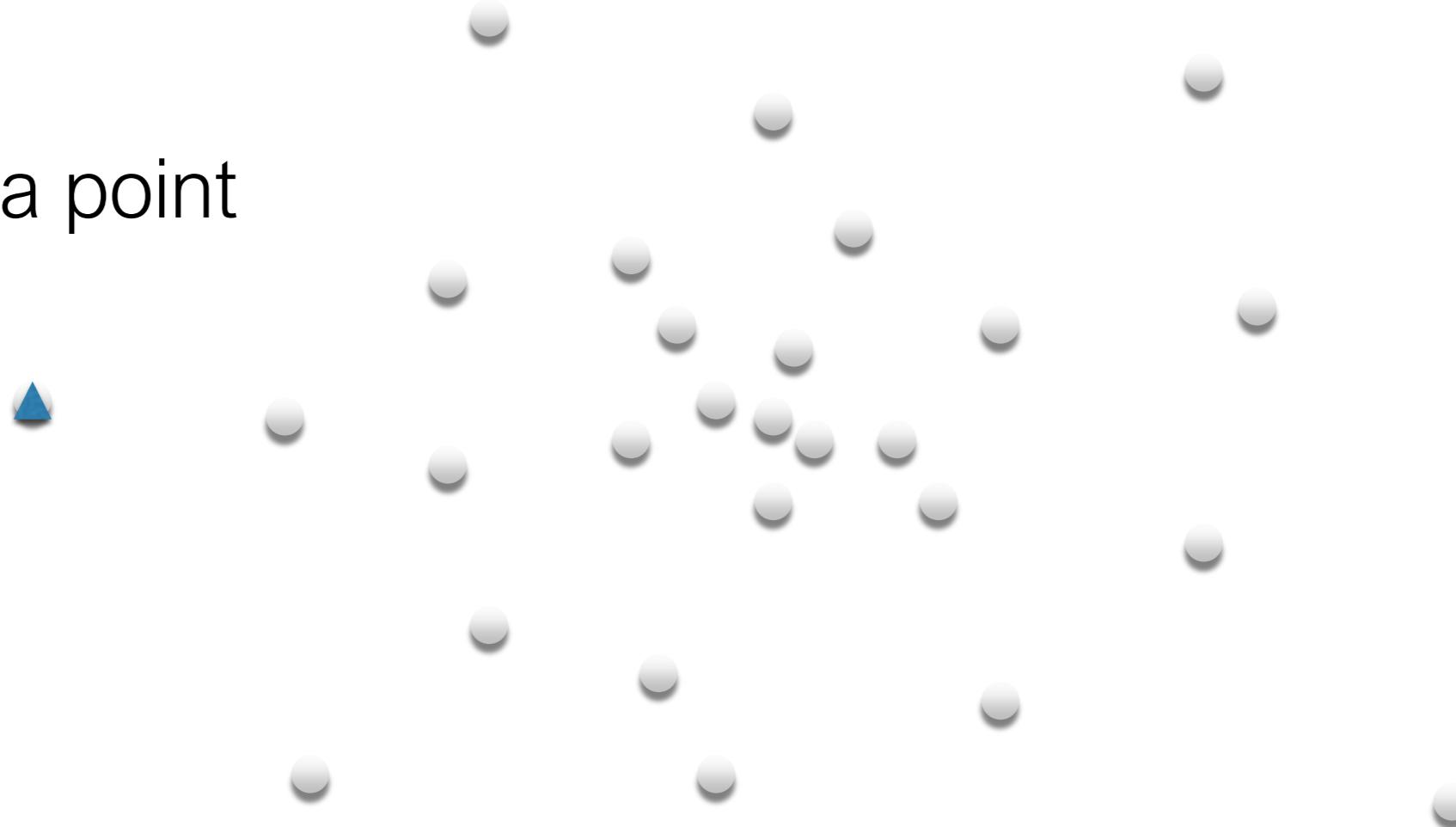


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Pick a point

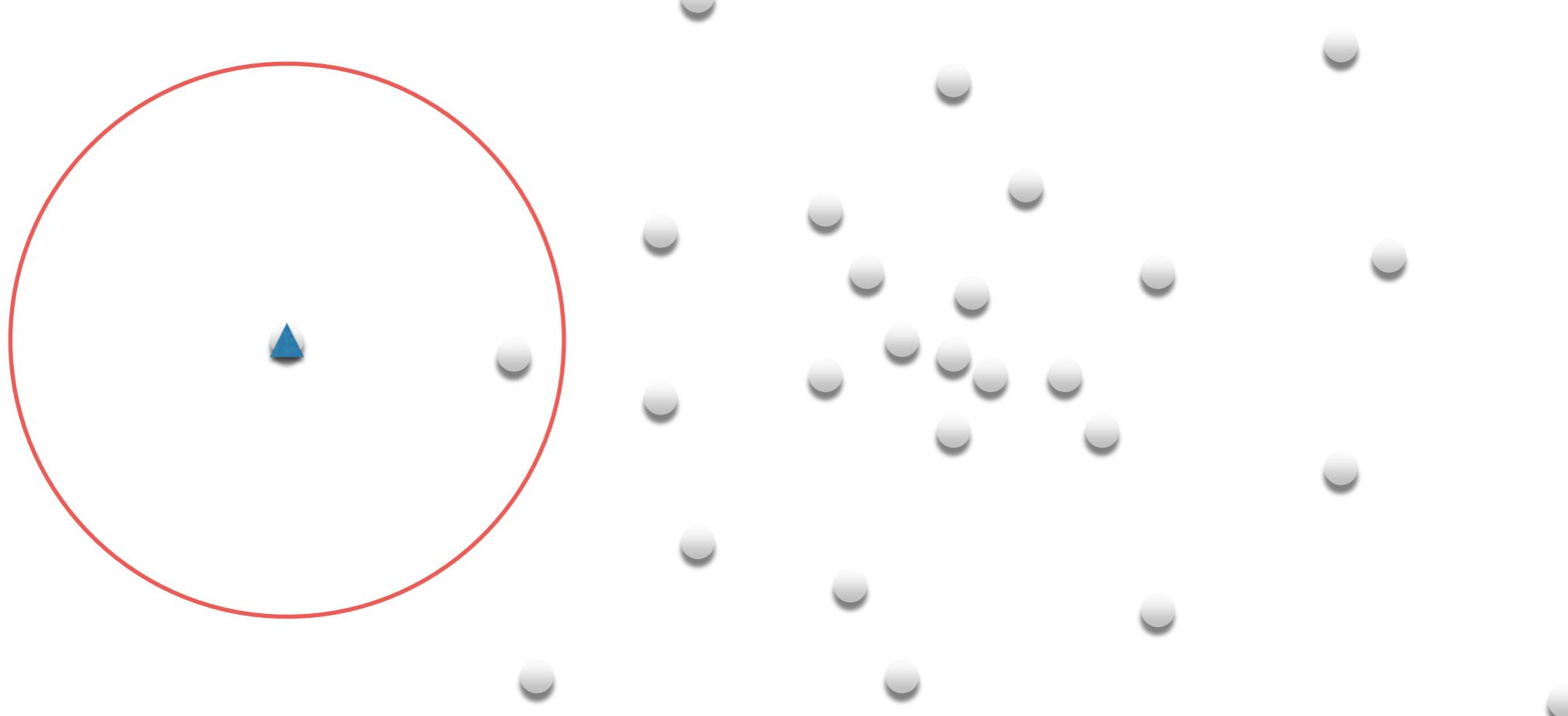


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Draw a window

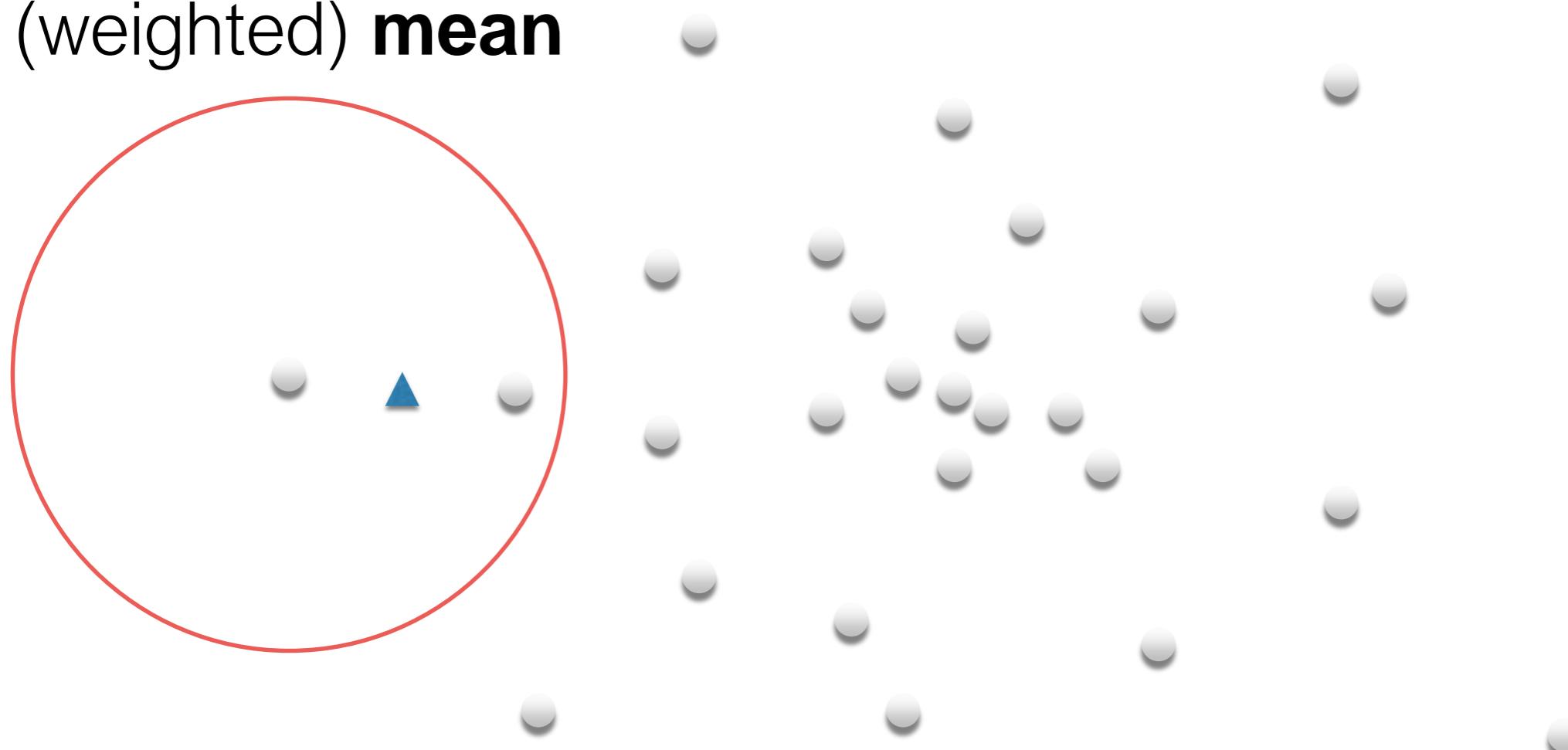


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Compute the
(weighted) **mean**

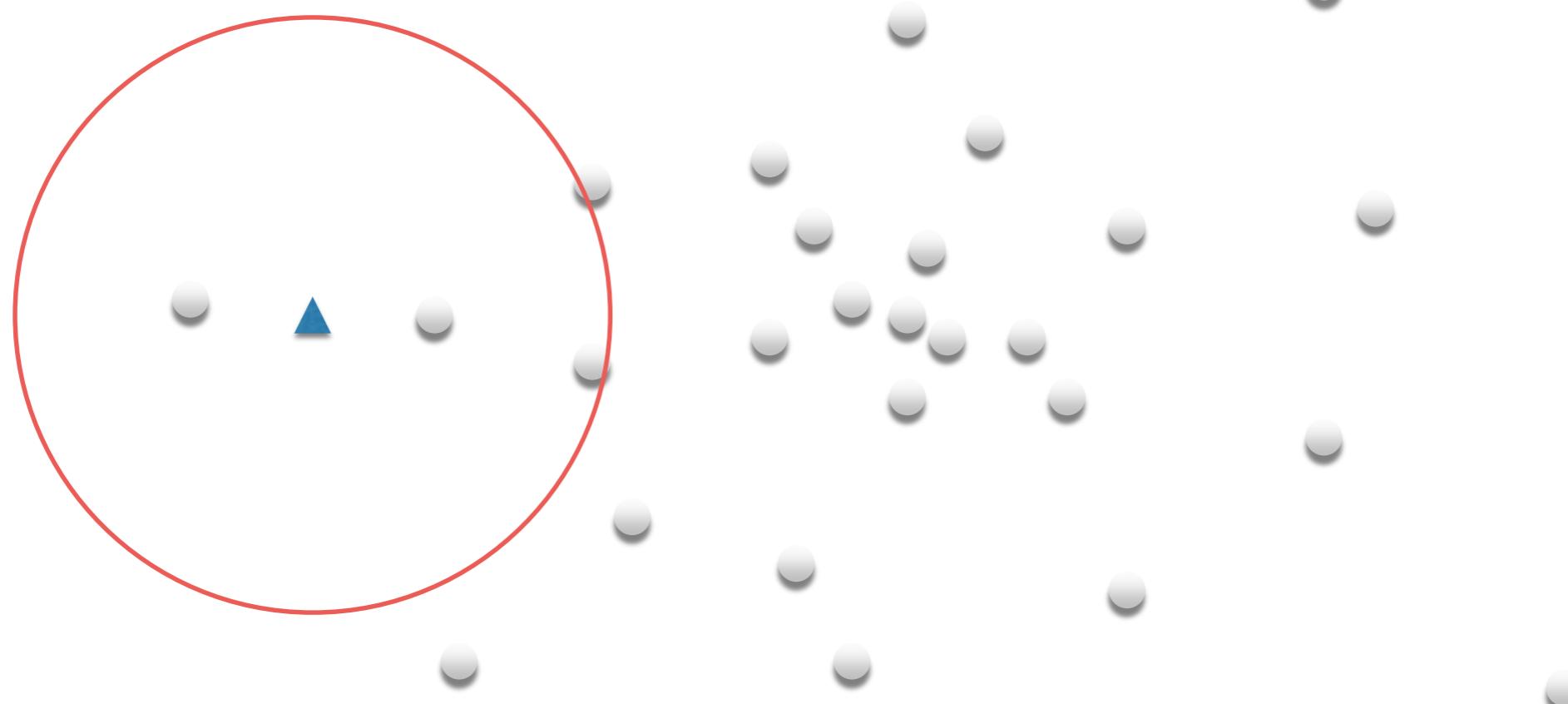


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

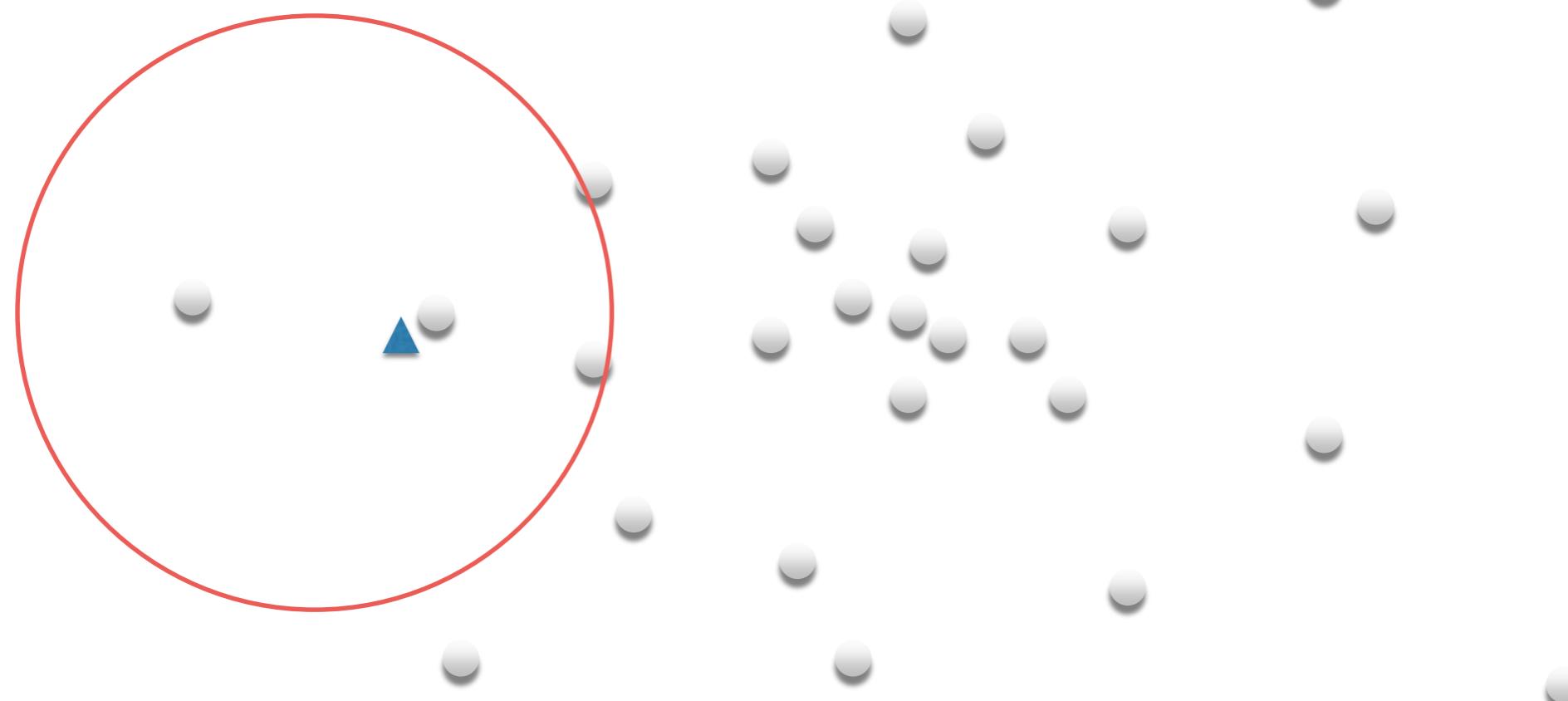


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

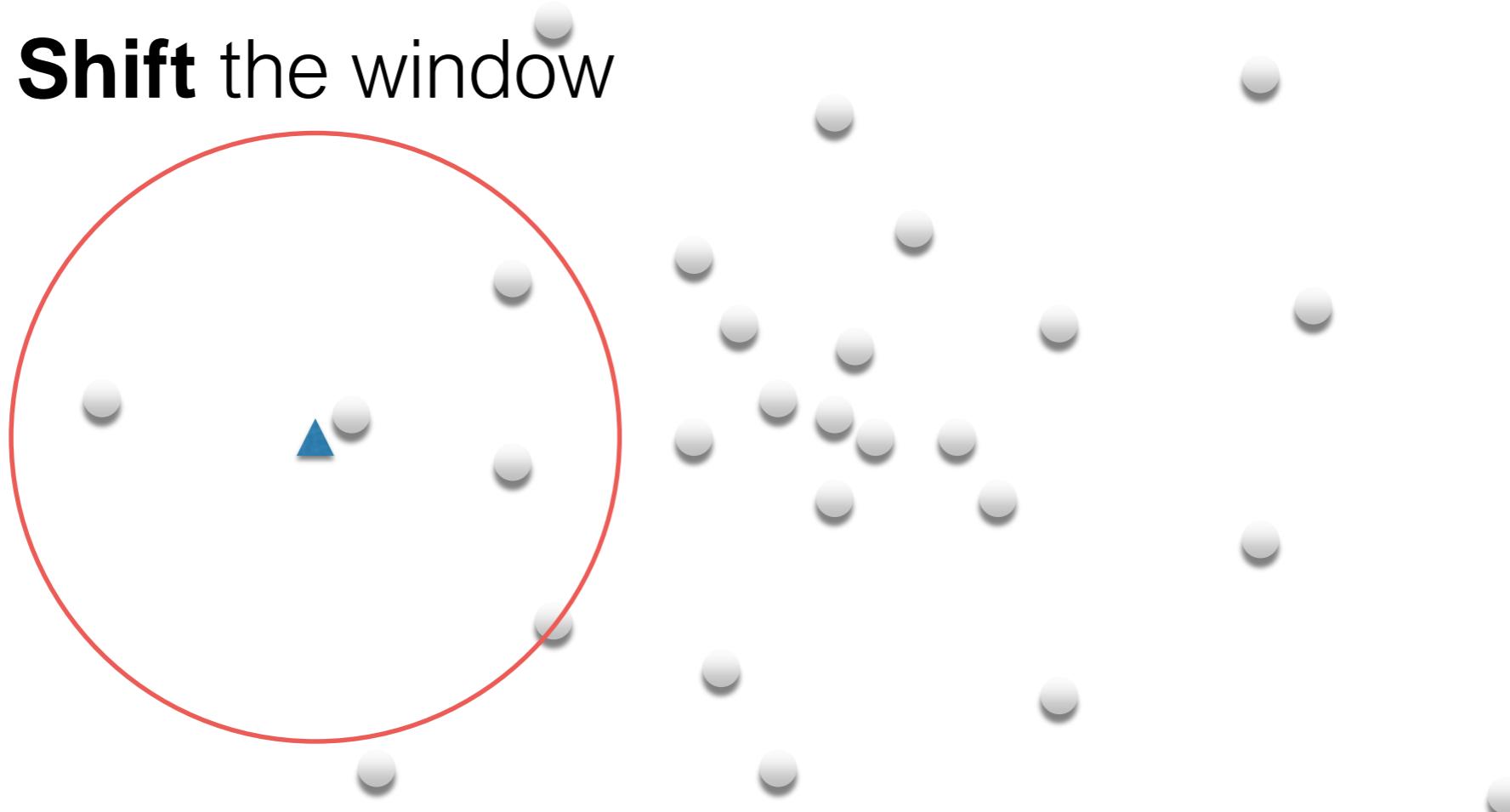


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

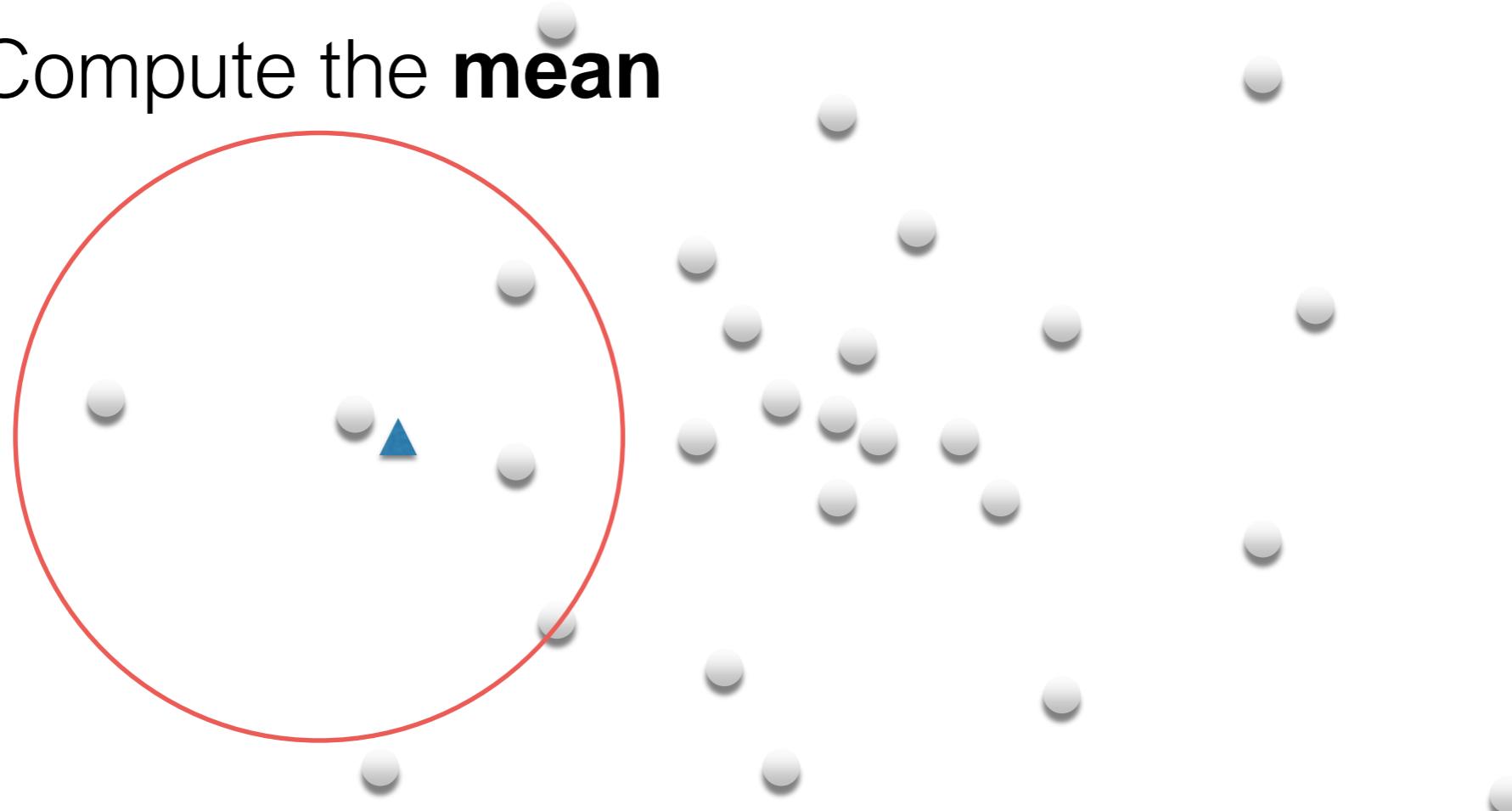


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

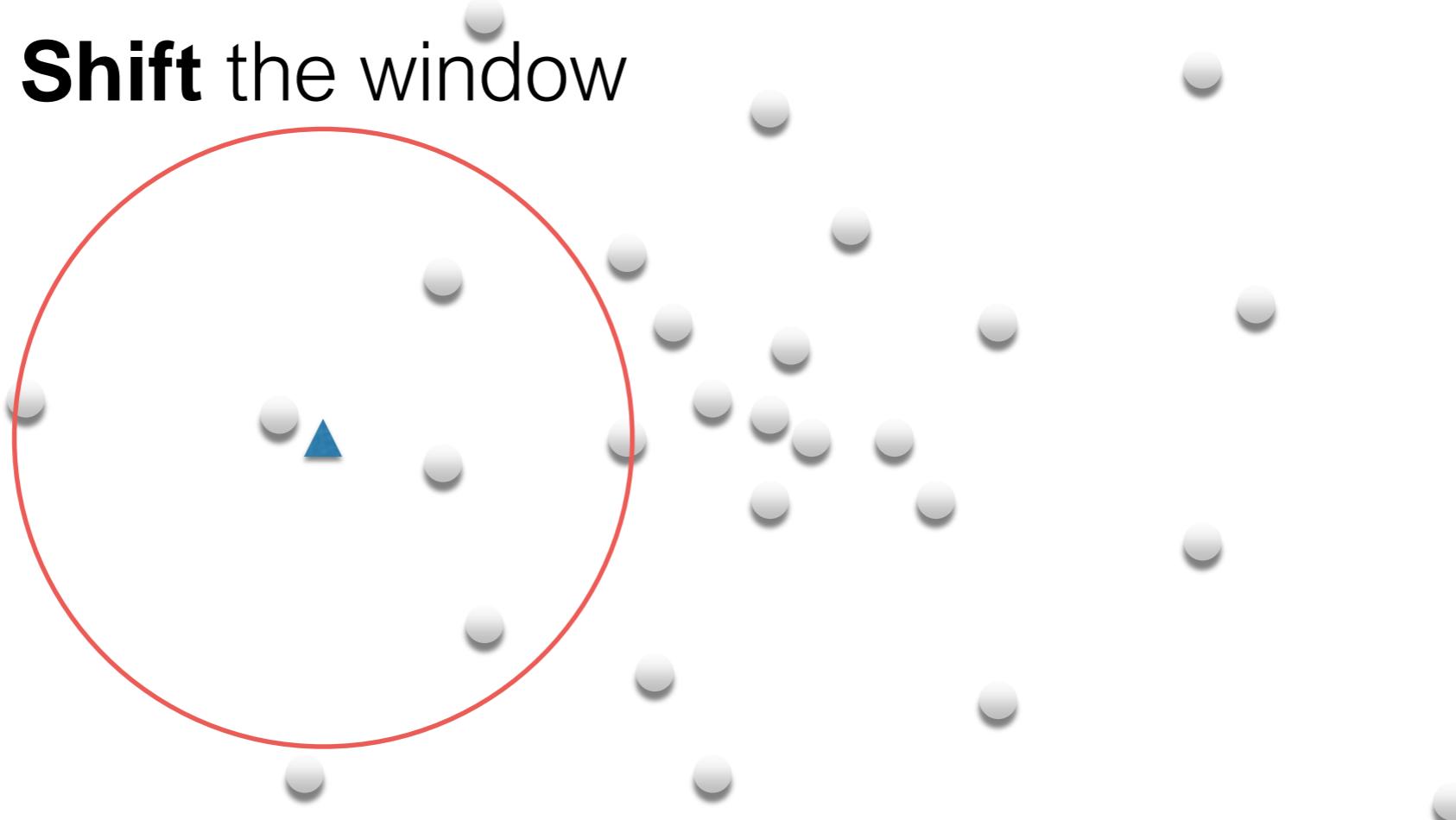


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

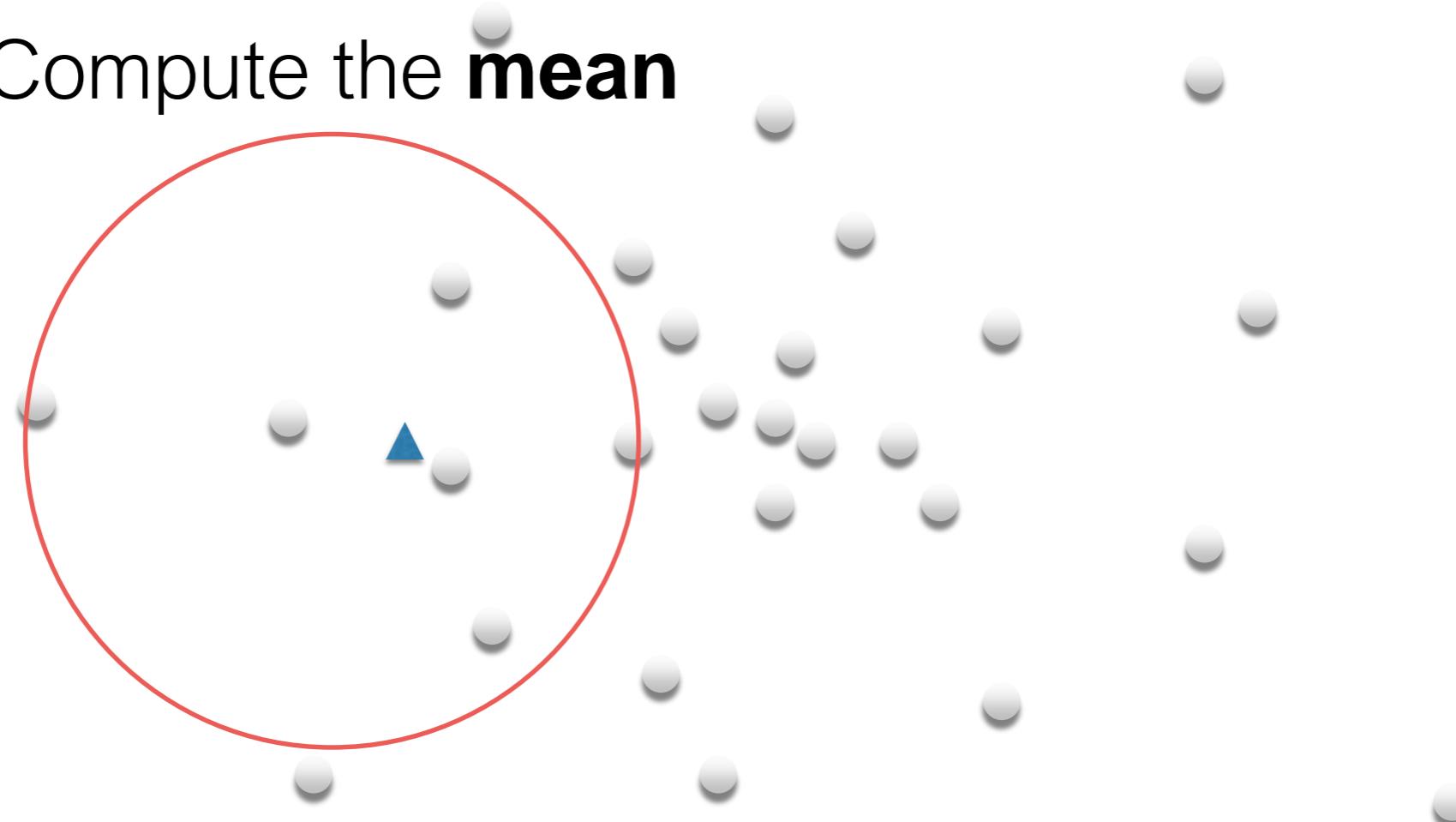


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

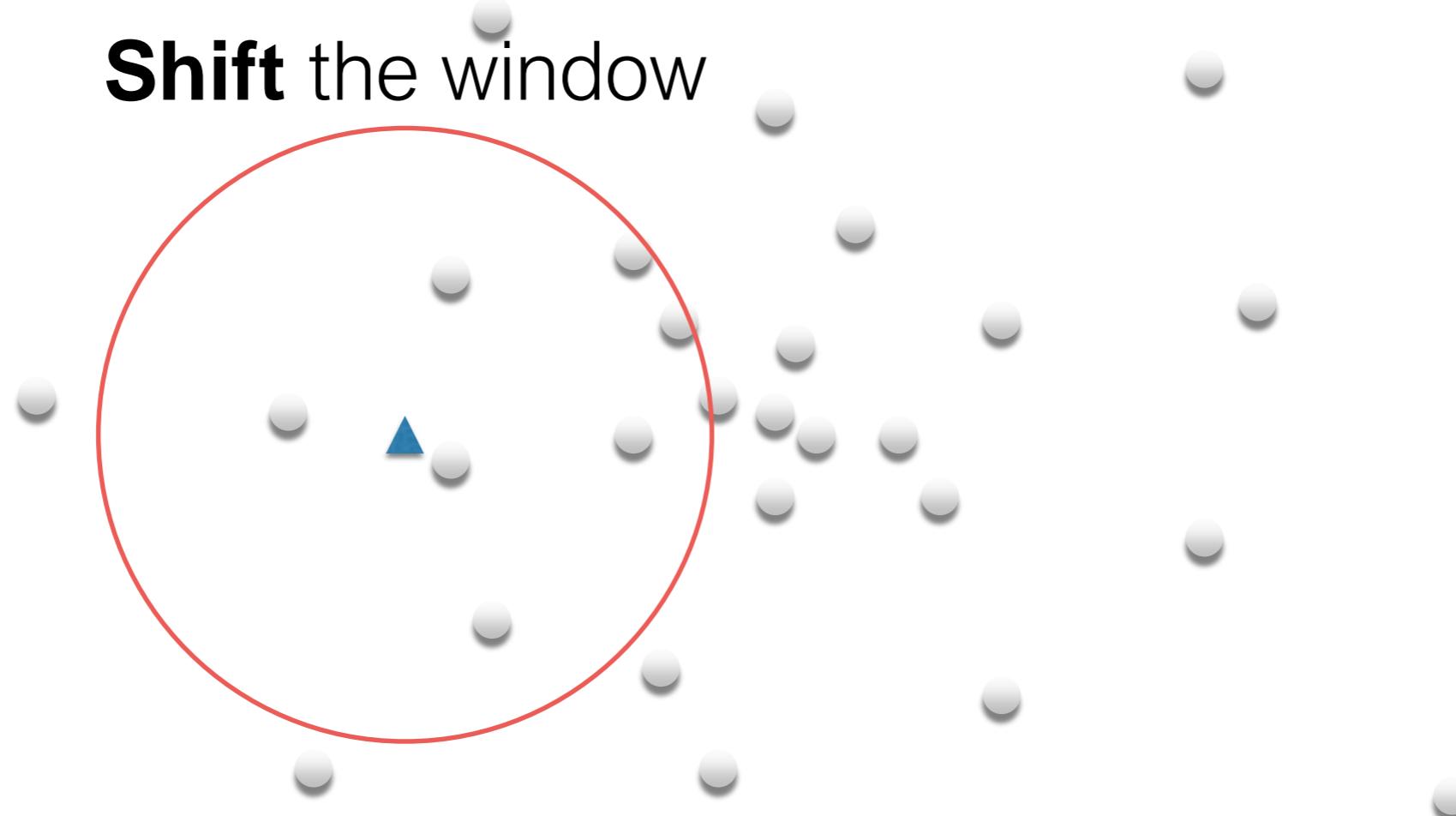


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

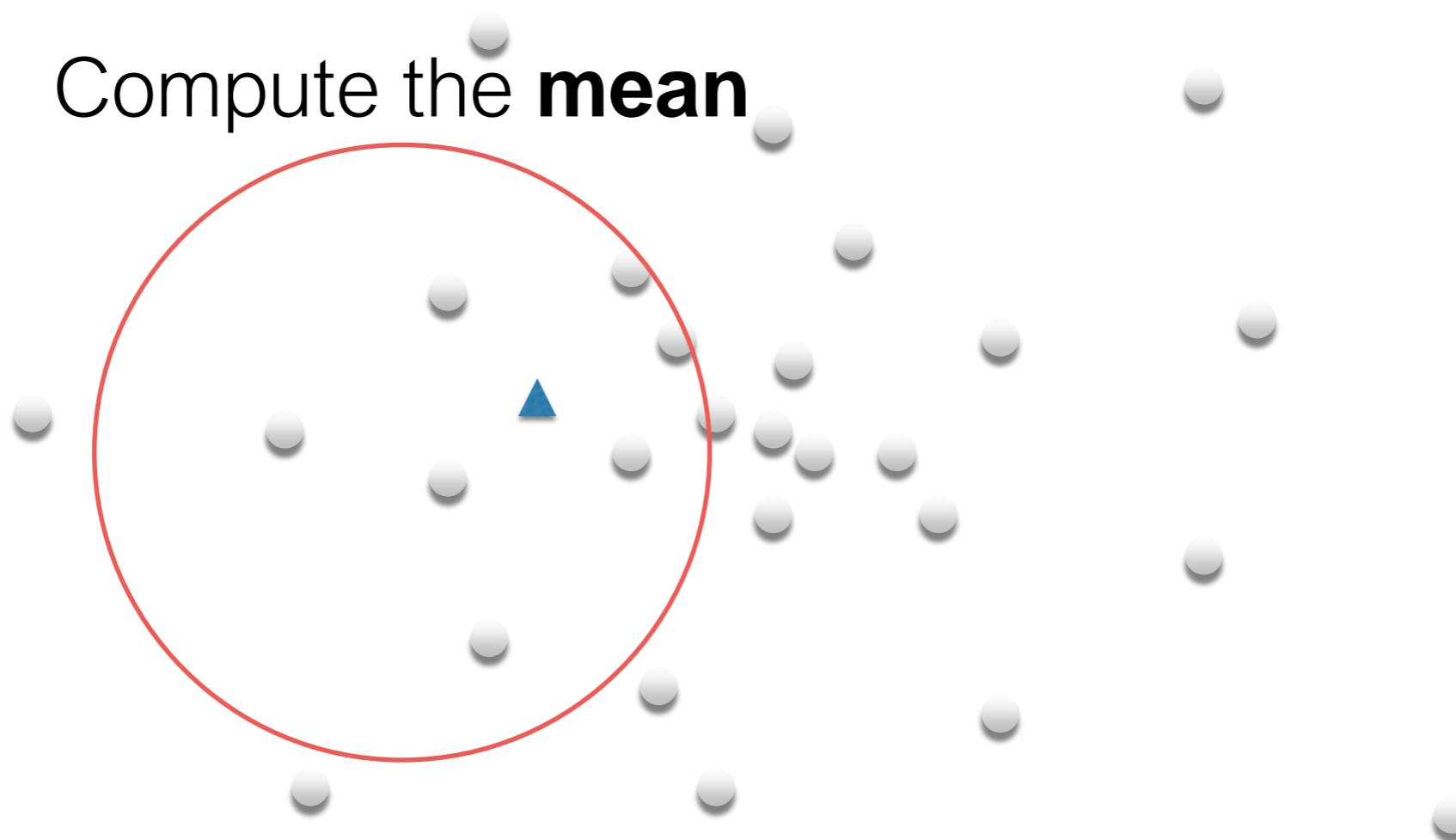
Shift the window



Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

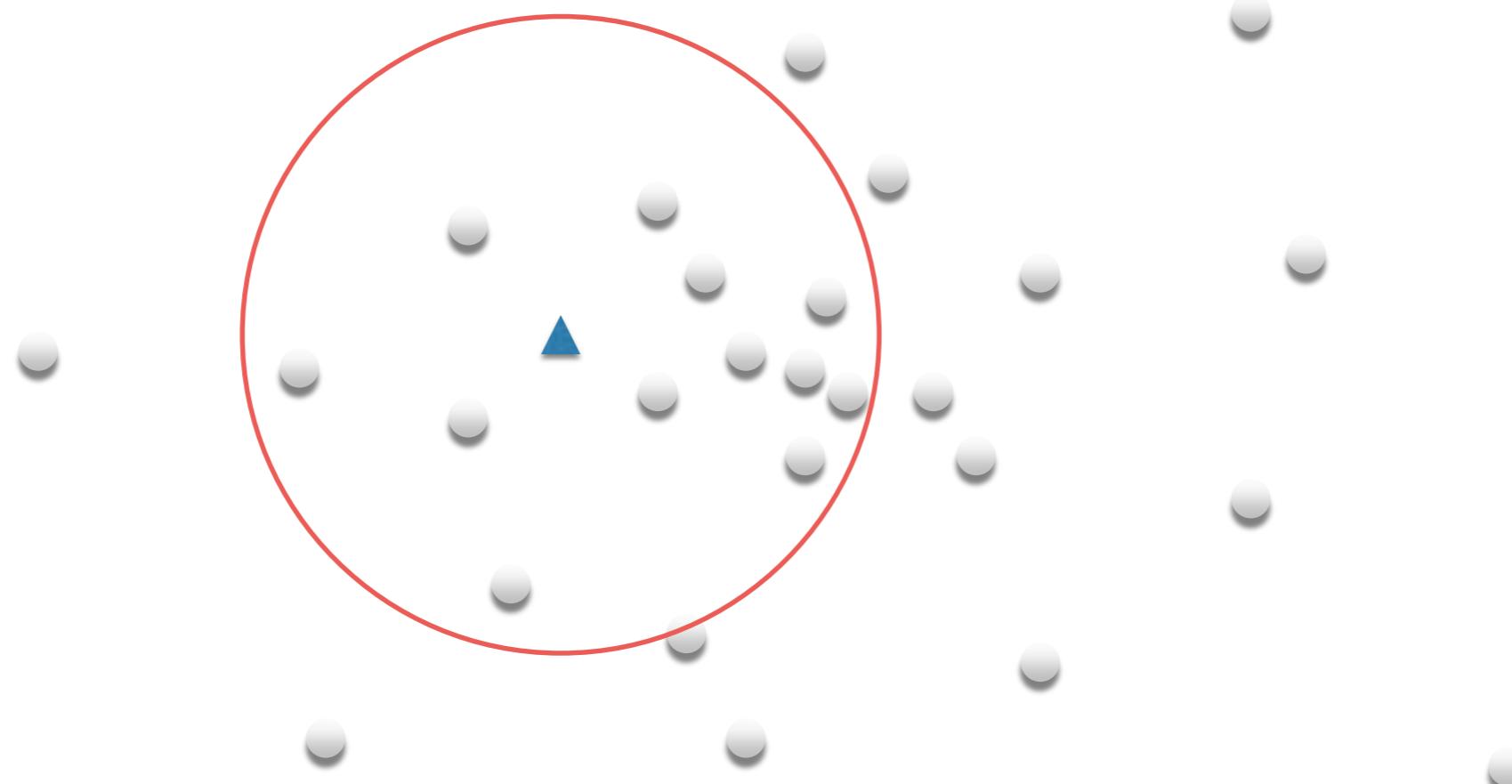


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

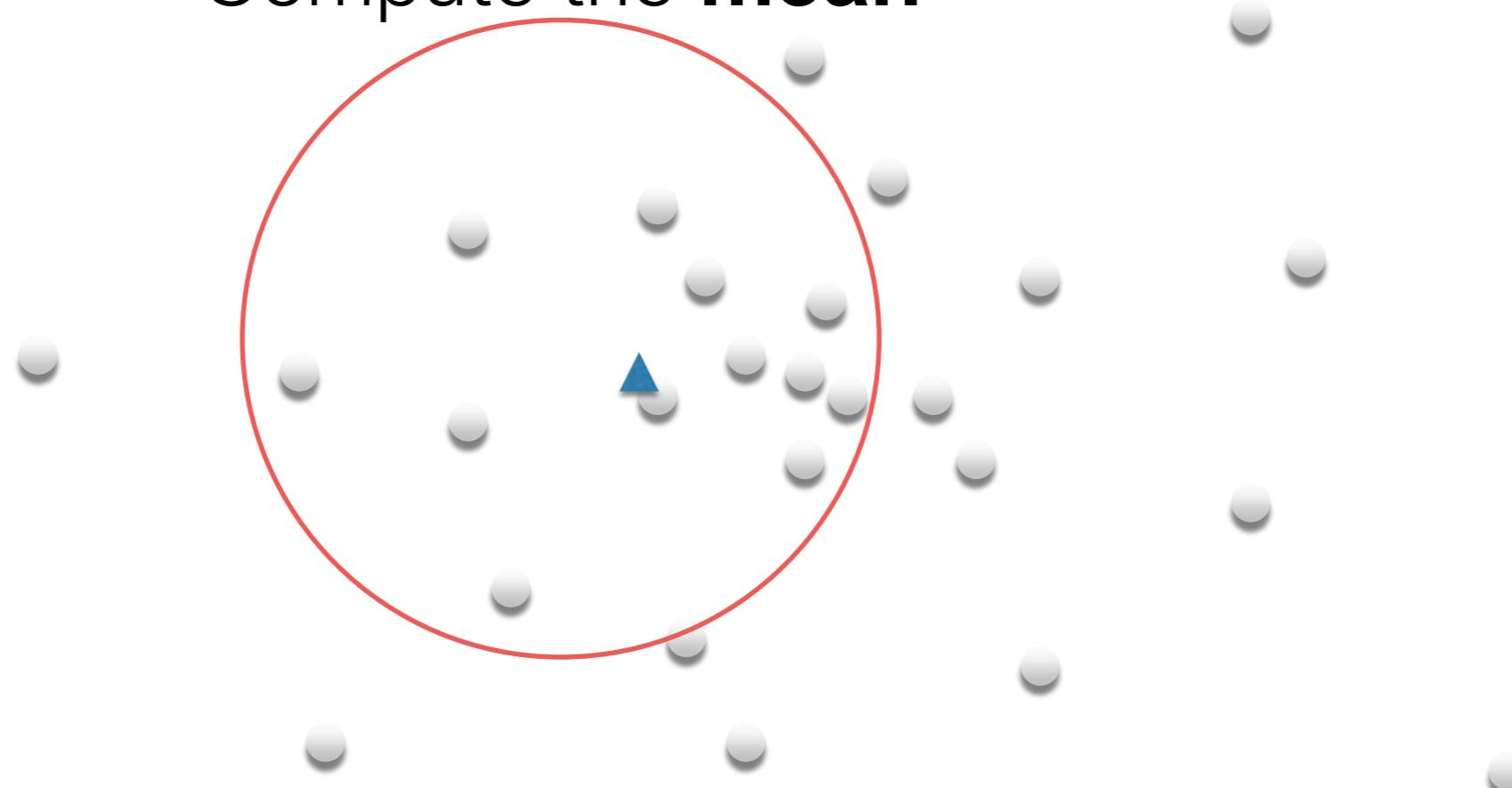


Mean Shift Algorithm

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

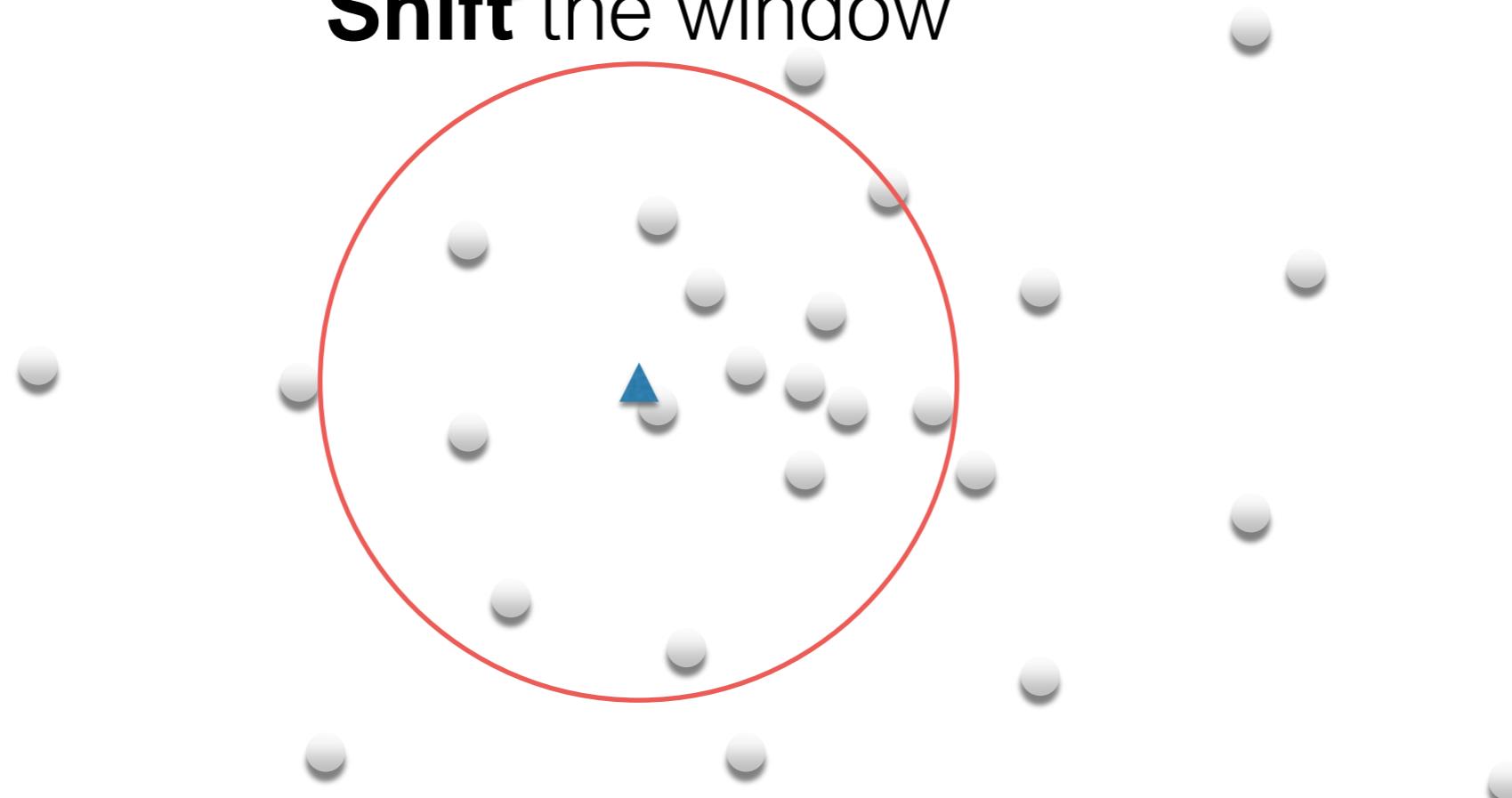


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

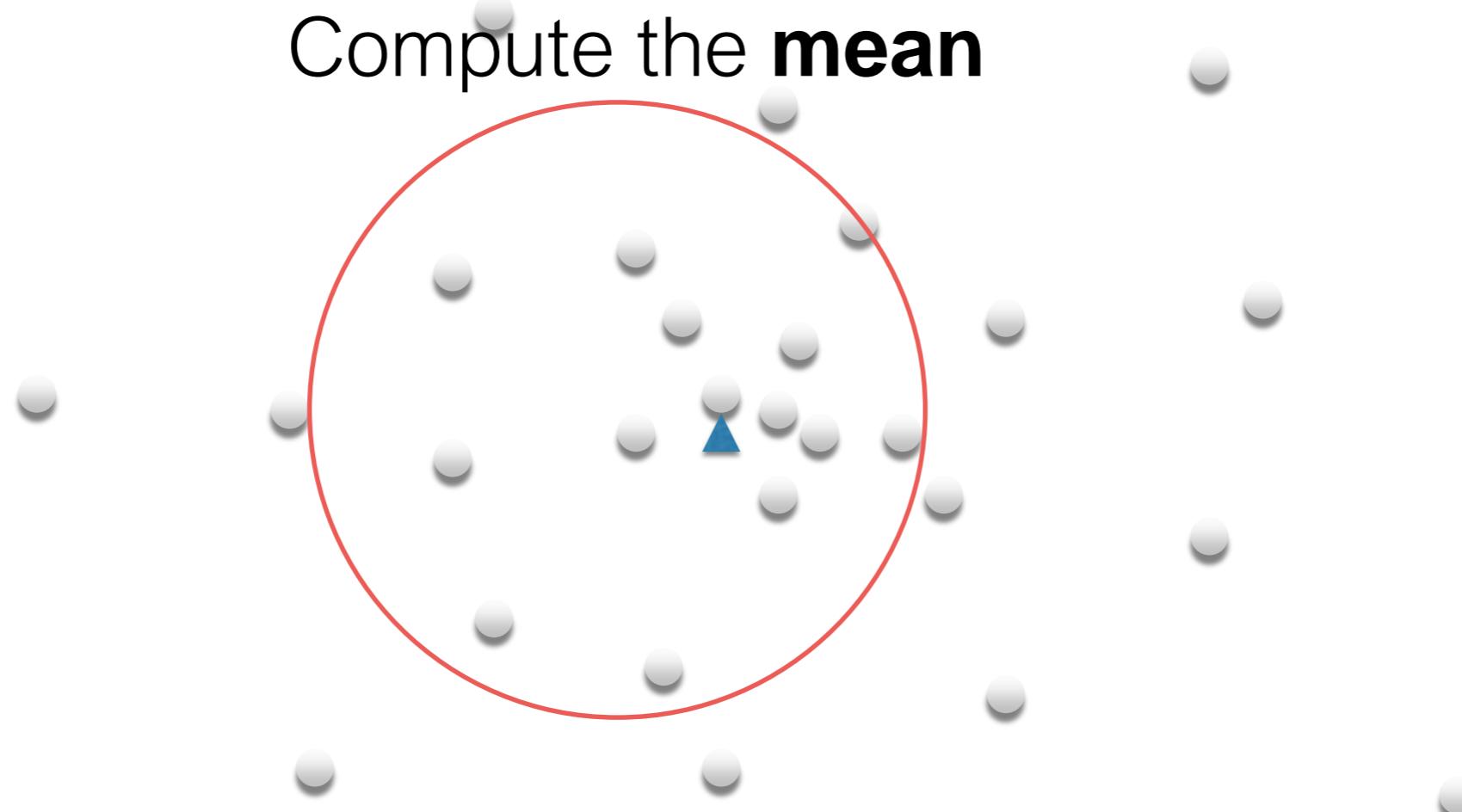


Mean Shift Algorithm

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

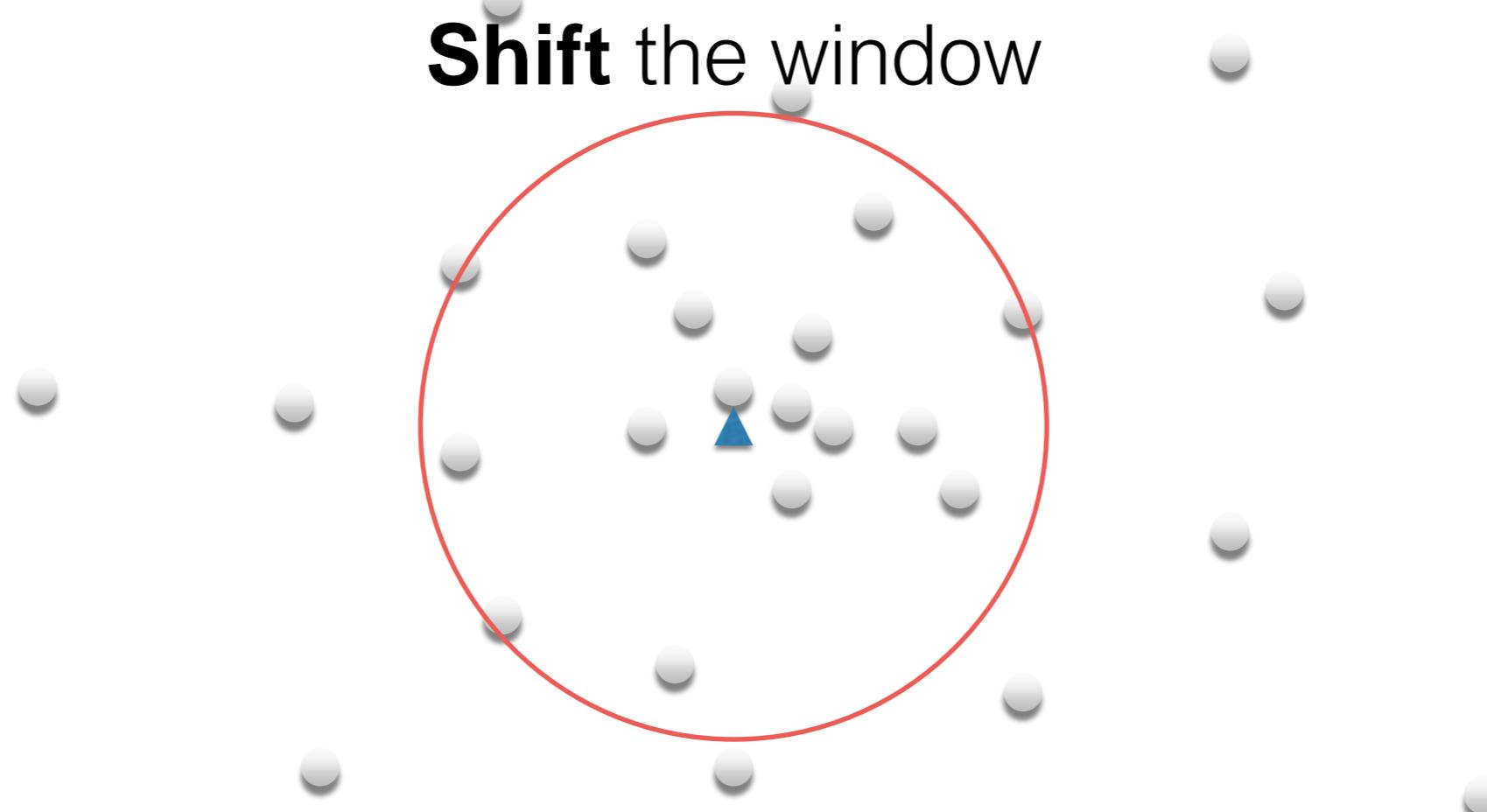


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window

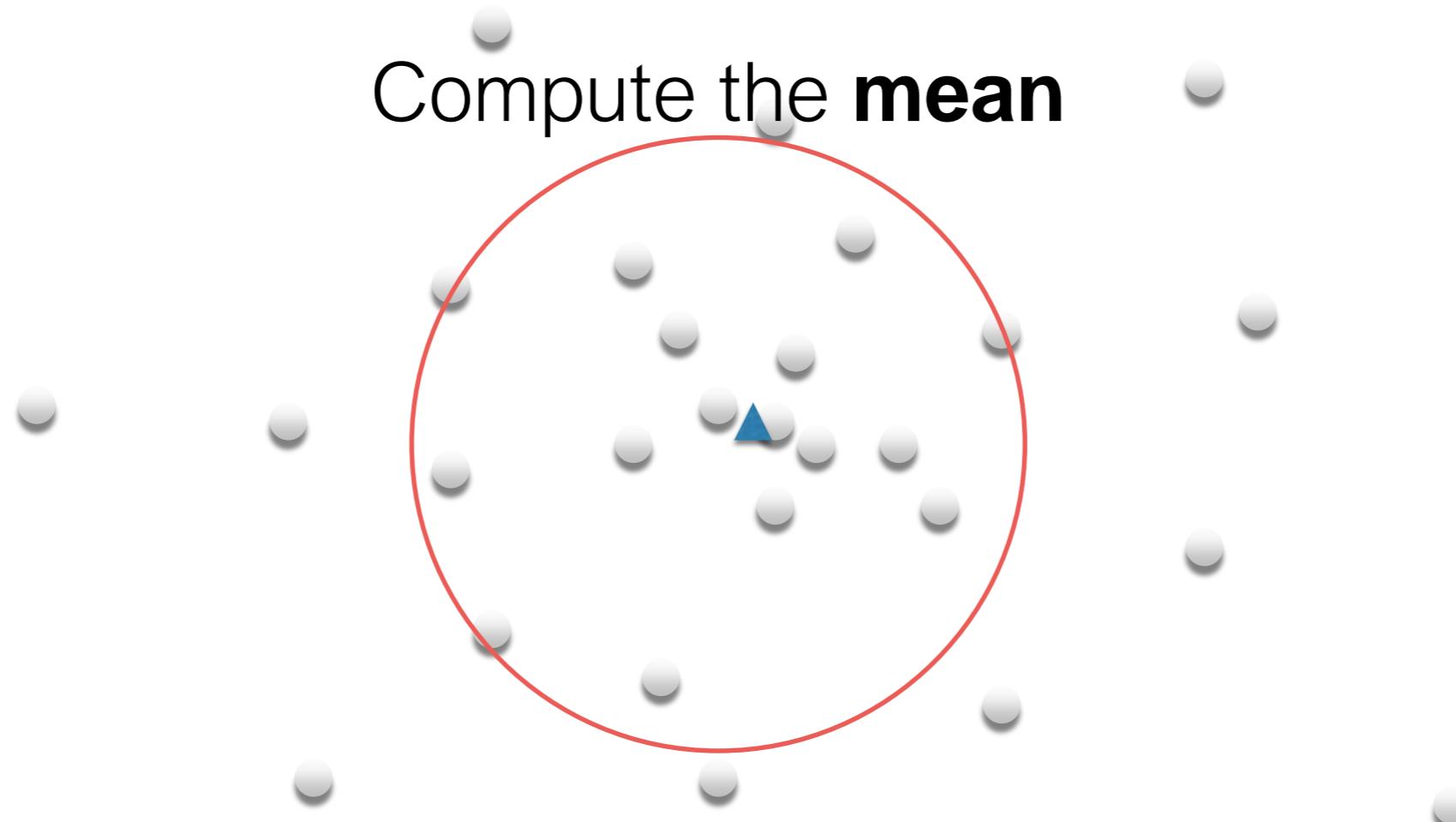


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

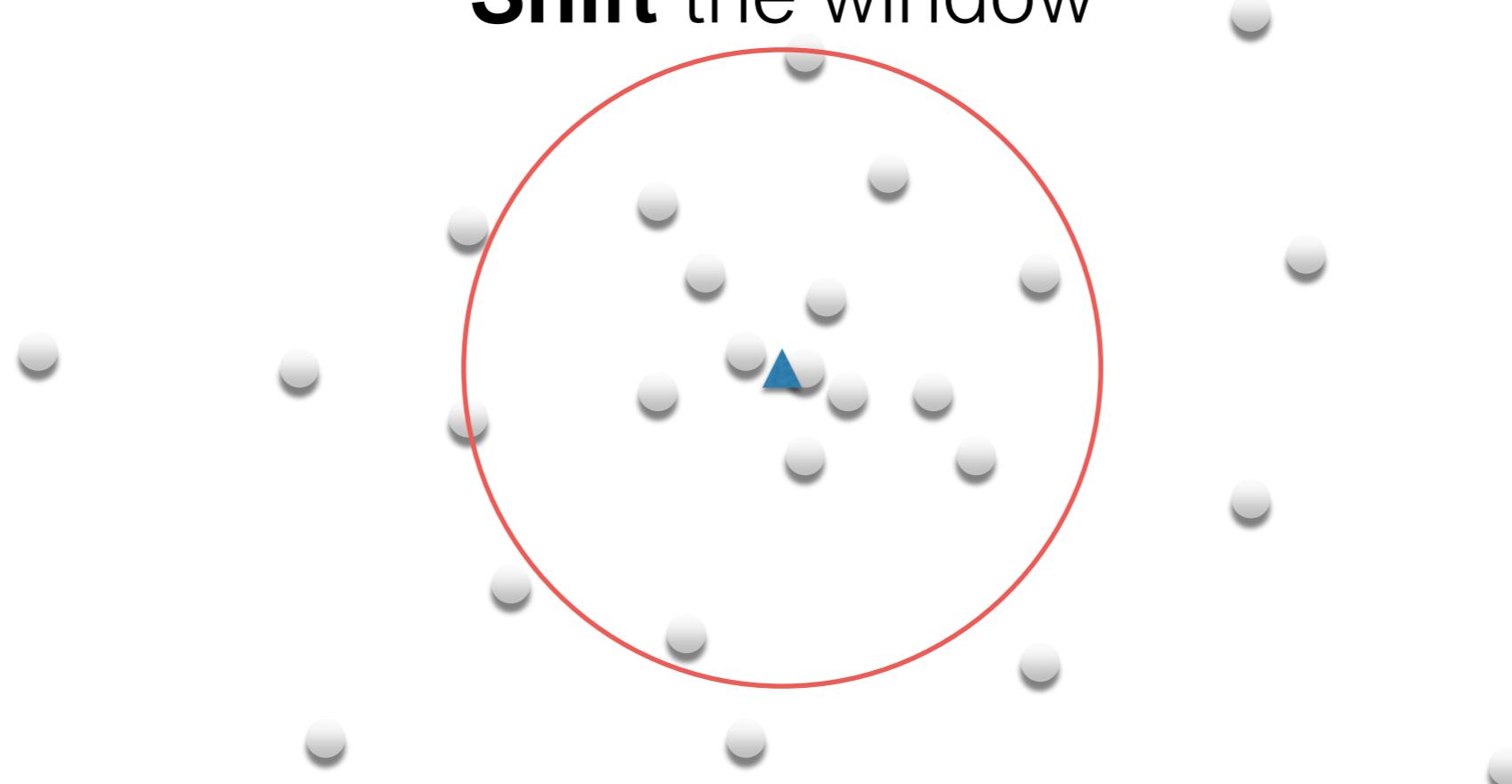


Mean Shift Algorithm

A ‘mode seeking’ algorithm

Fukunaga & Hostetler (1975)

Shift the window



To understand the theory behind this we need to understand...

Kernel density estimation

To understand the mean shift algorithm ...

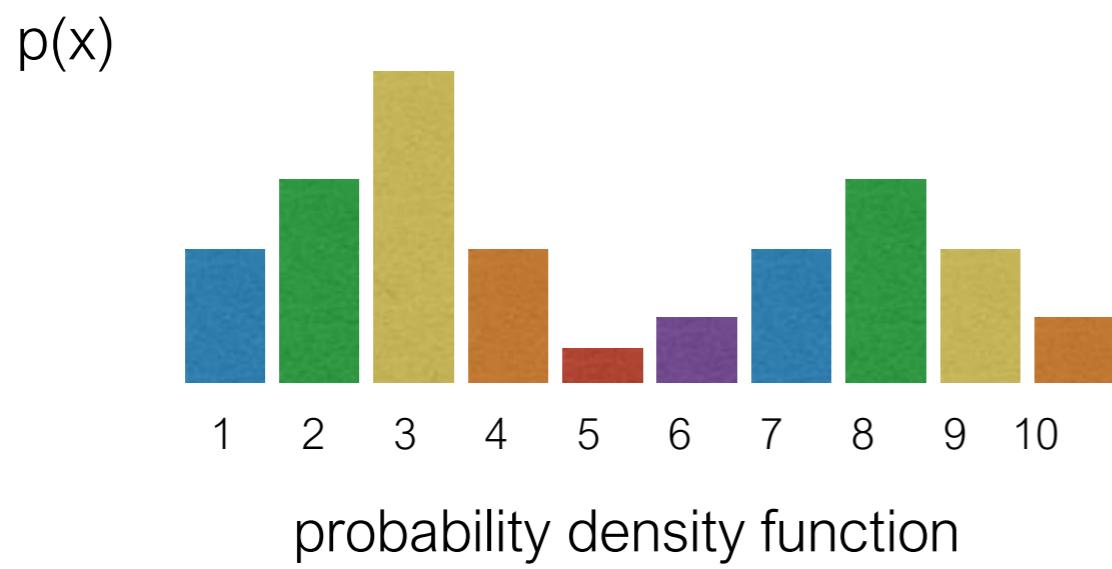
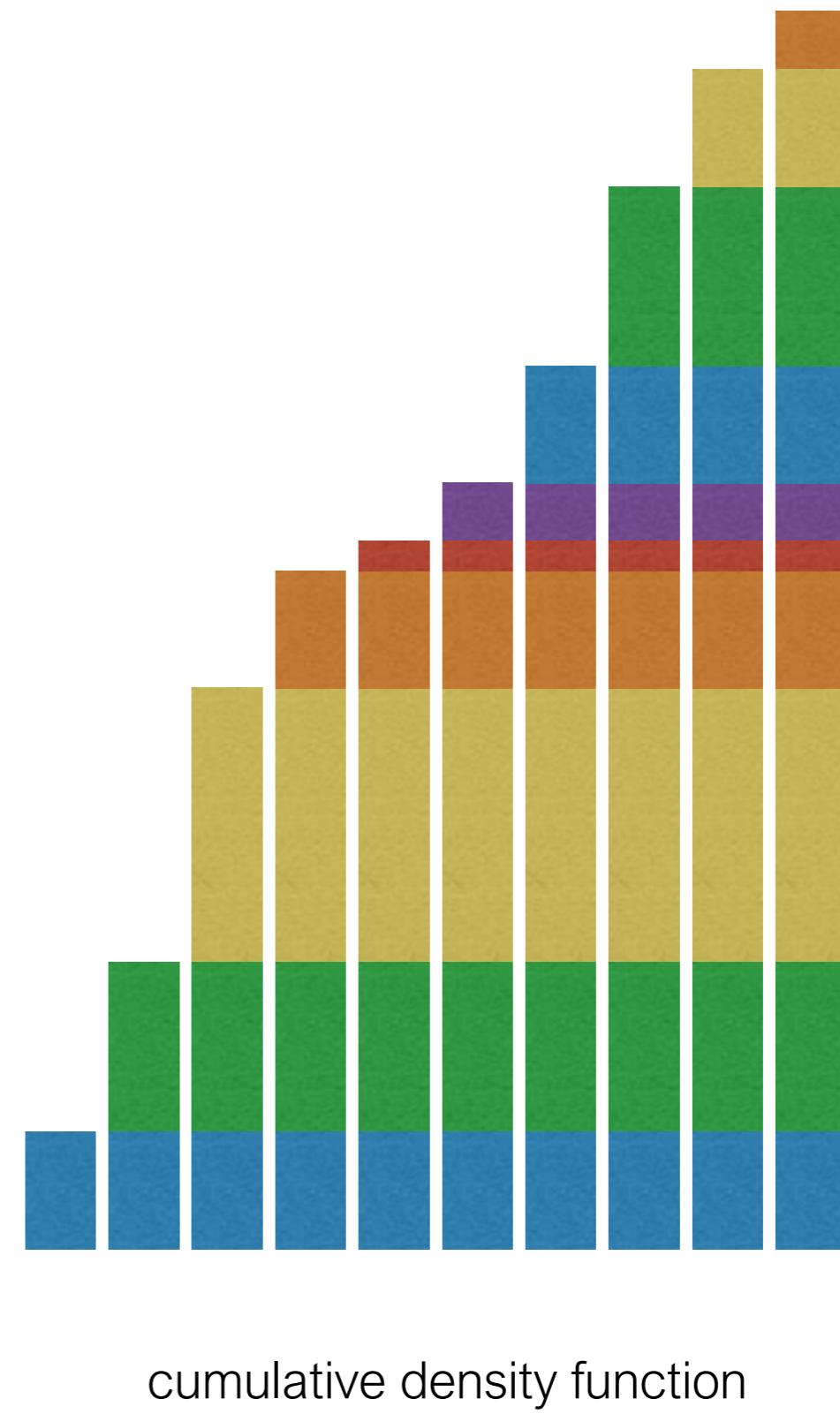
Kernel Density Estimation

A method to approximate an underlying PDF from samples



Put 'bump' on every sample to approximate the PDF

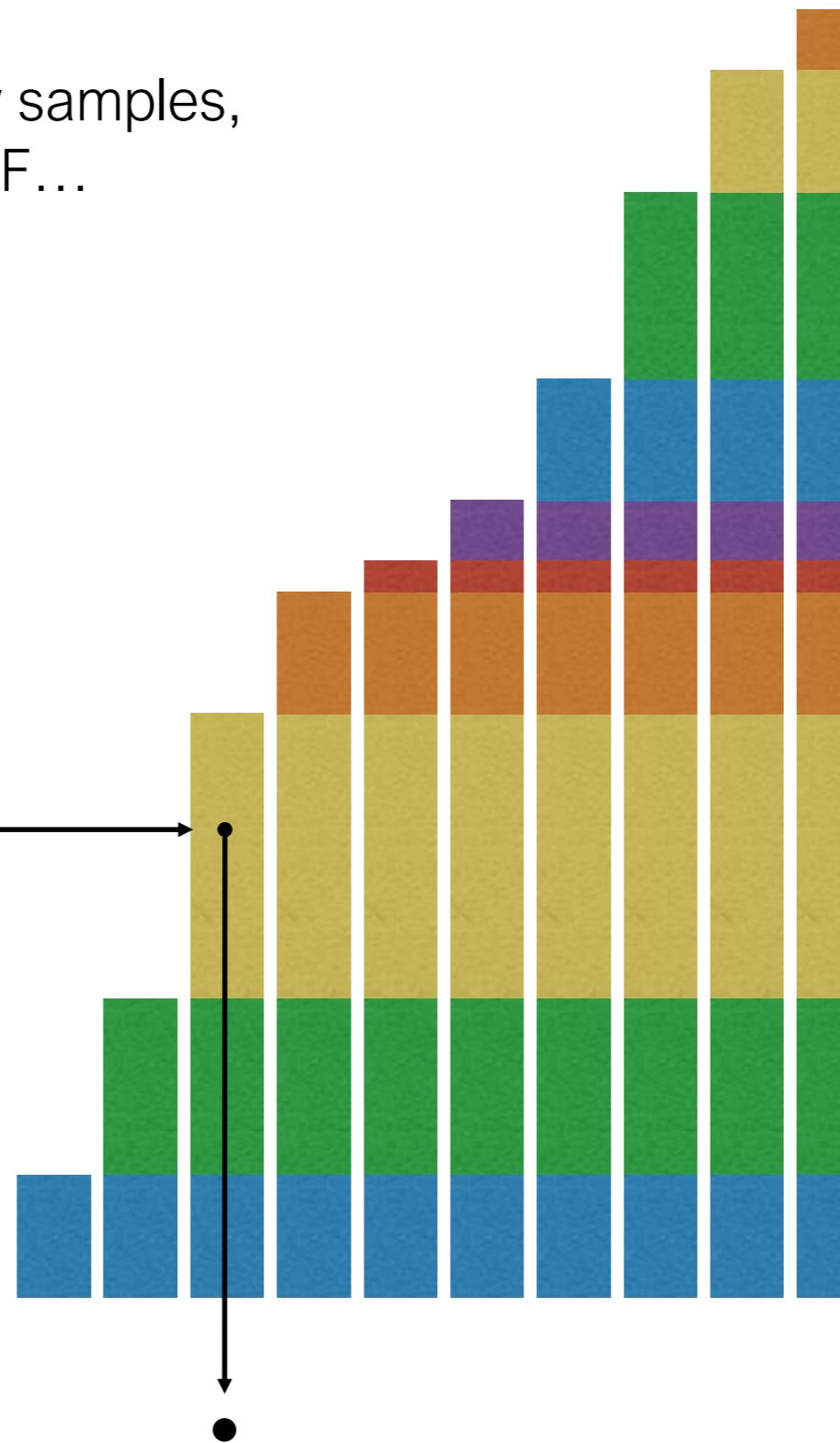
Say we have some hidden PDF...

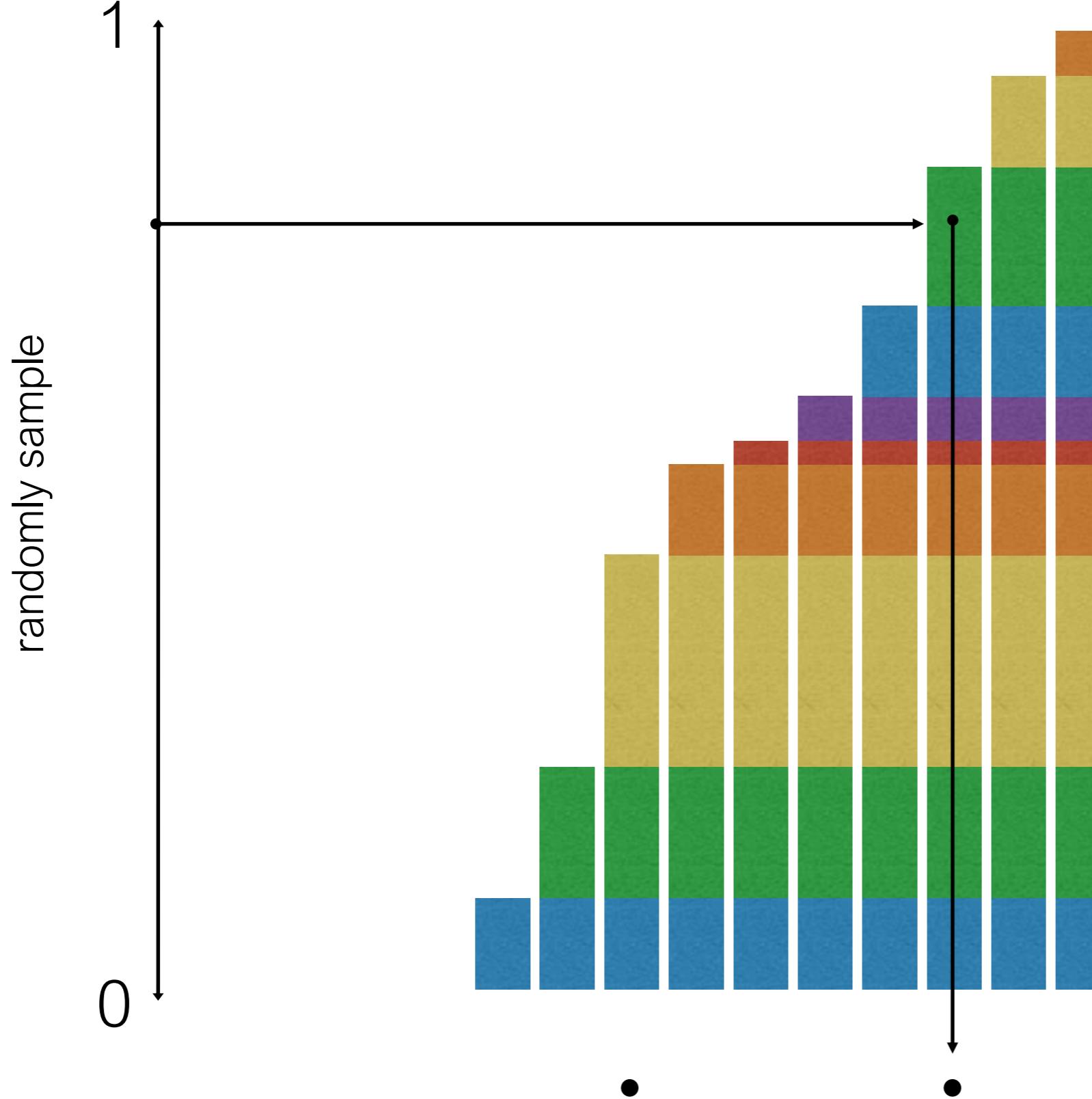


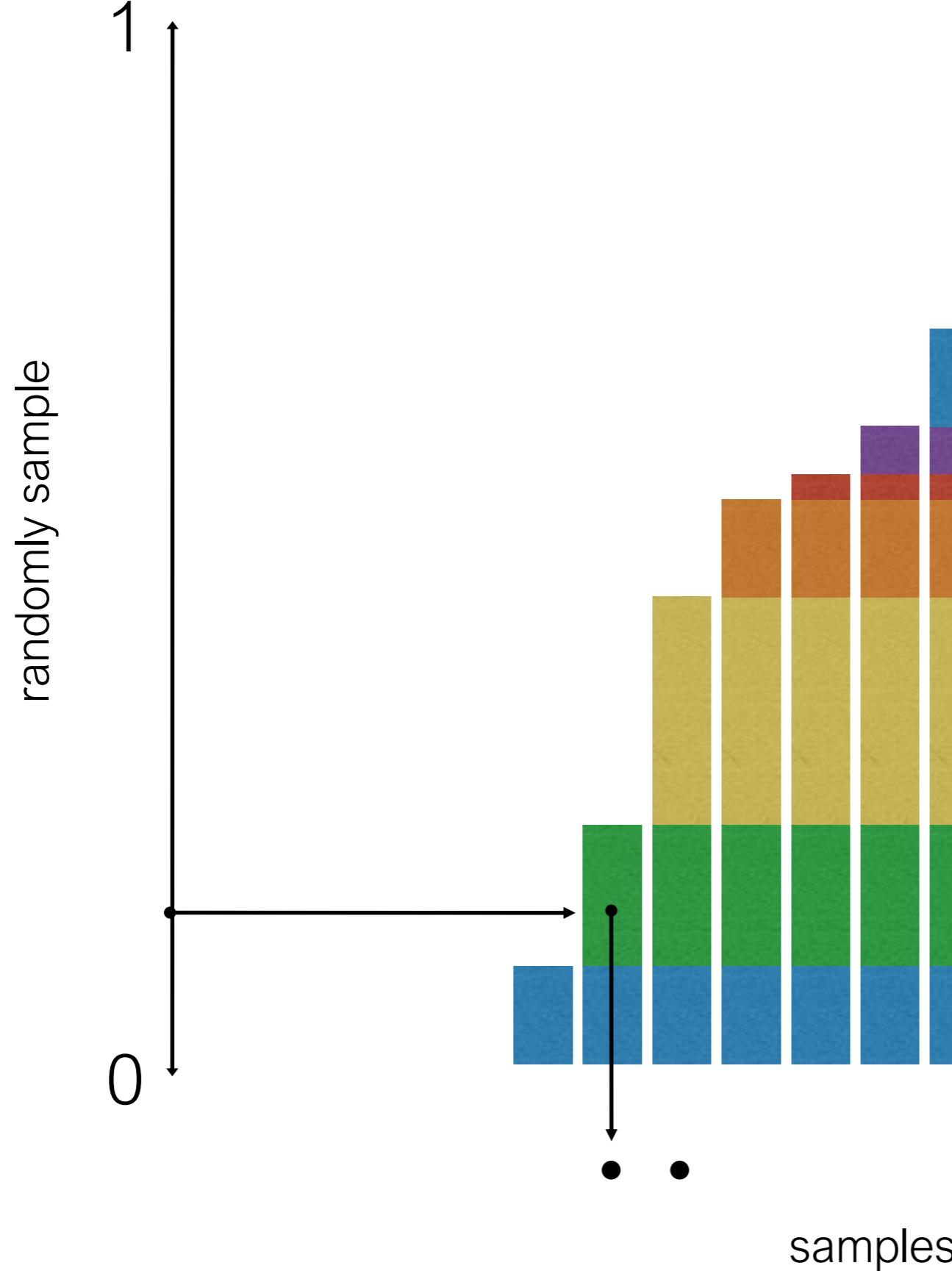
randomly sample

1

We can draw samples,
using the CDF...



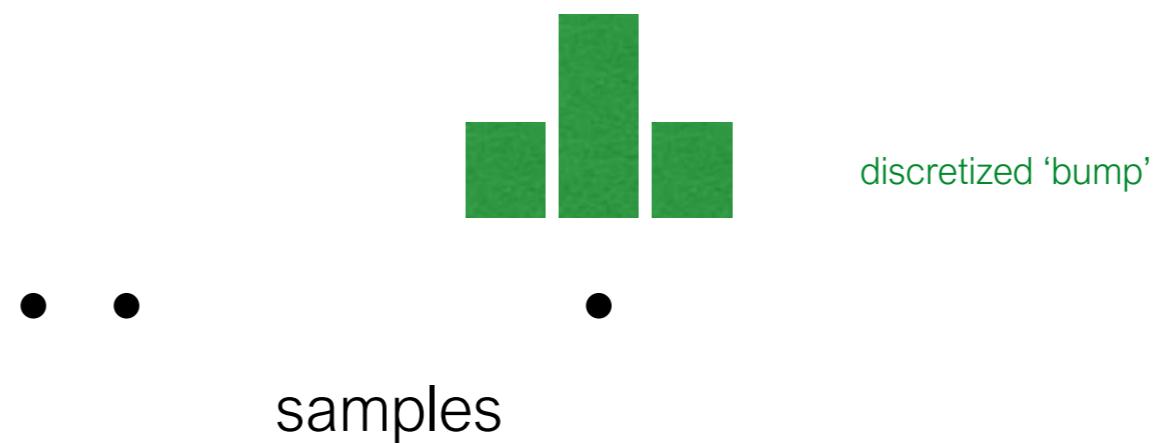




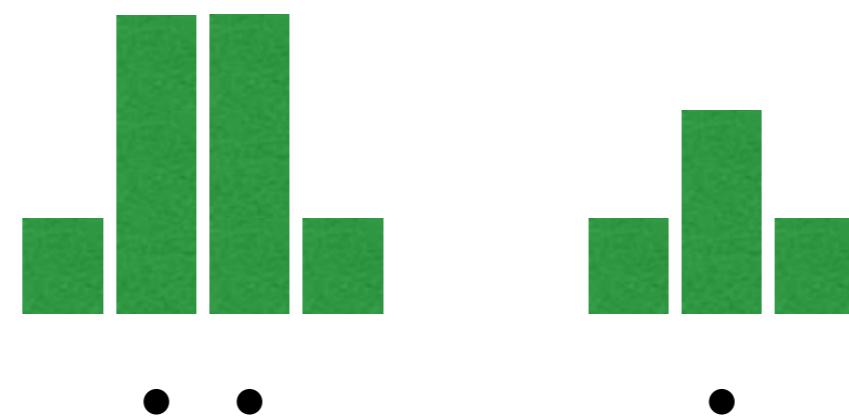
Now to estimate the ‘hidden’ PDF
place Gaussian bumps on the samples...

• • •

samples

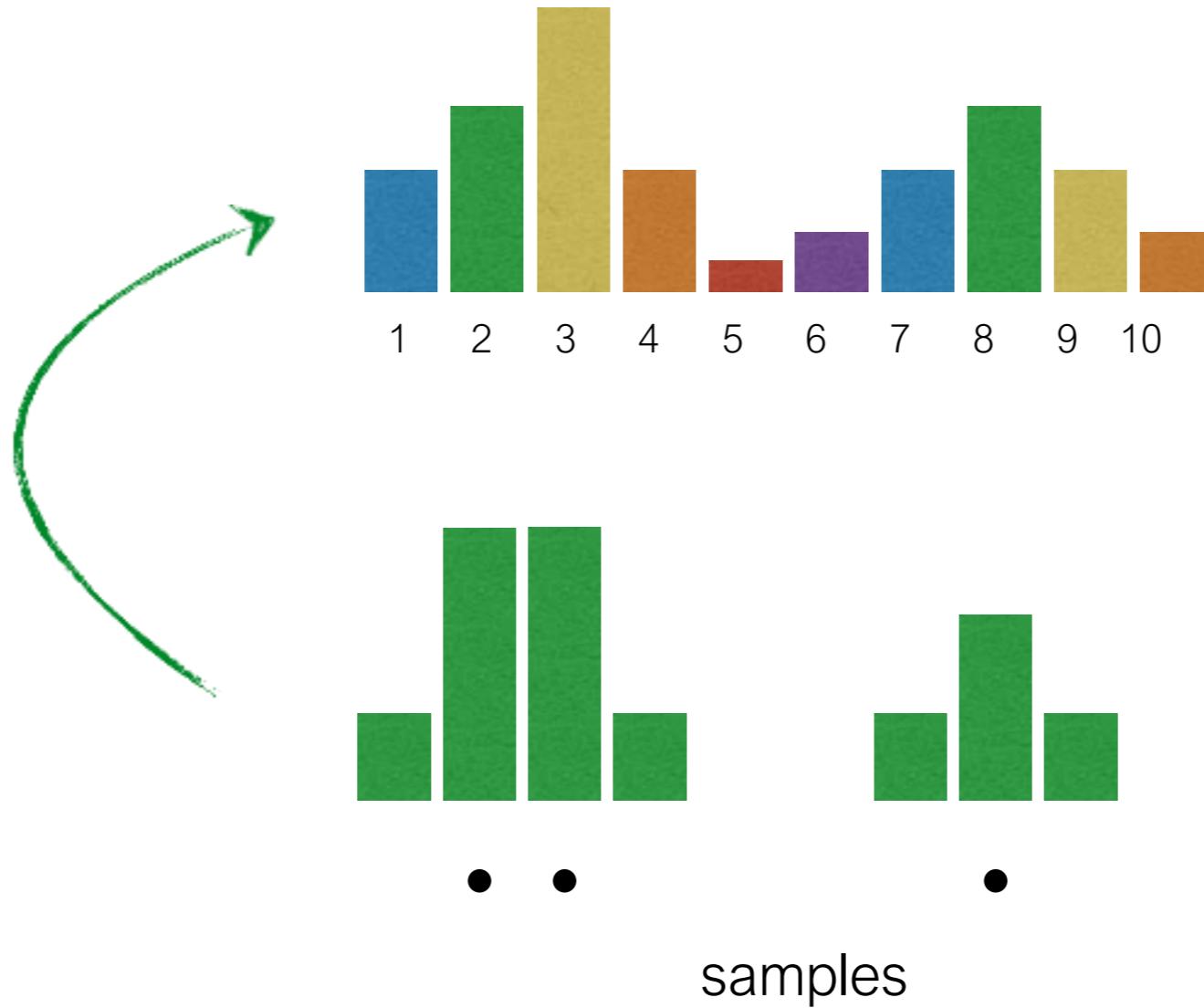


samples



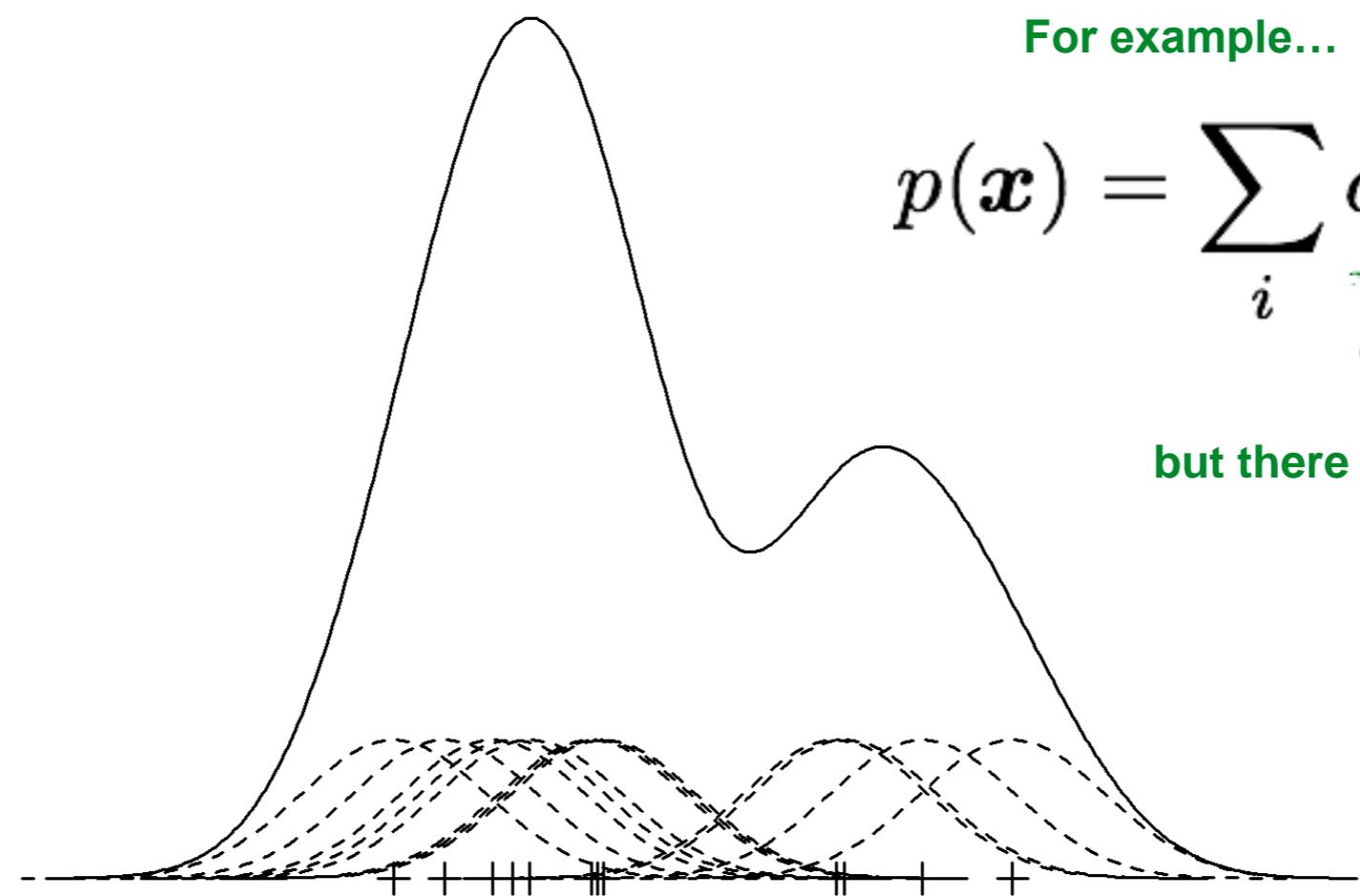
samples

Kernel Density
Estimate
approximates the
original PDF



Kernel Density Estimation

Approximate the underlying PDF from samples from it



For example...

$$p(\mathbf{x}) = \sum_i c_i e^{-\frac{(\mathbf{x}-\mathbf{x}_i)^2}{2\sigma^2}}$$

Gaussian 'bump' aka 'kernel'

but there are many types of kernels!

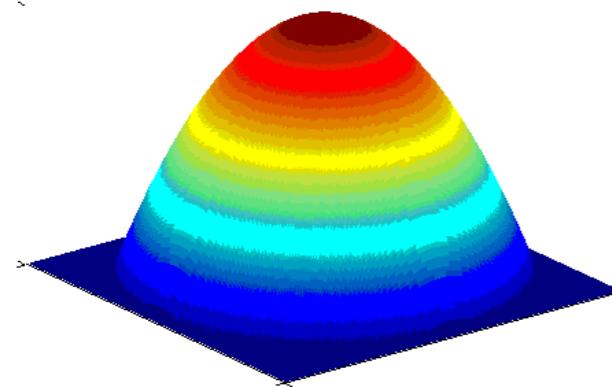
Put 'bump' on every sample to approximate the PDF

Kernel Function

$$K(\mathbf{x}, \mathbf{x}')$$

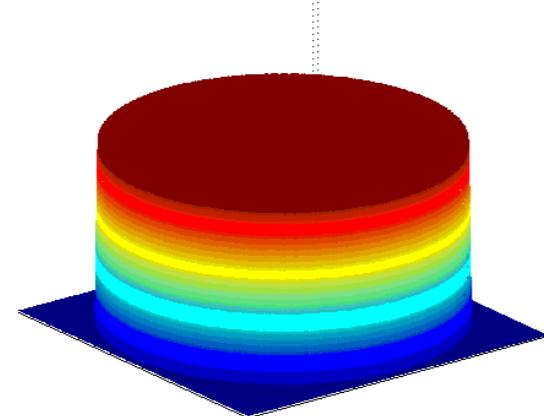
returns the ‘distance’ between two points

Epanechnikov kernel



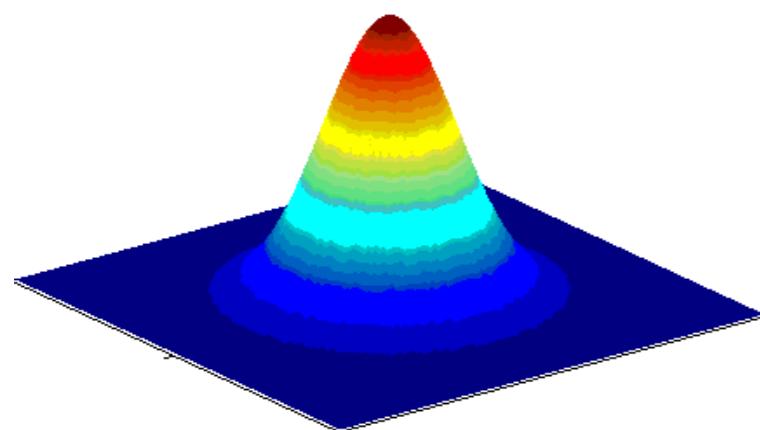
$$K(\mathbf{x}, \mathbf{x}') = \begin{cases} c(1 - \|\mathbf{x} - \mathbf{x}'\|^2) & \|\mathbf{x} - \mathbf{x}'\|^2 \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform kernel



$$K(\mathbf{x}, \mathbf{x}') = \begin{cases} c & \|\mathbf{x} - \mathbf{x}'\|^2 \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal kernel



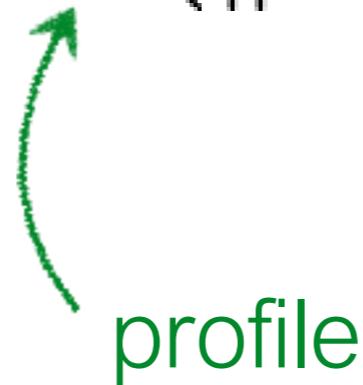
$$K(\mathbf{x}, \mathbf{x}') = c \exp\left(\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

These are all radially symmetric kernels

Radially symmetric kernels

...can be written in terms of its *profile*

$$K(\mathbf{x}, \mathbf{x}') = c \cdot k(\|\mathbf{x} - \mathbf{x}'\|^2)$$



Connecting KDE and the Mean Shift Algorithm

Mean-Shift Tracking

Given a set of points:

$$\{\mathbf{x}_s\}_{s=1}^S \quad \mathbf{x}_s \in \mathcal{R}^d$$

and a kernel:

$$K(\mathbf{x}, \mathbf{x}')$$

Find the mean sample point:

$$\mathbf{\bar{x}}$$

Mean-Shift Algorithm

Initialize \mathbf{x} place we start

While $v(\mathbf{x}) > \epsilon$ shift values becomes really small

1. Compute mean-shift

$$m(\mathbf{x}) = \frac{\sum_s K(\mathbf{x}, \mathbf{x}_s) \mathbf{x}_s}{\sum_s K(\mathbf{x}, \mathbf{x}_s)}$$
compute the 'mean'

$$v(\mathbf{x}) = m(\mathbf{x}) - \mathbf{x}$$
compute the 'shift'

2. Update $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}(\mathbf{x})$ update the point

Where does this algorithm come from?

Mean-Shift Algorithm

Initialize \mathbf{x}

While $v(\mathbf{x}) > \epsilon$

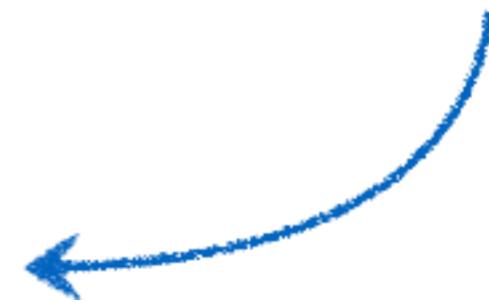
1. Compute mean-shift

$$m(\mathbf{x}) = \frac{\sum_s K(\mathbf{x}, \mathbf{x}_s) \mathbf{x}_s}{\sum_s K(\mathbf{x}, \mathbf{x}_s)}$$

$$v(\mathbf{x}) = m(\mathbf{x}) - \mathbf{x}$$

2. Update $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}(\mathbf{x})$

Where does this come from?



Where does this algorithm come from?

How is the KDE related to the mean shift algorithm?

Recall:

Kernel density estimate

(radially symmetric kernels)

$$P(\mathbf{x}) = \frac{1}{N} c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

can compute probability for any point using the KDE!

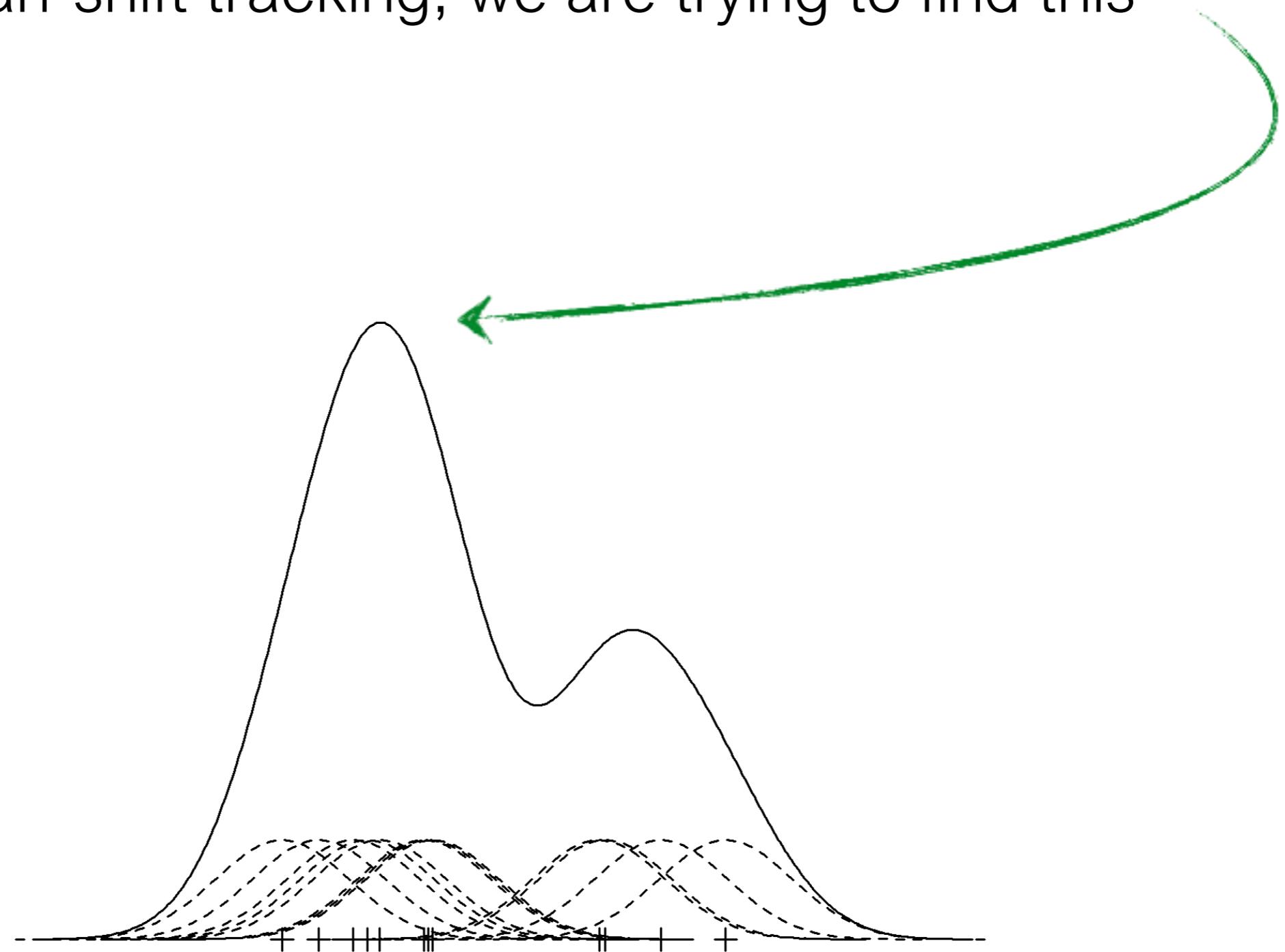
We can show that:

Gradient of the PDF is related to the mean shift vector

$$\nabla P(\mathbf{x}) \propto m(\mathbf{x})$$

The mean shift vector is a ‘step’ in the direction of the gradient of the KDE
mean-shift algorithm is maximizing the objective function

In mean-shift tracking, we are trying to find this



which means we are trying to...

We are trying to optimize this:

$$\mathbf{x} = \arg \max_{\mathbf{x}} P(\mathbf{x}) \quad \text{find the solution that has the highest probability}$$

$$= \arg \max_{\mathbf{x}} \frac{1}{N} c \sum_n k(||\mathbf{x} - \mathbf{x}_n||^2)$$

↑
usually non-linear ↑
non-parametric

How do we optimize this non-linear function?

We are trying to optimize this:

$$\begin{aligned}\mathbf{x} &= \arg \max_{\mathbf{x}} P(\mathbf{x}) \\ &= \arg \max_{\mathbf{x}} \frac{1}{N} c \sum_n k(||\mathbf{x} - \mathbf{x}_n||^2)\end{aligned}$$

↑
usually non-linear ↑
non-parametric

How do we optimize this non-linear function?

compute partial derivatives ... **gradient descent!**

$$P(\mathbf{x}) = \frac{1}{N} c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Compute the gradient

$$P(\mathbf{x}) = \frac{1}{N} c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N} c \sum_n \nabla k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Expand the gradient (algebra)

$$P(\mathbf{x}) = \frac{1}{N} c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N} c \sum_n \nabla k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Expand gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n (\mathbf{x} - \mathbf{x}_n) k'(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

$$P(\mathbf{x}) = \frac{1}{N}c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N}c \sum_n \nabla k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Expand gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N}2c \sum_n (\mathbf{x} - \mathbf{x}_n) k'(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Call the gradient of the kernel function g

$$k'(\cdot) = -g(\cdot)$$

$$P(\mathbf{x}) = \frac{1}{N} c \sum_n k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N} c \sum_n \nabla k(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

Expand gradient

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n (\mathbf{x} - \mathbf{x}_n) k'(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

change of notation
(kernel-shadow pairs)

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n (\mathbf{x}_n - \mathbf{x}) g(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

keep this in memory: $k'(\cdot) = -g(\cdot)$

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n (\mathbf{x}_n - \mathbf{x}) g(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

multiply it out

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n \mathbf{x}_n g(\|\mathbf{x} - \mathbf{x}_n\|^2) - \frac{1}{N} 2c \sum_n \mathbf{x} g(\|\mathbf{x} - \mathbf{x}_n\|^2)$$

too long!
(use short hand notation)

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n \mathbf{x}_n g_n - \frac{1}{N} 2c \sum_n \mathbf{x} g_n$$

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n \mathbf{x}_n g_n - \frac{1}{N} 2c \sum_n \mathbf{x} g_n$$

multiply by one!

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n \mathbf{x}_n g_n \left(\frac{\sum_n g_n}{\sum_n g_n} \right) - \frac{1}{N} 2c \sum_n \mathbf{x} g_n$$

collecting like terms...

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n g_n \left(\frac{\sum_n \mathbf{x}_n g_n}{\sum_n g_n} - \mathbf{x} \right)$$

What's happening here?

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_n g_n \left(\frac{\sum_n \mathbf{x}_n g_n}{\sum_n g_n} - \mathbf{x} \right)$$

The **mean shift** is a ‘step’ in the direction of the gradient of the KDE

$$\text{Let } \mathbf{v}(\mathbf{x}) = \left(\frac{\sum_n \mathbf{x}_n g_n}{\sum_n g_n} - \mathbf{x} \right) = \frac{\nabla P(\mathbf{x})}{\frac{1}{N} 2c \sum_n g_n}$$

Can interpret this to be
gradient ascent with
data dependent step size

Mean-Shift Algorithm

Initialize \mathbf{x}

While $v(\mathbf{x}) > \epsilon$

1. Compute mean-shift

$$m(\mathbf{x}) = \frac{\sum_s K(\mathbf{x}, \mathbf{x}_s) \mathbf{x}_s}{\sum_s K(\mathbf{x}, \mathbf{x}_s)}$$

$$v(\mathbf{x}) = m(\mathbf{x}) - \mathbf{x}$$

2. Update $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}(\mathbf{x})$

gradient with
adaptive step size

$$\frac{\nabla P(\mathbf{x})}{\frac{1}{N} 2c \sum_n g_n}$$

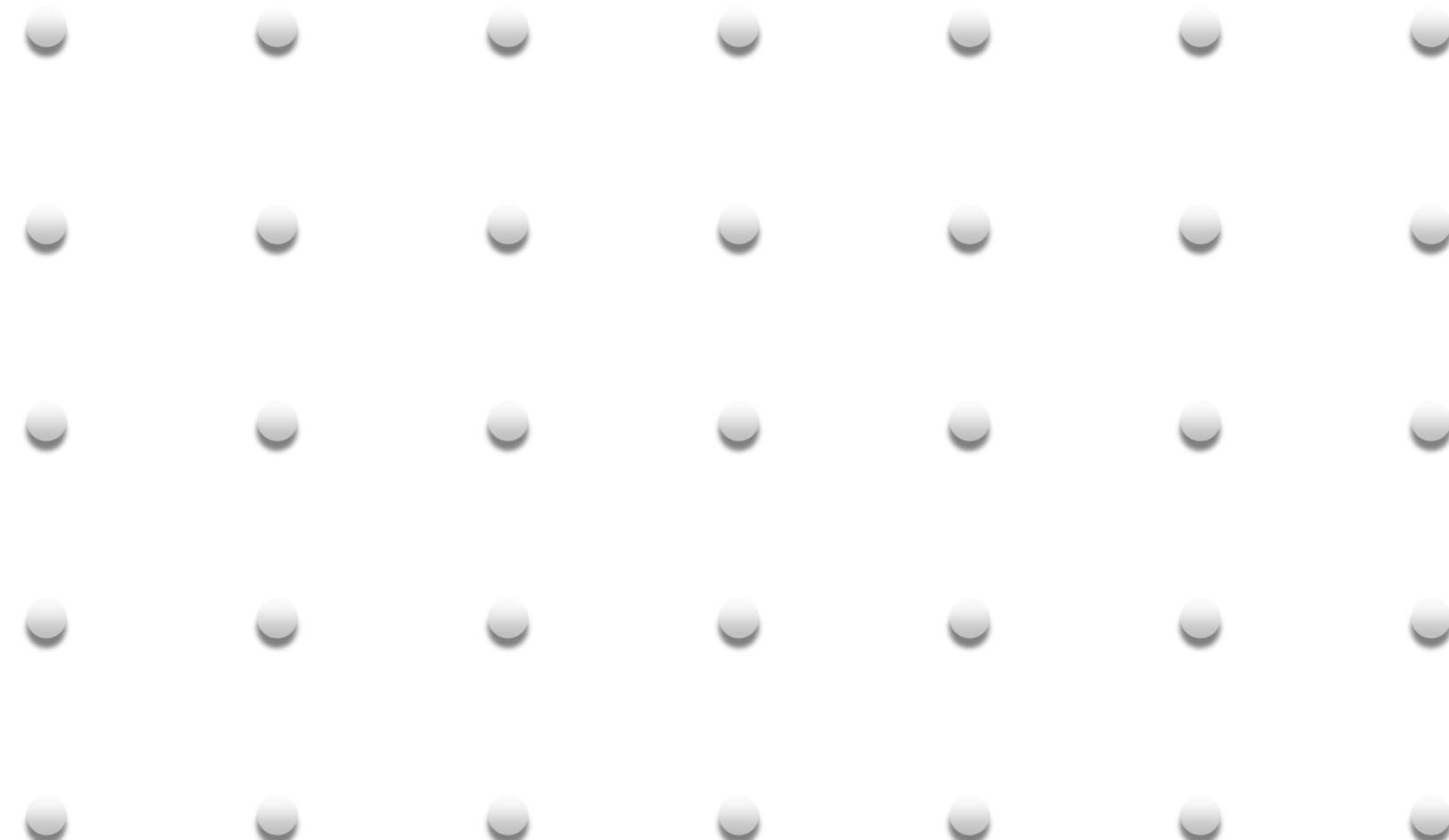
Just 5 lines of code!

Everything up to now has been about distributions over samples...

Mean-shift tracker

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!



What can we do?

same

Consider a set of points: $\{\mathbf{x}_s\}_{s=1}^S \quad \mathbf{x}_s \in \mathcal{R}^d$

Associated weights: $w(\mathbf{x}_s)$

Sample mean:

$$m(\mathbf{x}) = \frac{\sum_s K(\mathbf{x}, \mathbf{x}_s) w(\mathbf{x}_s) \mathbf{x}_s}{\sum_s K(\mathbf{x}, \mathbf{x}_s) w(\mathbf{x}_s)}$$

same

Mean shift:

$$m(\mathbf{x}) - \mathbf{x}$$

Mean-Shift Algorithm

(for images)

Initialize \mathbf{x}

While $v(\mathbf{x}) > \epsilon$

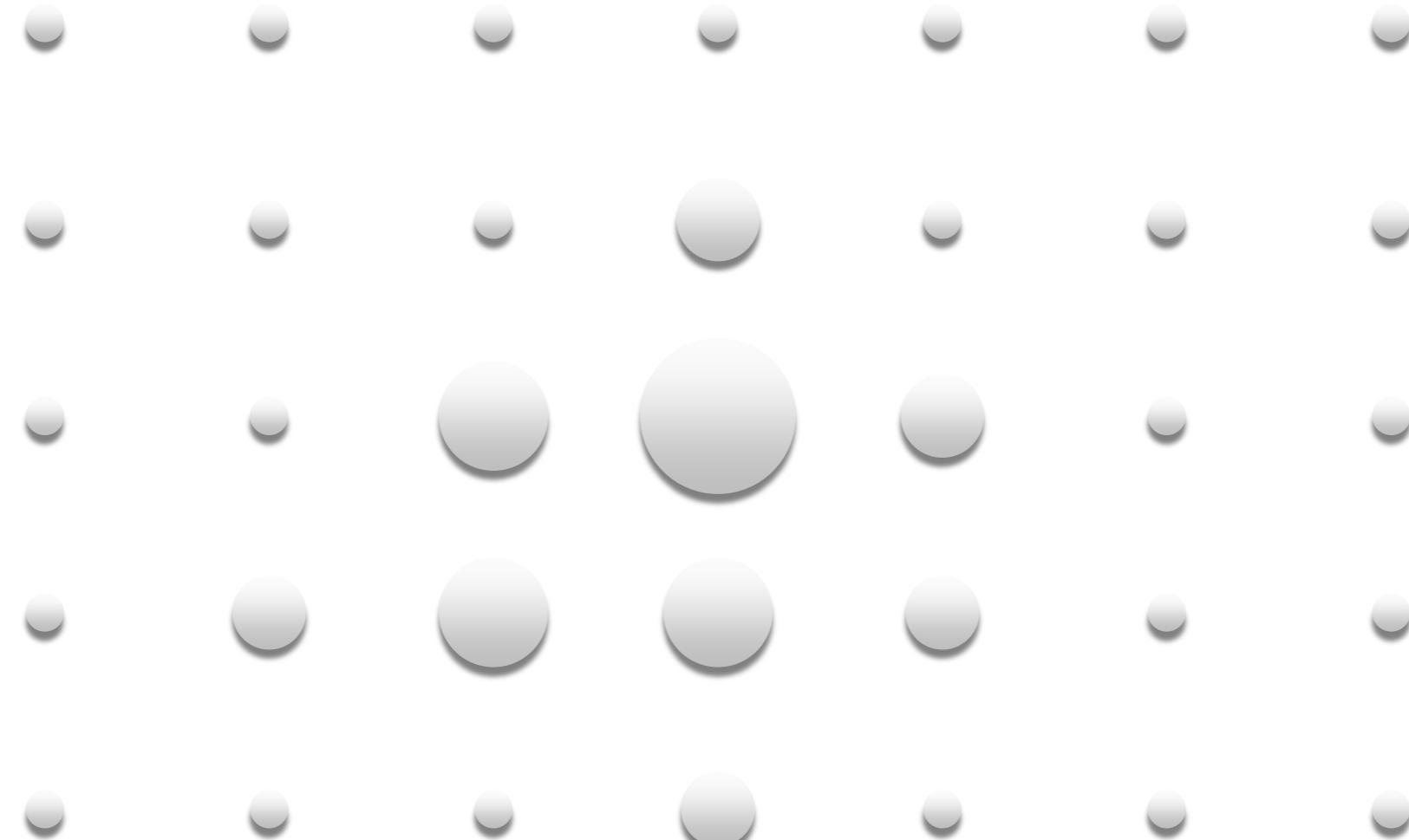
1. Compute mean-shift

$$m(\mathbf{x}) = \frac{\sum_s K(\mathbf{x}, \mathbf{x}_s) \mathbf{w}(\mathbf{x}_s) \mathbf{x}_s}{\sum_s K(\mathbf{x}, \mathbf{x}_s) \mathbf{w}(\mathbf{x}_s)}$$

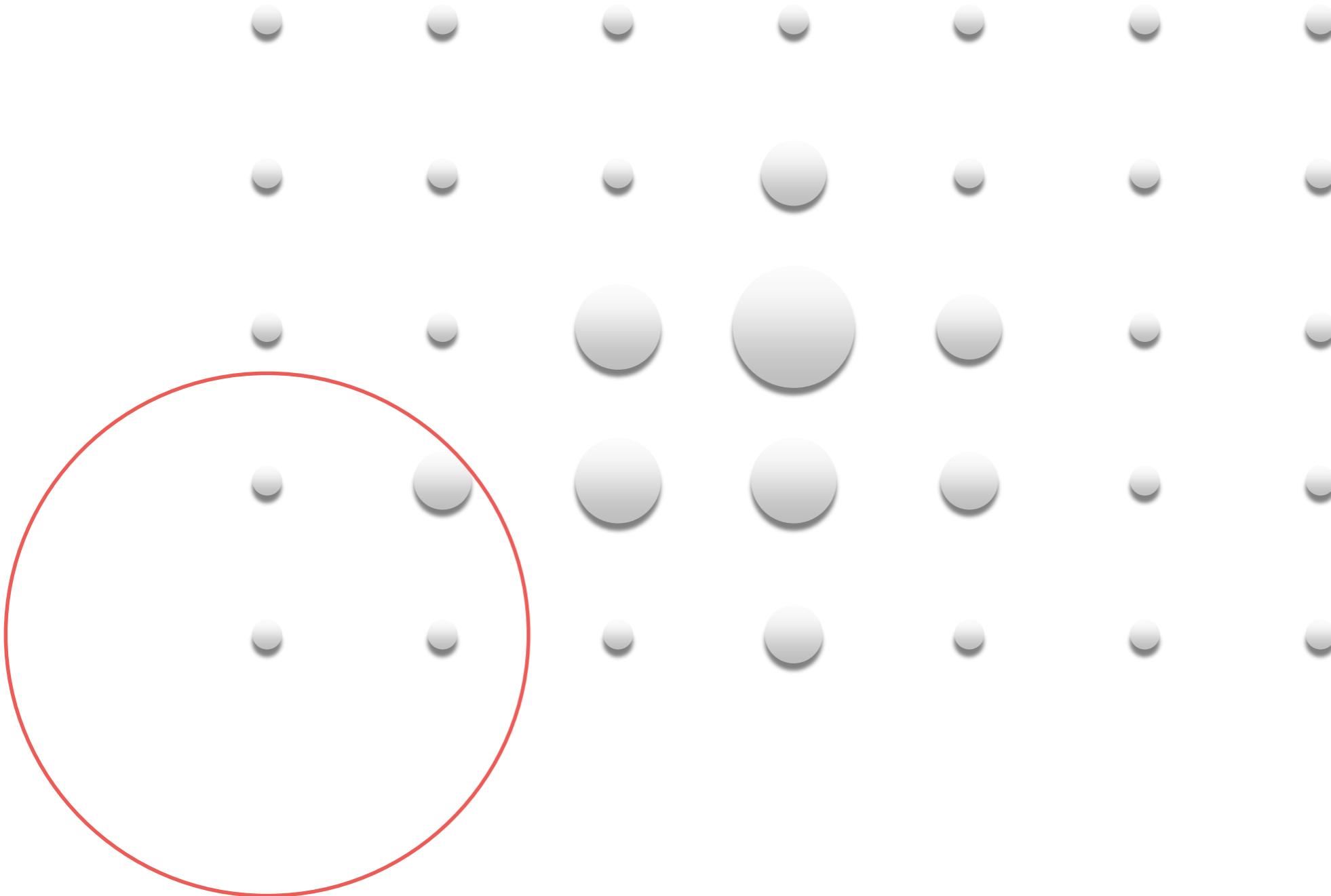
$$v(\mathbf{x}) = m(\mathbf{x}) - \mathbf{x}$$

2. Update $\mathbf{x} \leftarrow \mathbf{x} + \mathbf{v}(\mathbf{x})$

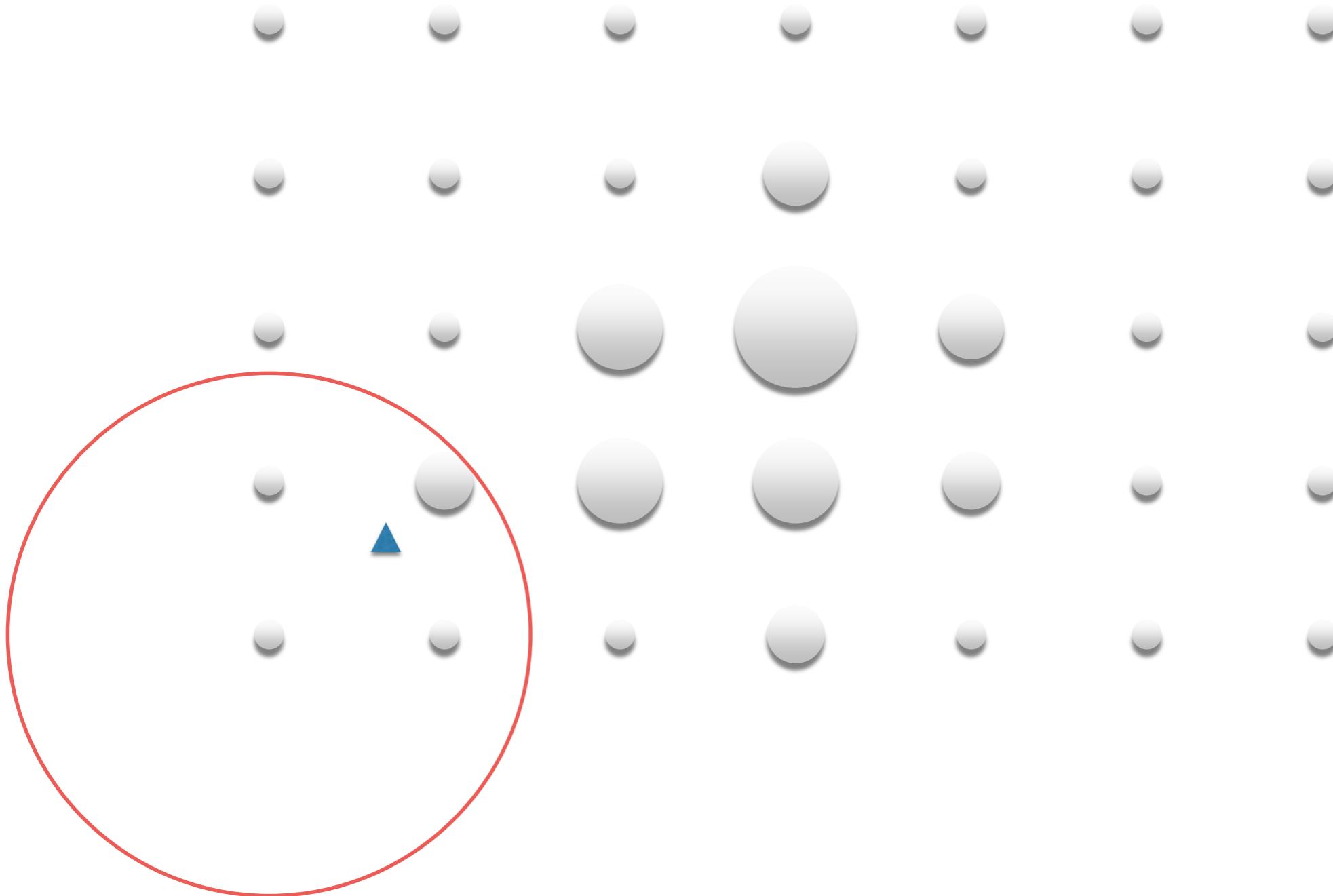
For images, each pixel is point with a weight



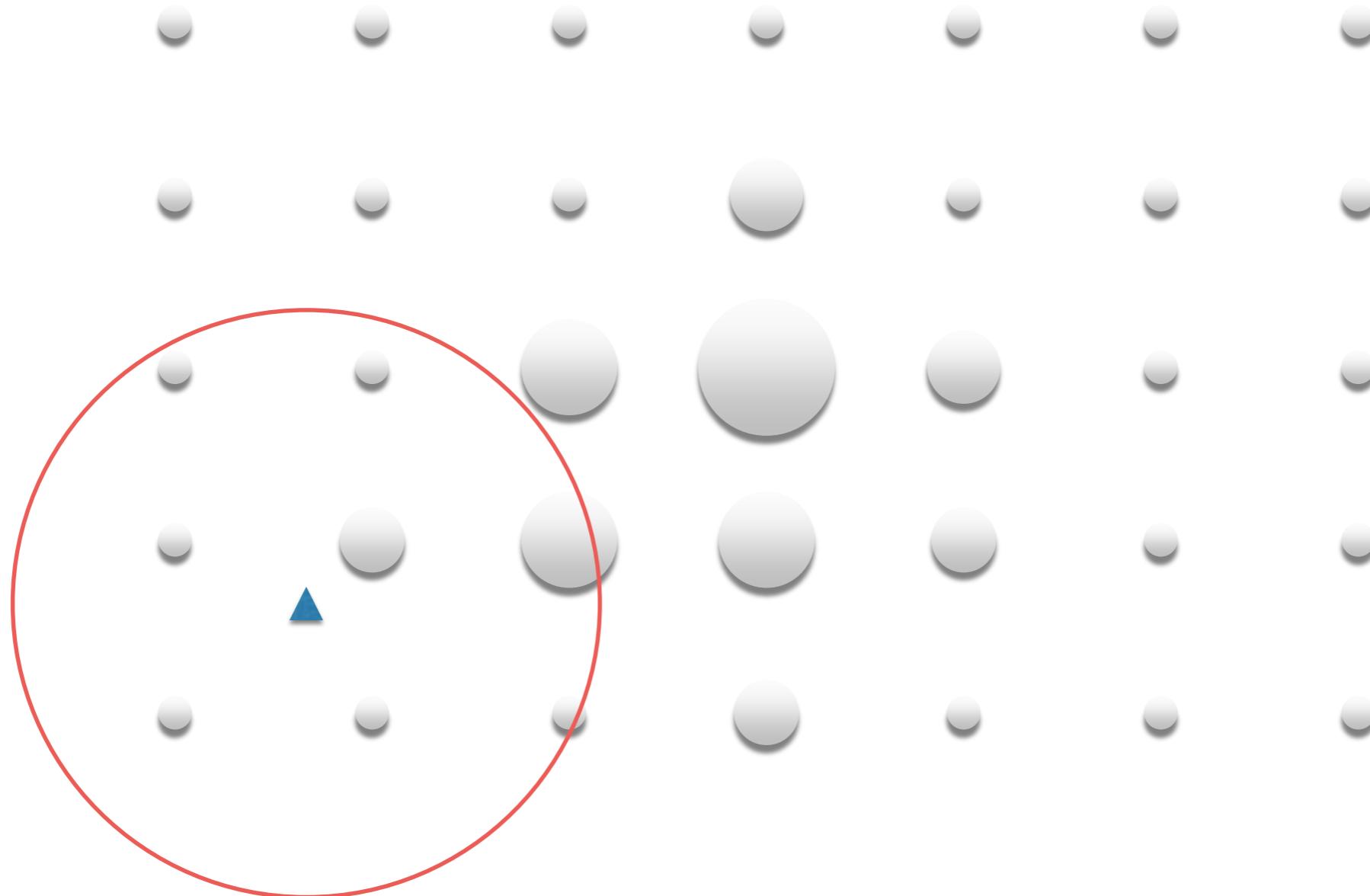
For images, each pixel is point with a weight



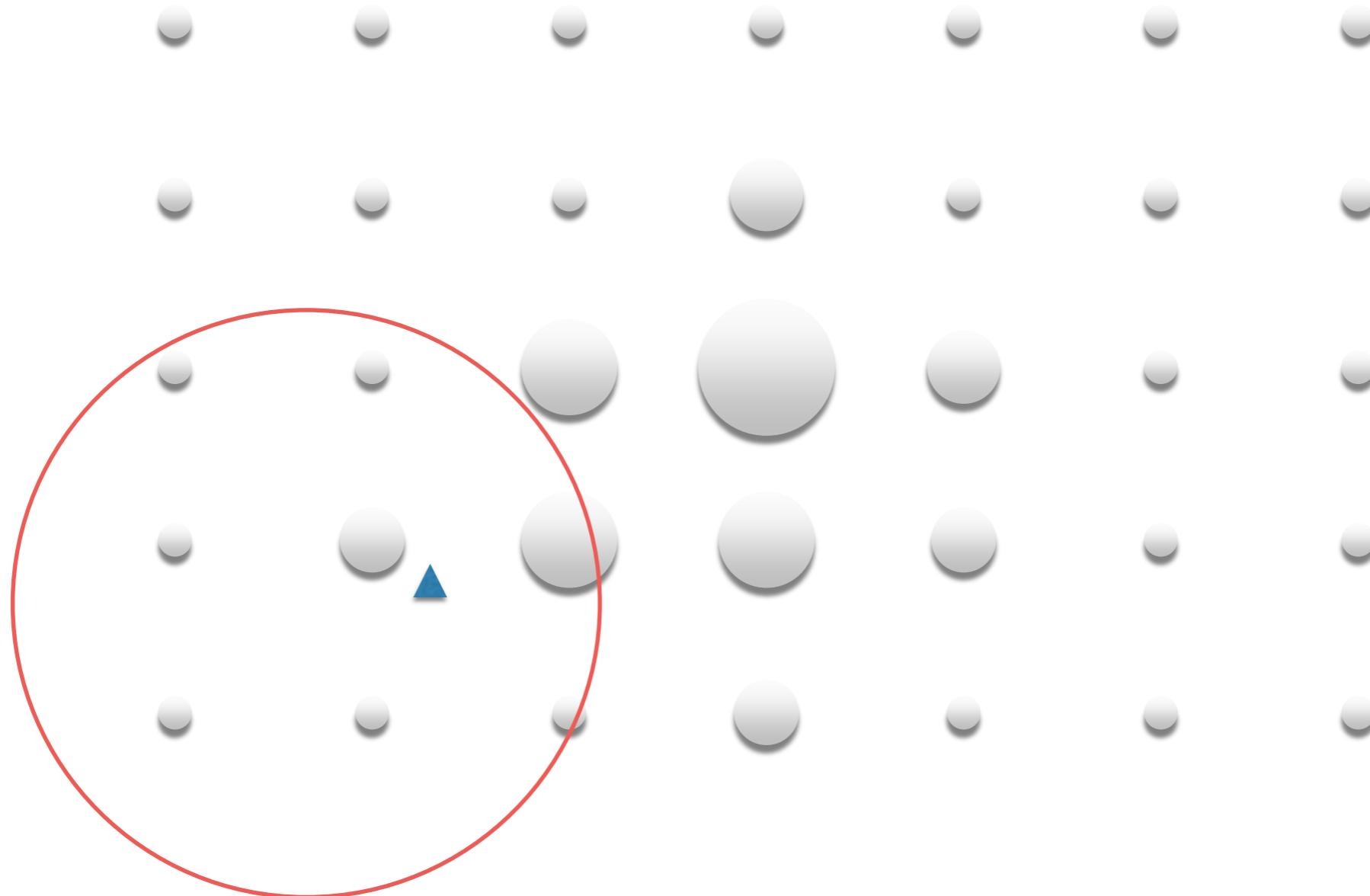
For images, each pixel is point with a weight



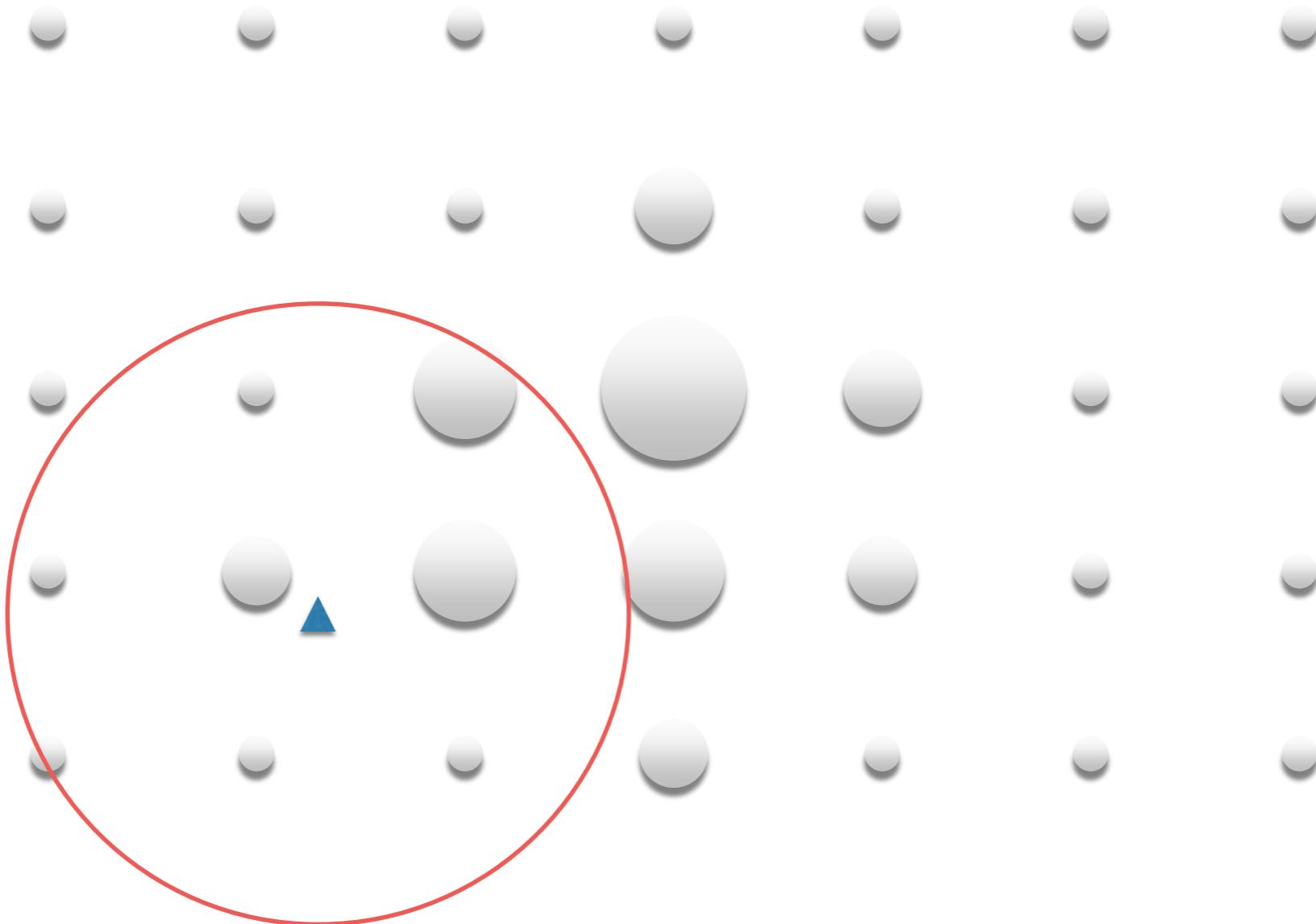
For images, each pixel is point with a weight



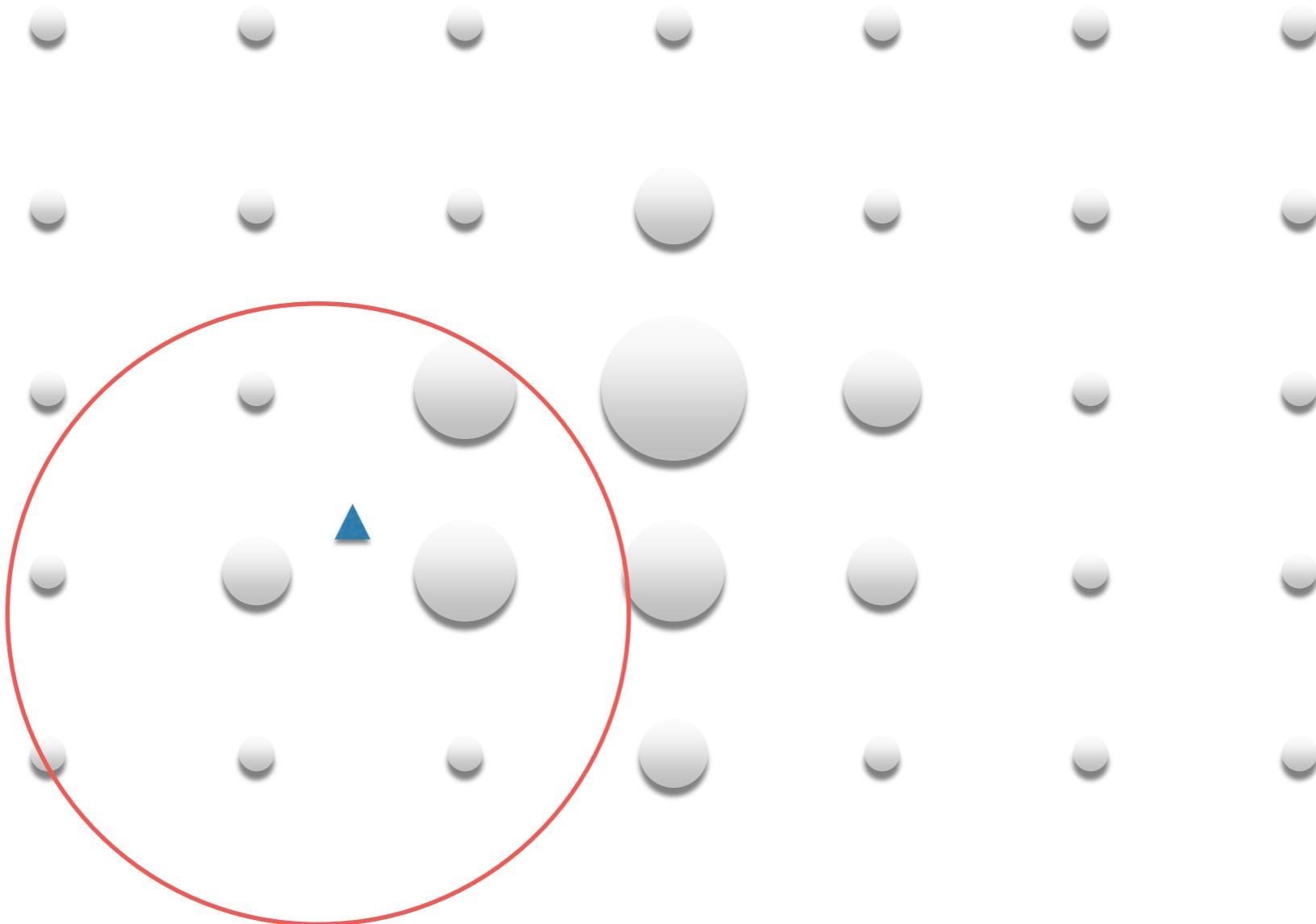
For images, each pixel is point with a weight



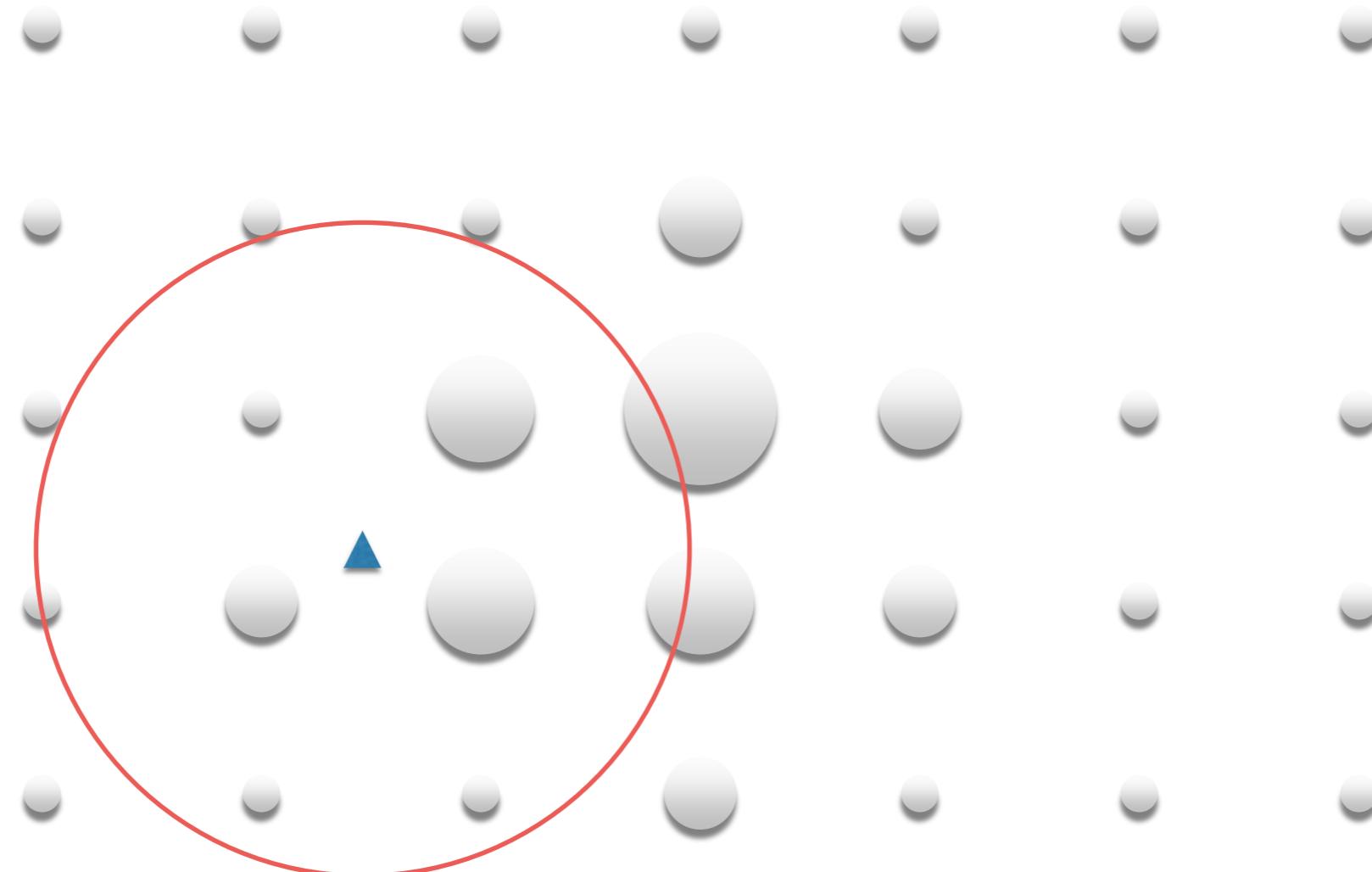
For images, each pixel is point with a weight



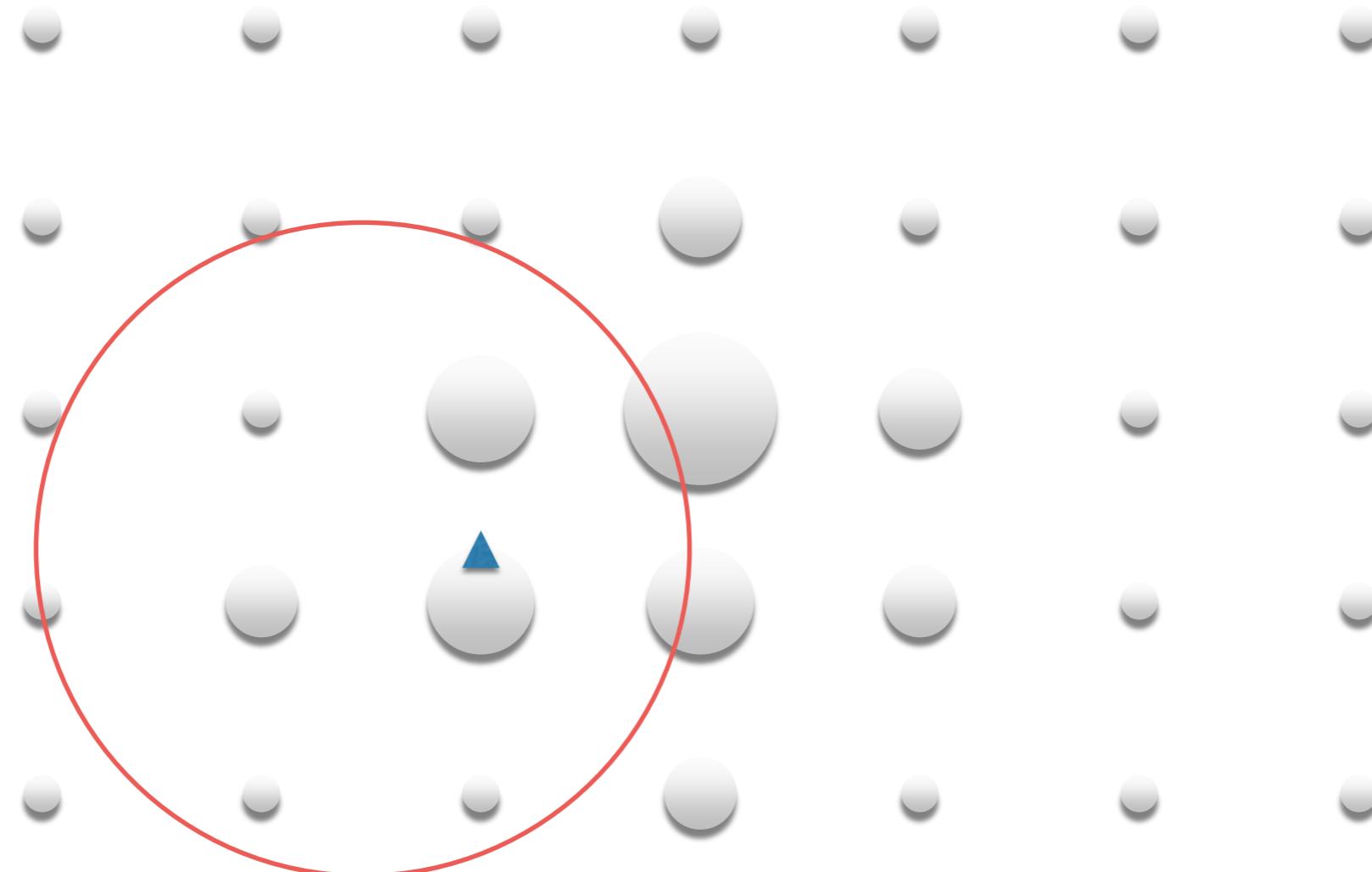
For images, each pixel is point with a weight



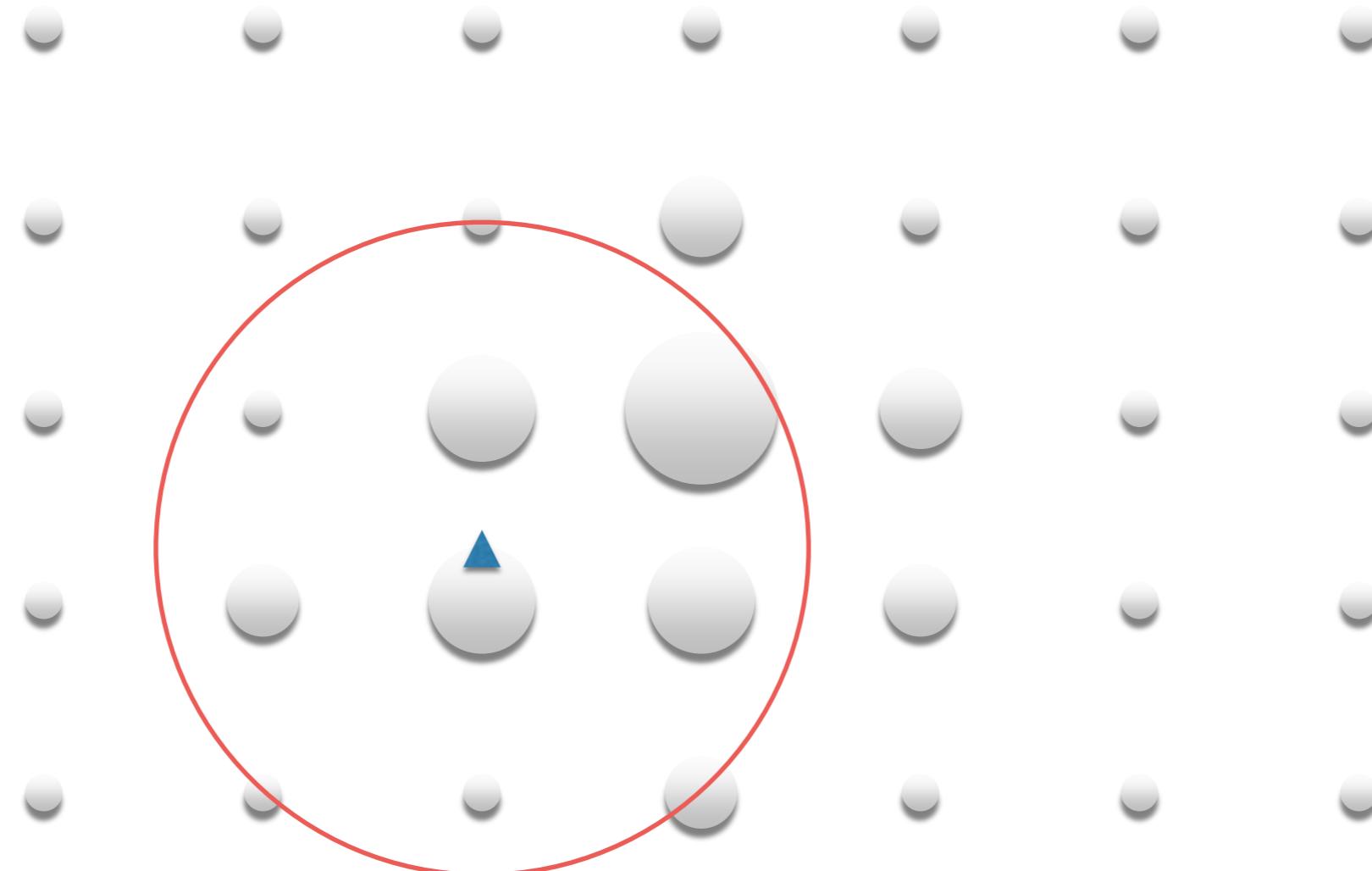
For images, each pixel is point with a weight



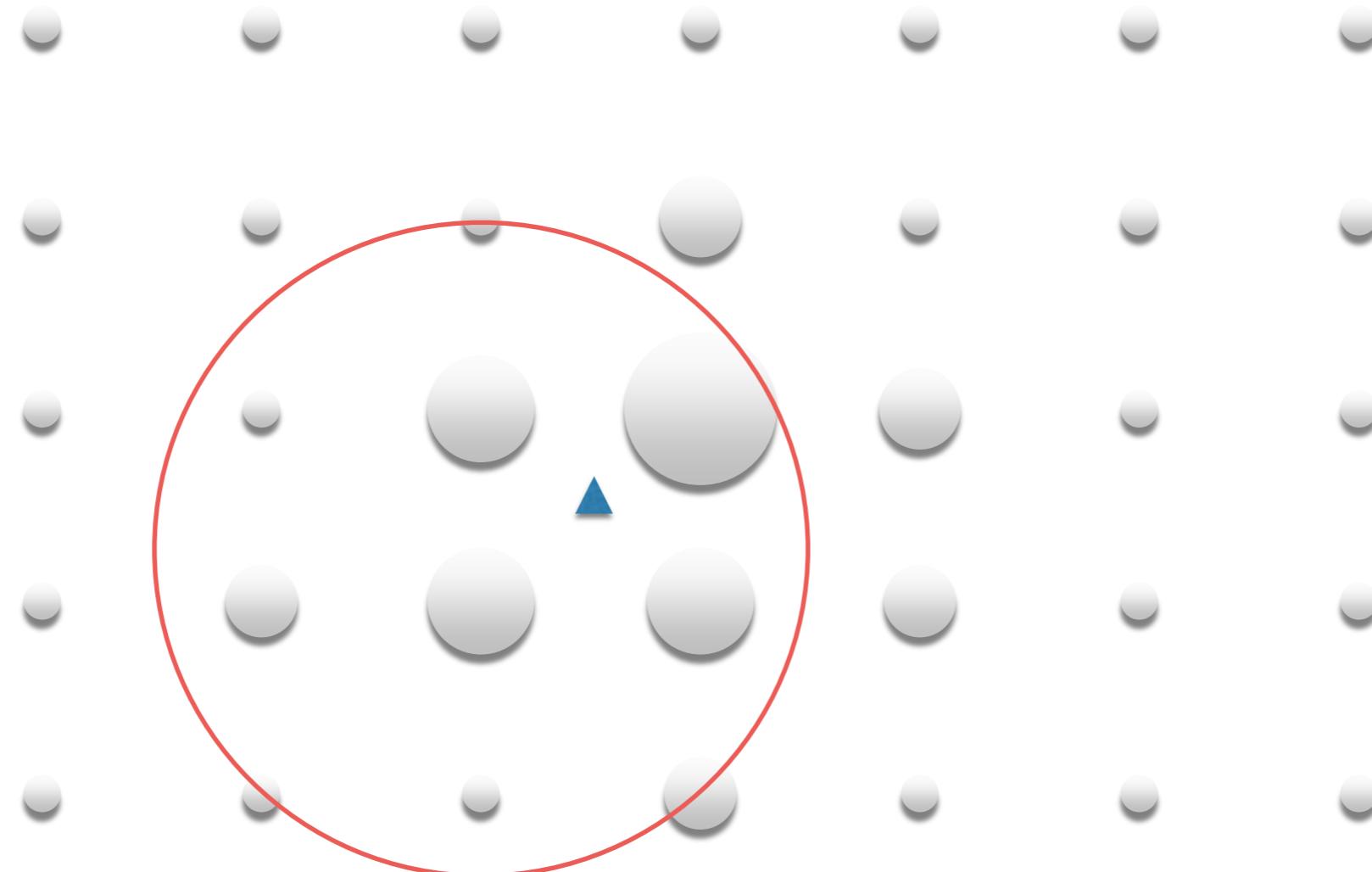
For images, each pixel is point with a weight



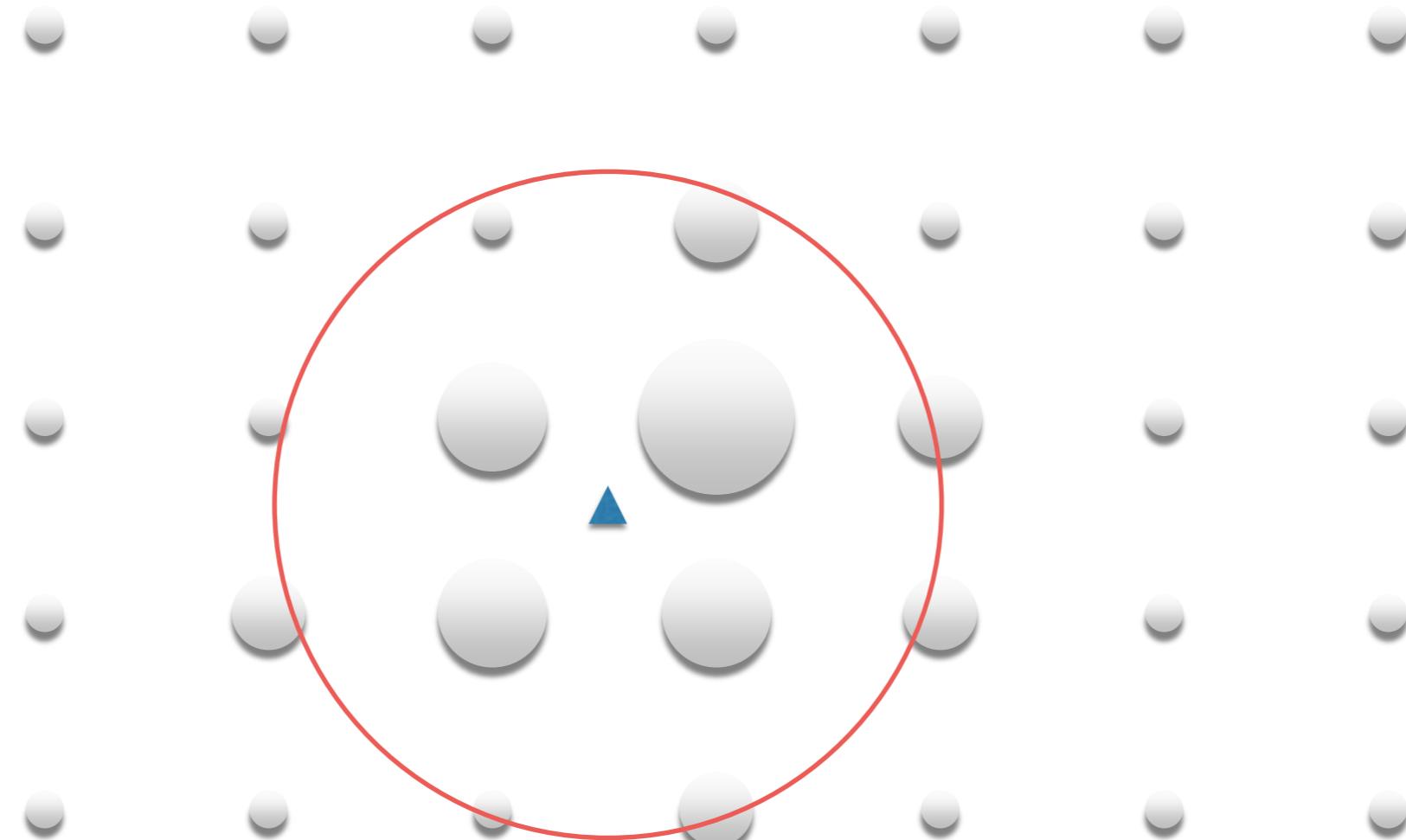
For images, each pixel is point with a weight



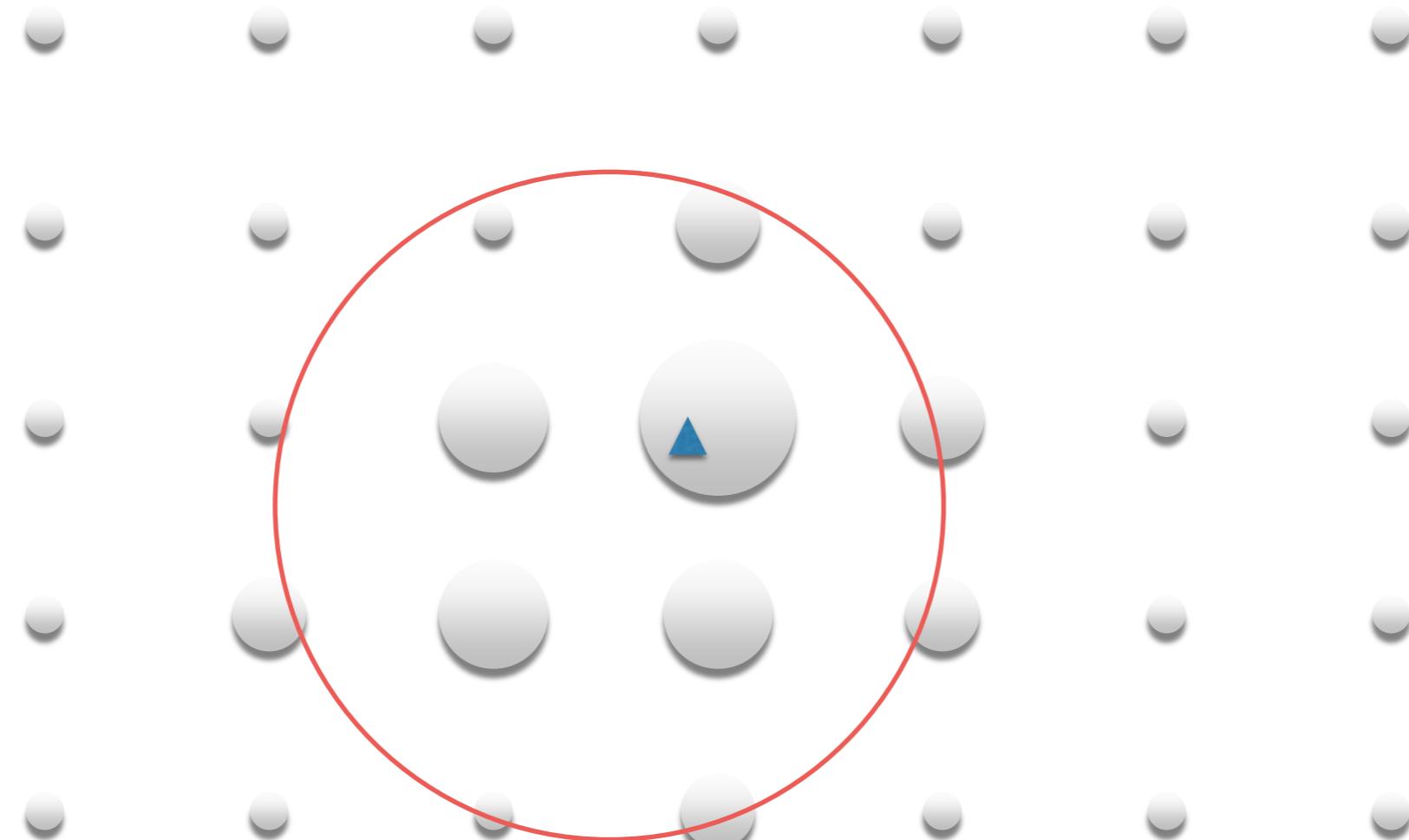
For images, each pixel is point with a weight



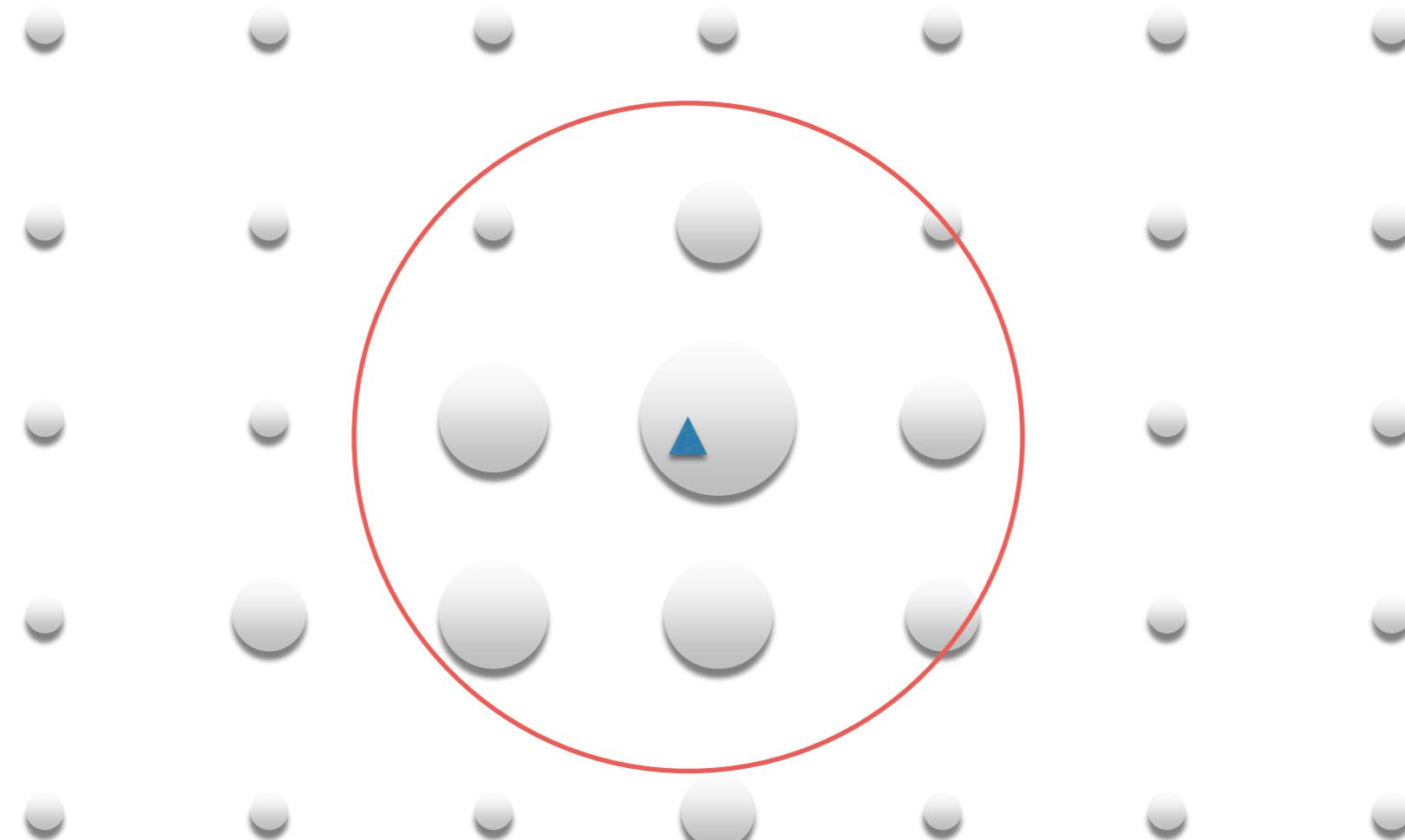
For images, each pixel is point with a weight



For images, each pixel is point with a weight

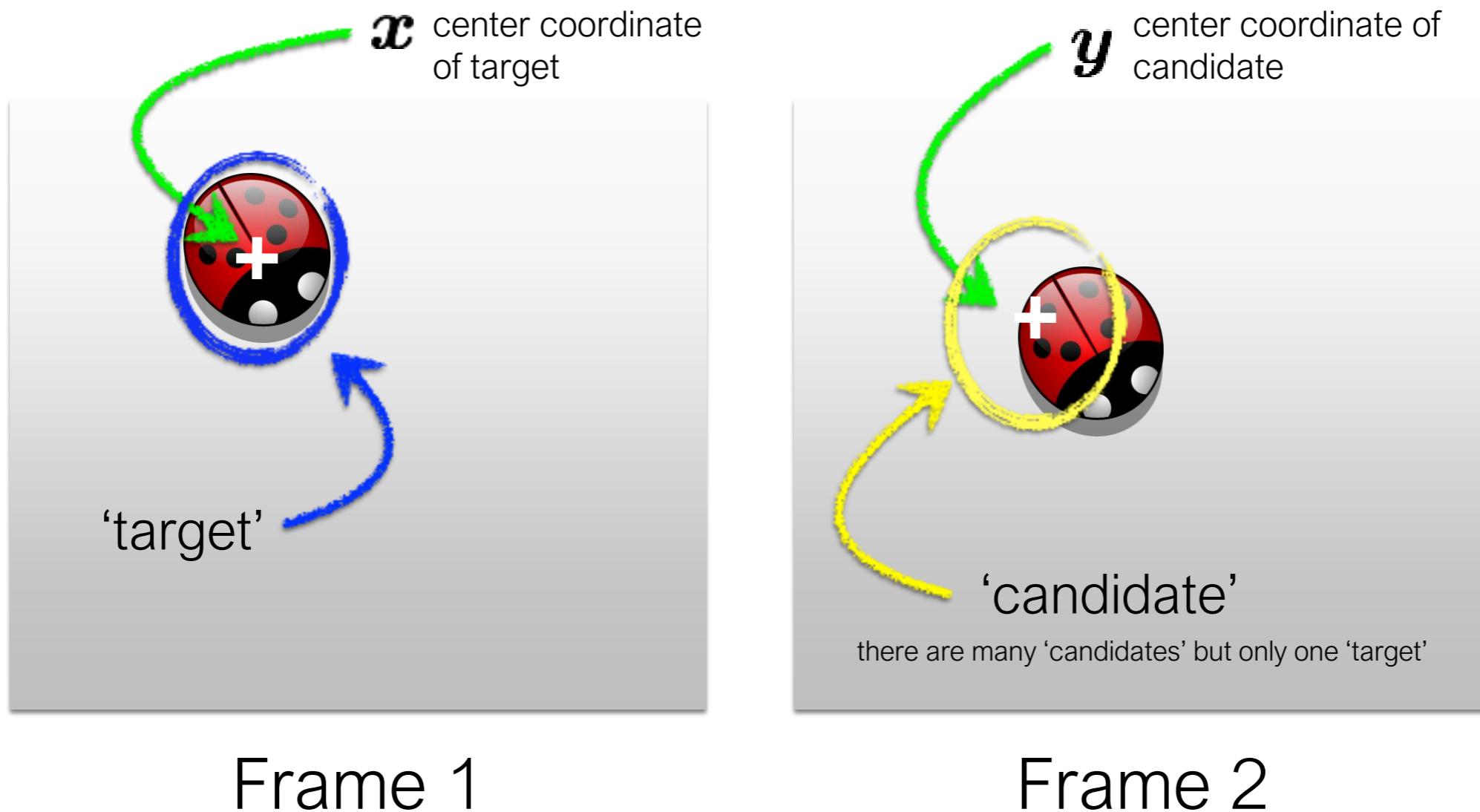


For images, each pixel is point with a weight



Finally... mean shift tracking in video!

Goal: find the best candidate location in frame 2

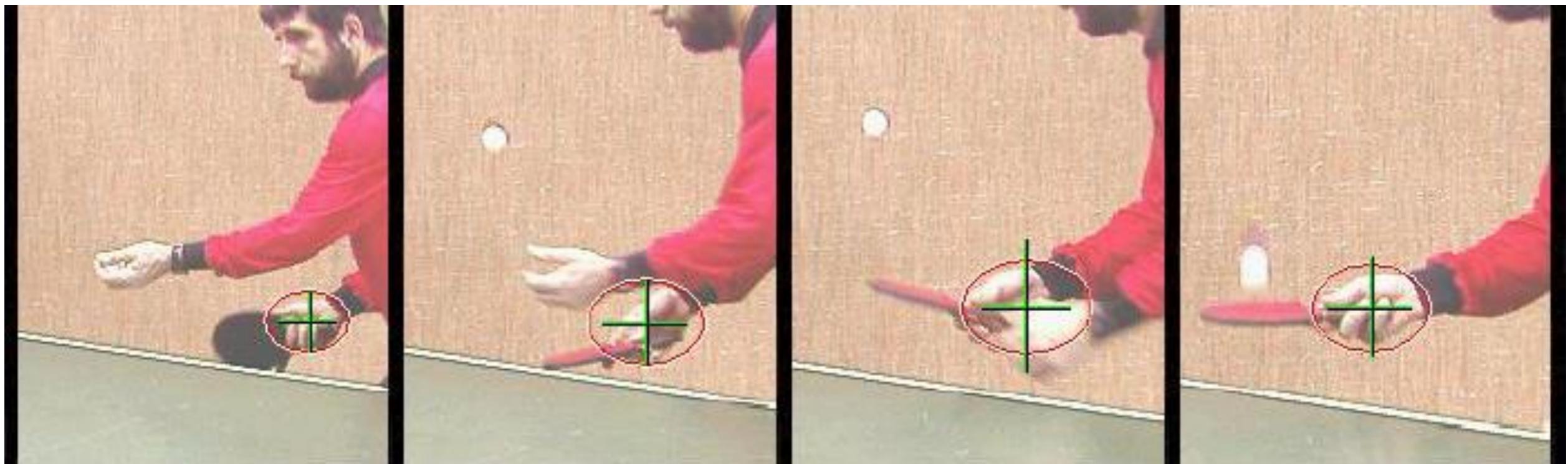


Frame 1

Frame 2

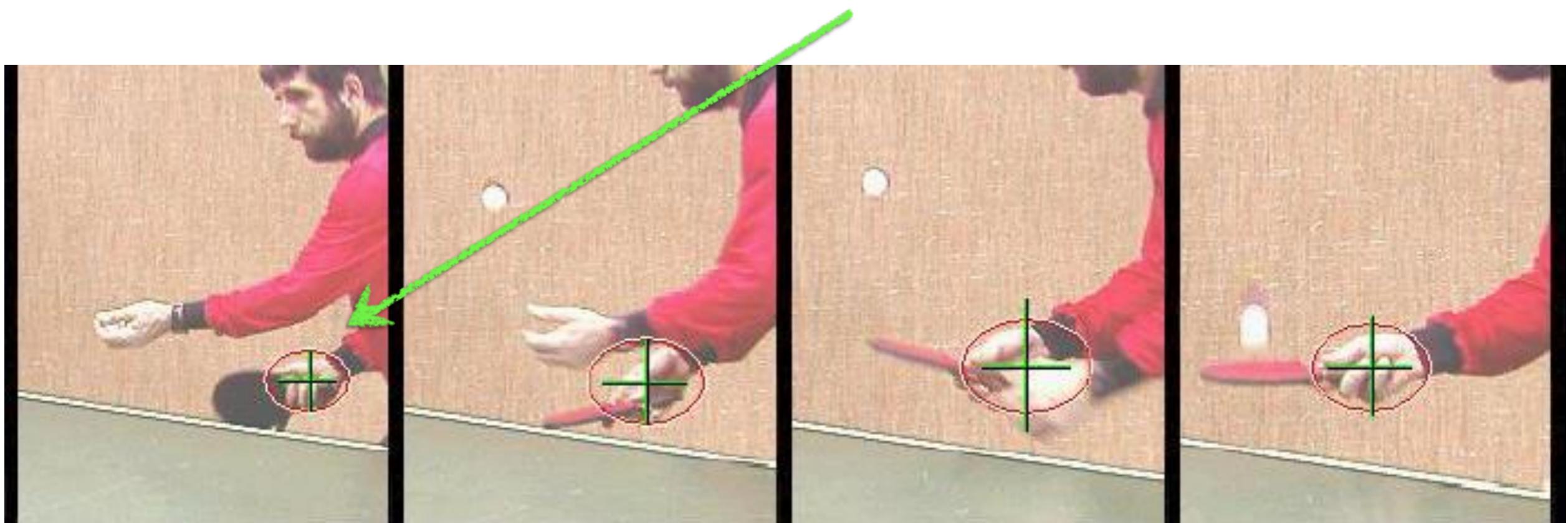
Use the mean shift algorithm
to find the best candidate location

Non-rigid object tracking



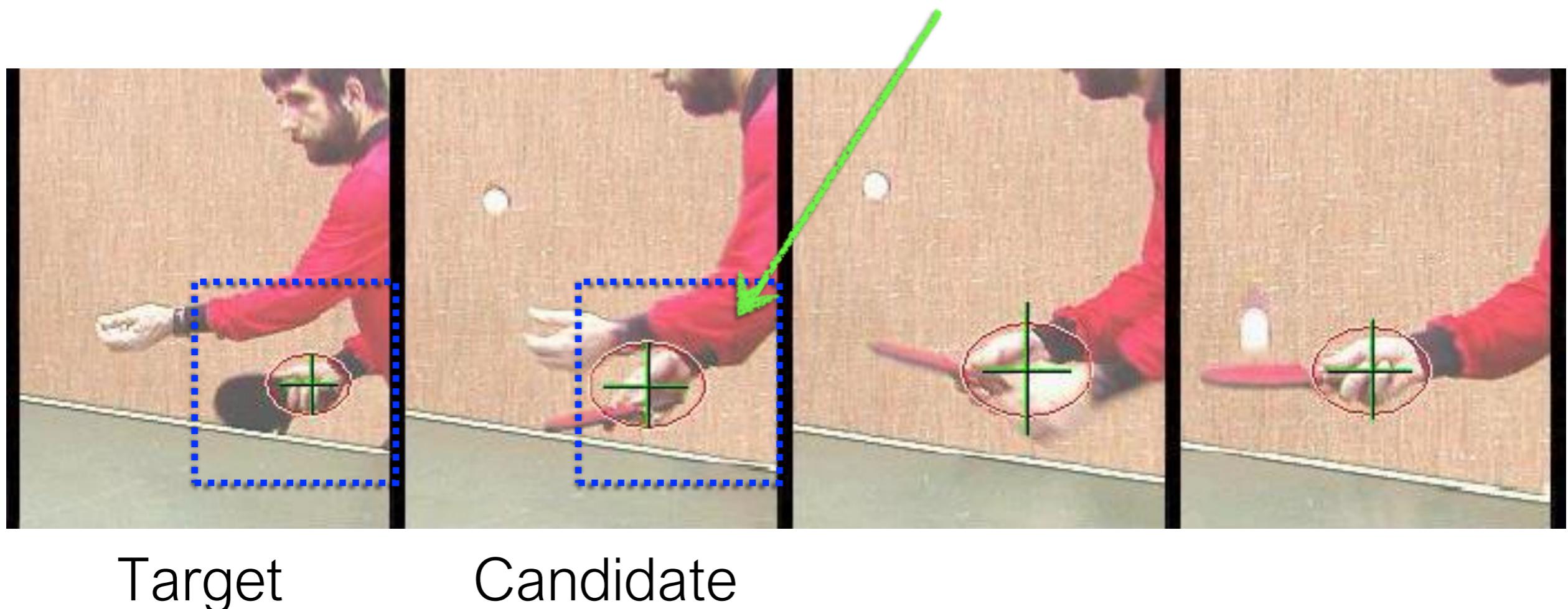
hand tracking

Compute a descriptor for the target

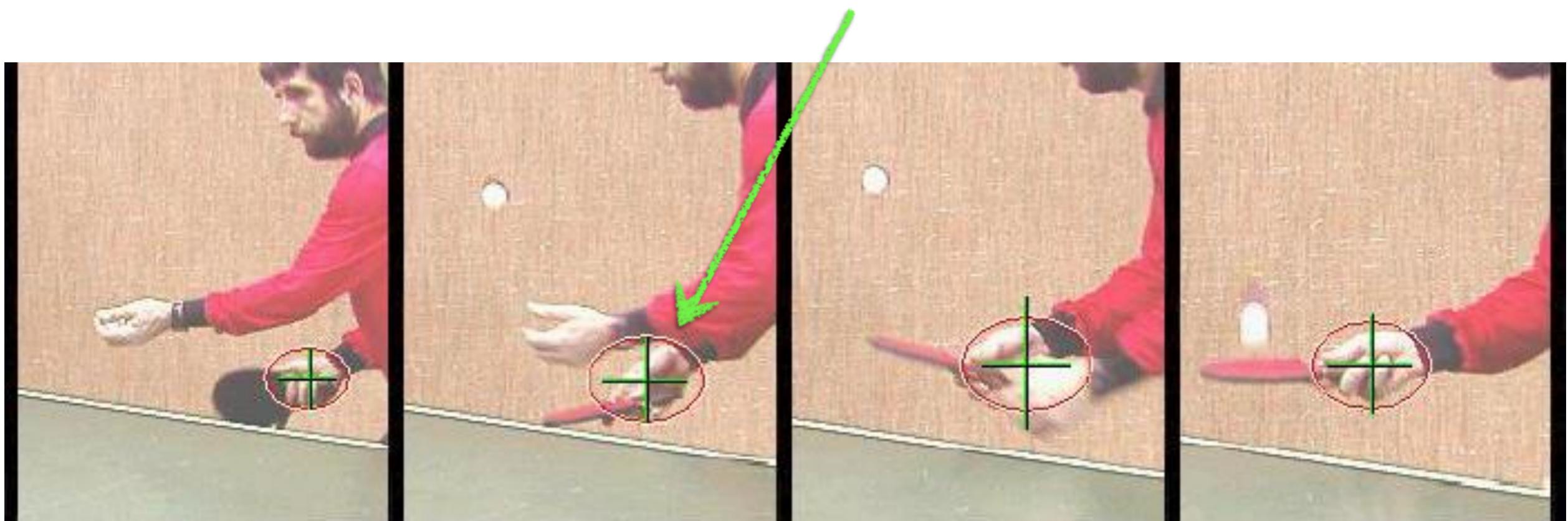


Target

Search for similar descriptor in neighborhood in next frame

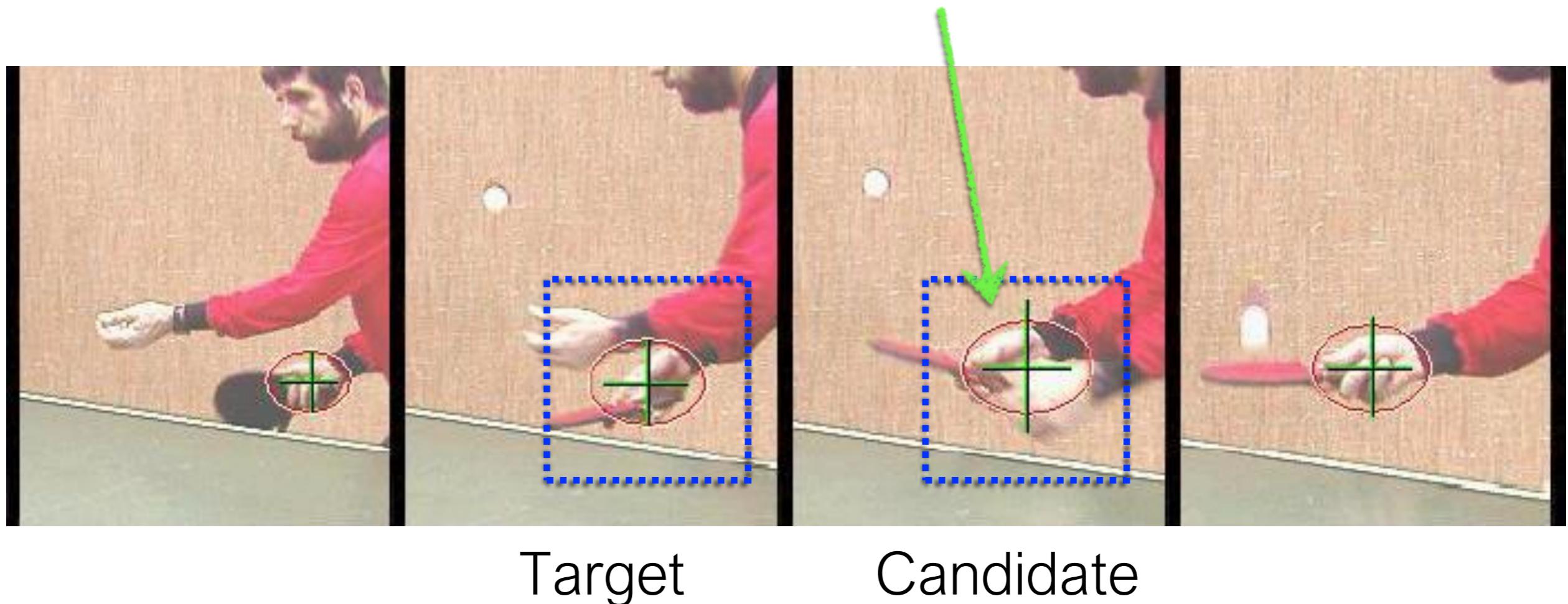


Compute a descriptor for the new target



Target

Search for similar descriptor in neighborhood in next frame



How do we model the target and candidate regions?

Modeling the target

M-dimensional **target** descriptor

$$\mathbf{q} = \{q_1, \dots, q_M\}$$

(centered at target center)

a ‘fancy’ (confusing) way to write a weighted histogram

$$q_m = C \sum_n k(\|\mathbf{x}_n\|^2) \delta[b(\mathbf{x}_n) - m]$$

Normalization factor

n

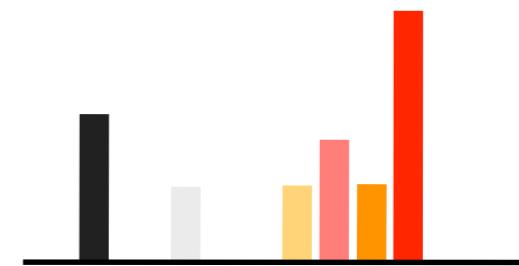
sum over all pixels

function of inverse distance (weight)

Kronecker delta function

quantization function

bin ID



A normalized color histogram (weighted by distance)

Modeling the candidate

M-dimensional **candidate** descriptor

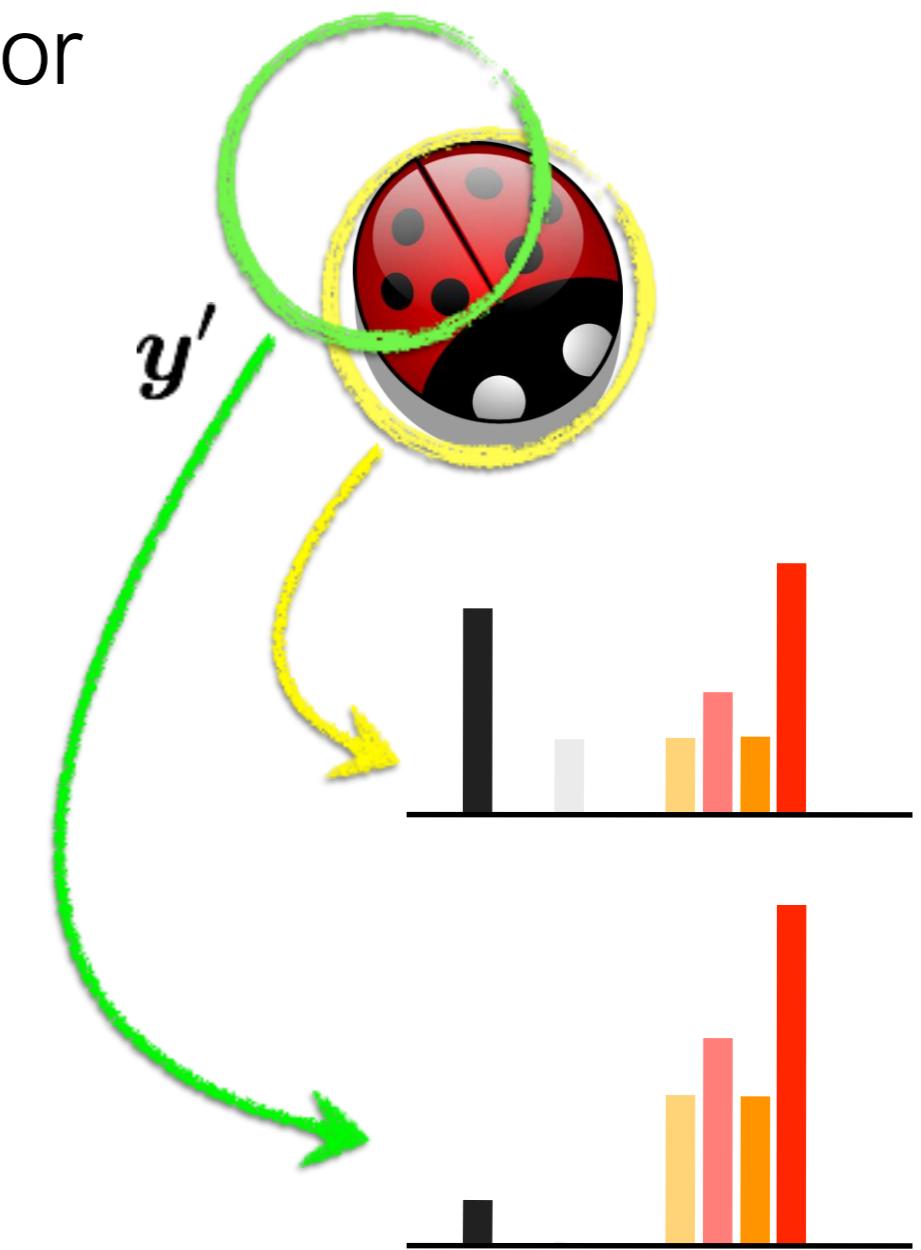
$$\mathbf{p}(\mathbf{y}) = \{p_1(\mathbf{y}), \dots, p_M(\mathbf{y})\}$$

(centered at location \mathbf{y})

a weighted histogram at \mathbf{y}

$$p_m = C_h \sum_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m]$$

bandwidth



Similarity between the target and candidate

Distance function

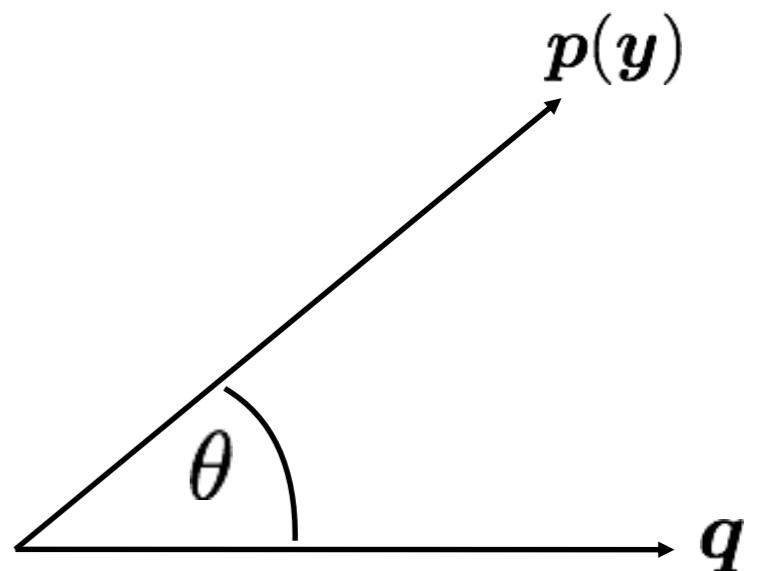
$$d(\mathbf{y}) = \sqrt{1 - \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]}$$

Bhattacharyya Coefficient

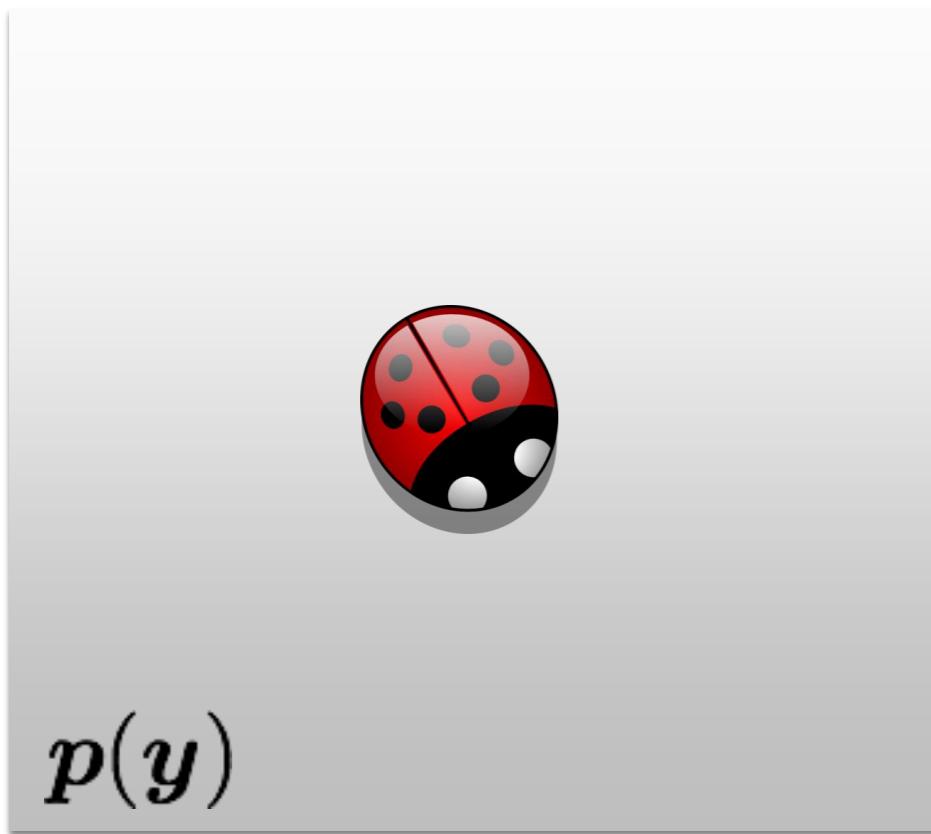
$$\rho(\mathbf{y}) \equiv \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] = \sum_m \sqrt{p_m(\mathbf{y})q_m}$$

Just the Cosine distance between two unit vectors

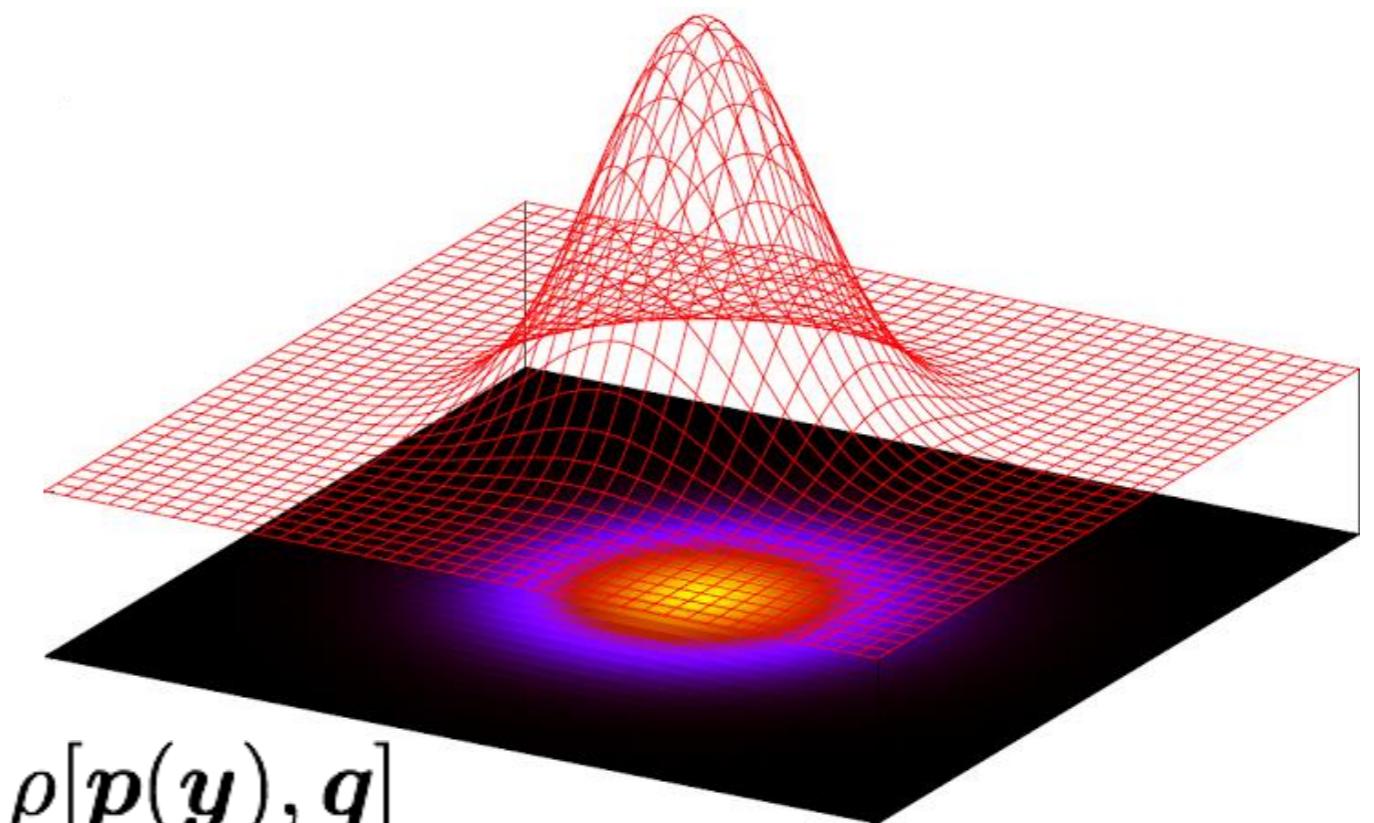
$$\rho(\mathbf{y}) = \cos \theta_{\mathbf{y}} = \frac{\mathbf{p}(\mathbf{y})^\top \mathbf{q}}{\|\mathbf{p}\| \|\mathbf{q}\|} = \sum_m \sqrt{p_m(\mathbf{y})q_m}$$



Now we can compute the similarity between a target and multiple candidate regions

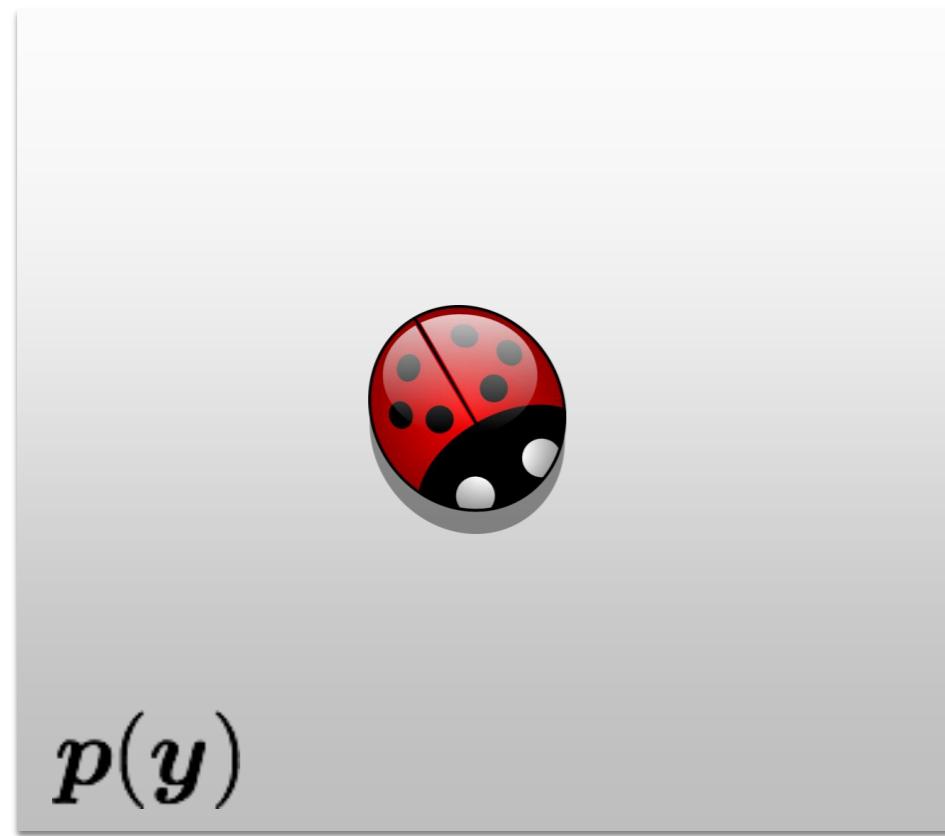
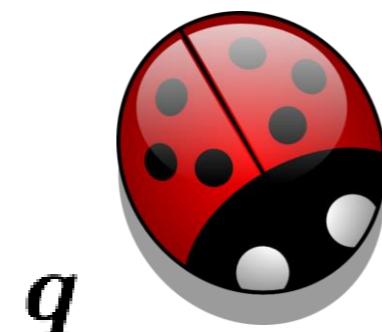


image

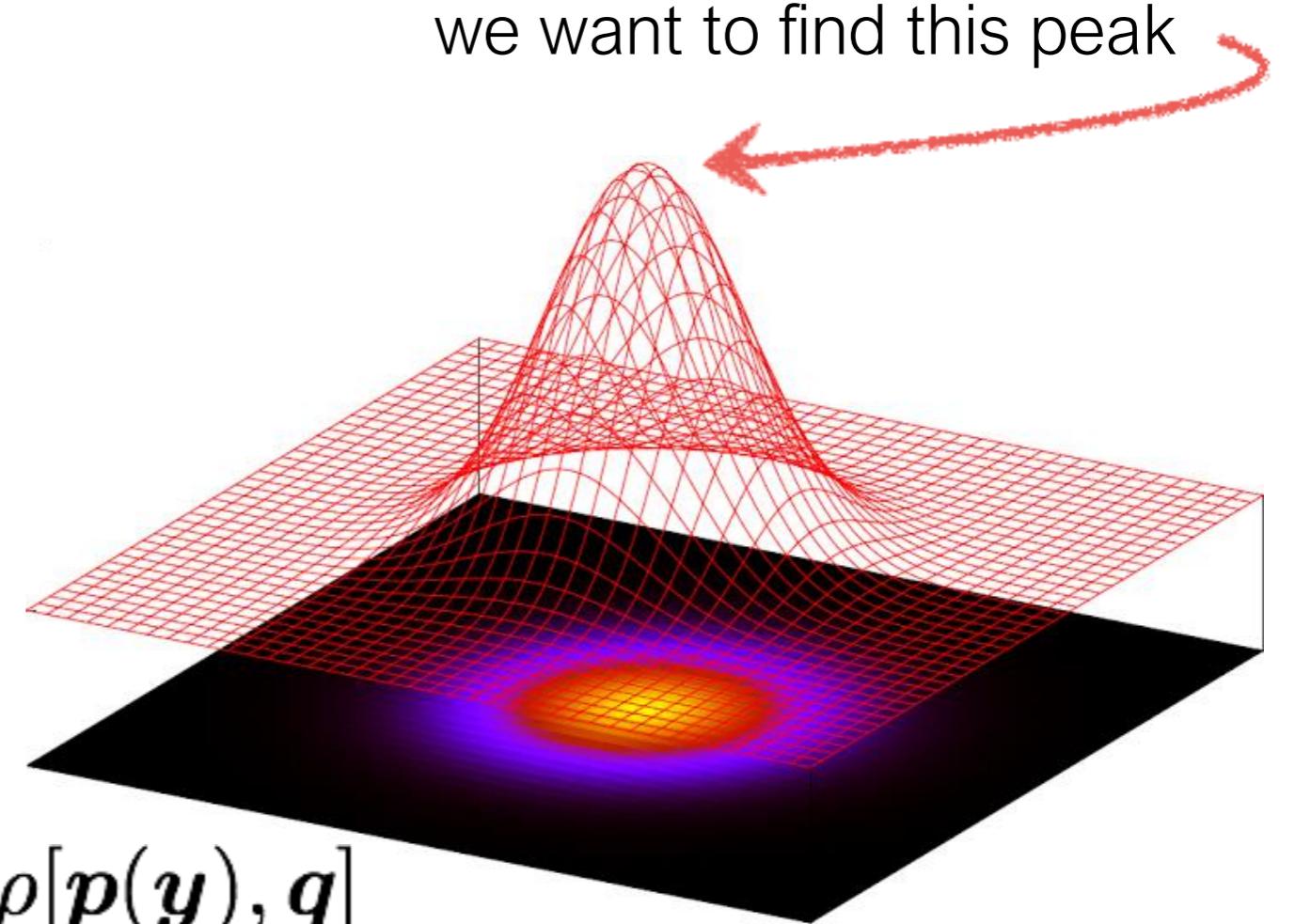


$$\rho[p(\mathbf{y}), \mathbf{q}]$$

similarity over image



target



image

similarity over image

Objective function

$$\min_{\mathbf{y}} d(\mathbf{y}) \quad \text{same as} \quad \max_{\mathbf{y}} \rho[p(\mathbf{y}), q]$$

Assuming a good initial guess

$$\rho[p(y_0 + y), q]$$

Linearize around the initial guess (Taylor series expansion)

Linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{1}{2} \sum_m p_m(\mathbf{y}) \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}}$$

$$p_m = C_h \sum_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m]$$

Remember
definition of this?

Fully expanded

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{1}{2} \sum_m \left\{ C_h \sum_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}}$$

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{1}{2} \sum_m \left\{ C_h \sum_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right) \delta[b(\mathbf{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}}$$

Moving terms around...

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \boxed{\frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0)q_m}} + \boxed{\frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)}$$

Does not depend on unknown \mathbf{y}

Weighted kernel density estimate

$$\text{where } w_n = \sum_m \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$$

Weight is bigger when $q_m > p_m(\mathbf{y}_0)$

OK, why are we doing all this math?

We want to maximize this

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

We want to maximize this

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0)q_m} + \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)$$

where $w_n = \sum_m \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$

We want to maximize this

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0) q_m} + \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown \mathbf{y}

where $w_n = \sum_m \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$

We want to maximize this

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

only need to
maximize this!

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0) q_m} + \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown \mathbf{y}

where $w_n = \sum_m \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$

We want to maximize this

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

Fully expanded linearized objective

$$\rho[\mathbf{p}(\mathbf{y}), \mathbf{q}] \approx \frac{1}{2} \sum_m \sqrt{p_m(\mathbf{y}_0) q_m} + \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown \mathbf{y}

$$\text{where } w_n = \sum_m \sqrt{\frac{q_m}{p_m(\mathbf{y}_0)}} \delta[b(\mathbf{x}_n) - m]$$

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

$$\frac{C_h}{2} \sum_n w_n k\left(\left\|\frac{\mathbf{y} - \mathbf{x}_n}{h}\right\|^2\right)$$

the new sample of mean of this KDE is

$$\mathbf{y}_1 = \frac{\sum_n \mathbf{x}_n w_n g\left(\left\|\frac{\mathbf{y}_0 - \mathbf{x}_n}{h}\right\|^2\right)}{\sum_n w_n g\left(\left\|\frac{\mathbf{y}_0 - \mathbf{x}_n}{h}\right\|^2\right)}$$

(this was derived earlier)

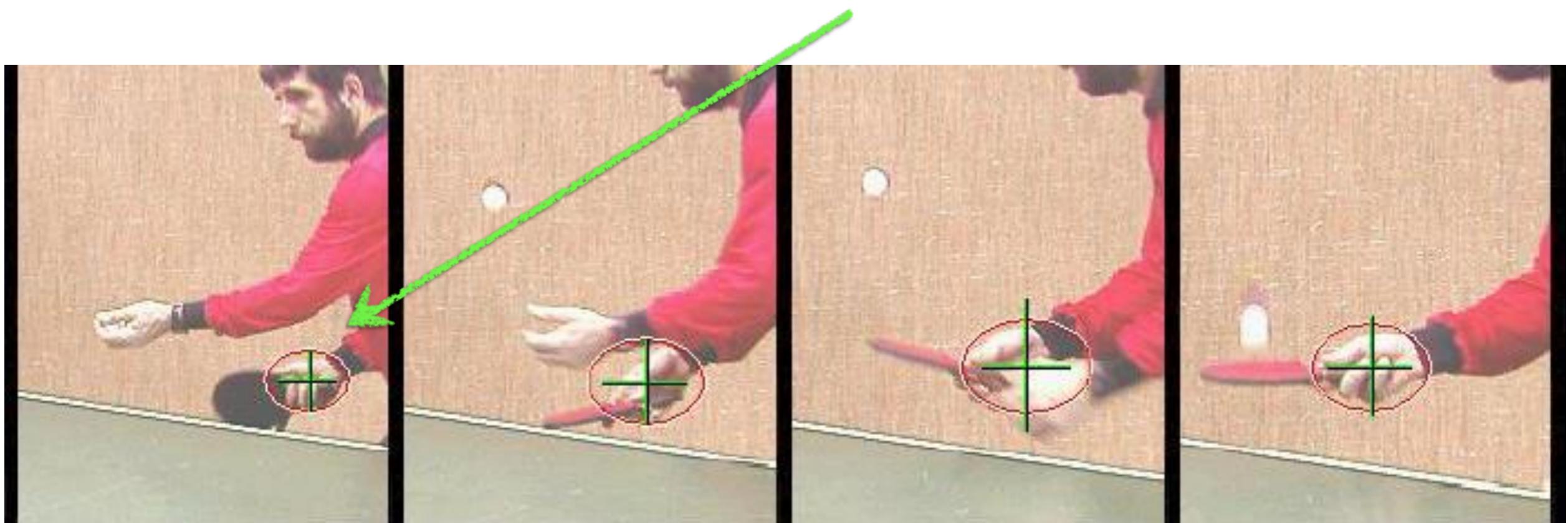
(new candidate location)

Mean-Shift Object Tracking

For each frame:

1. Initialize location \mathbf{y}_0
Compute \mathbf{q}
Compute $\mathbf{p}(\mathbf{y}_0)$
2. Derive weights w_n
3. Shift to new candidate location (mean shift) \mathbf{y}_1
4. Compute $\mathbf{p}(\mathbf{y}_1)$
5. If $\|\mathbf{y}_0 - \mathbf{y}_1\| < \epsilon$ return
Otherwise $\mathbf{y}_0 \leftarrow \mathbf{y}_1$ and go back to 2

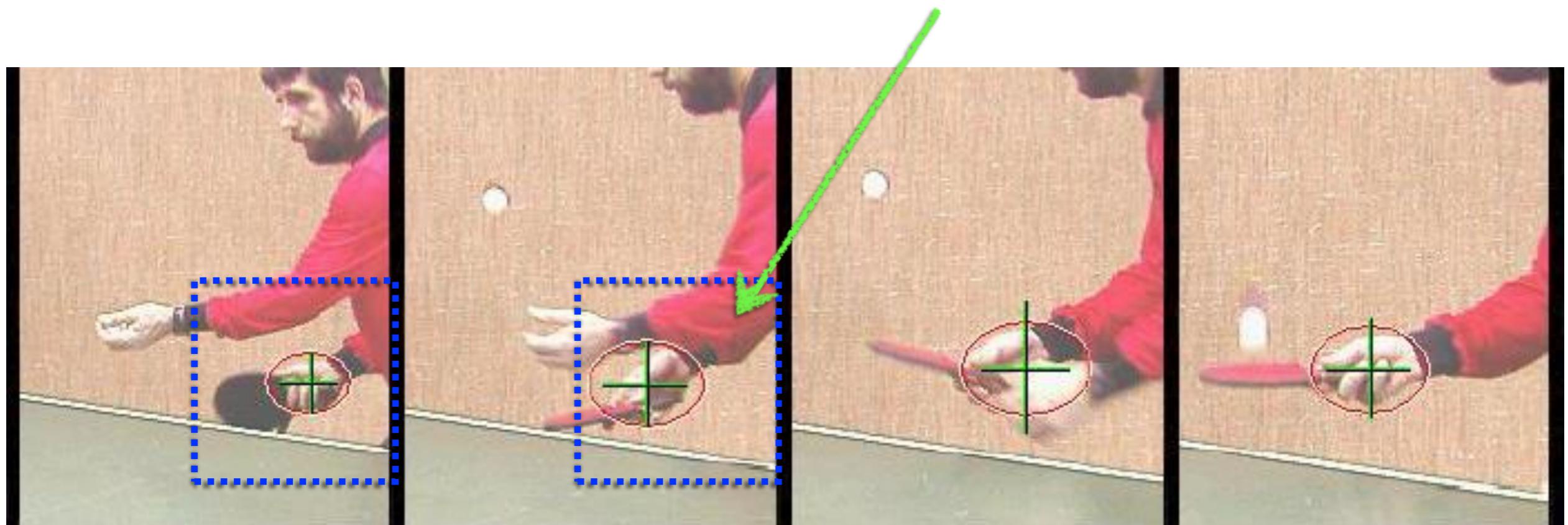
Compute a descriptor for the target



Target

q

Search for similar descriptor in neighborhood in next frame

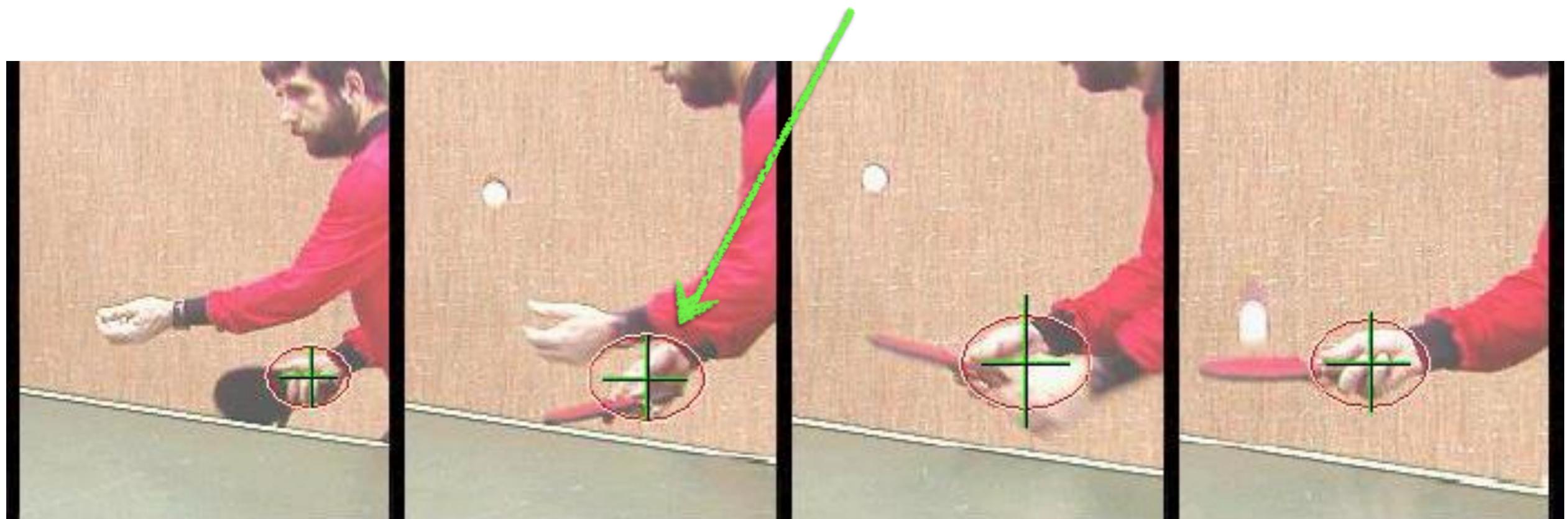


Target

Candidate

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

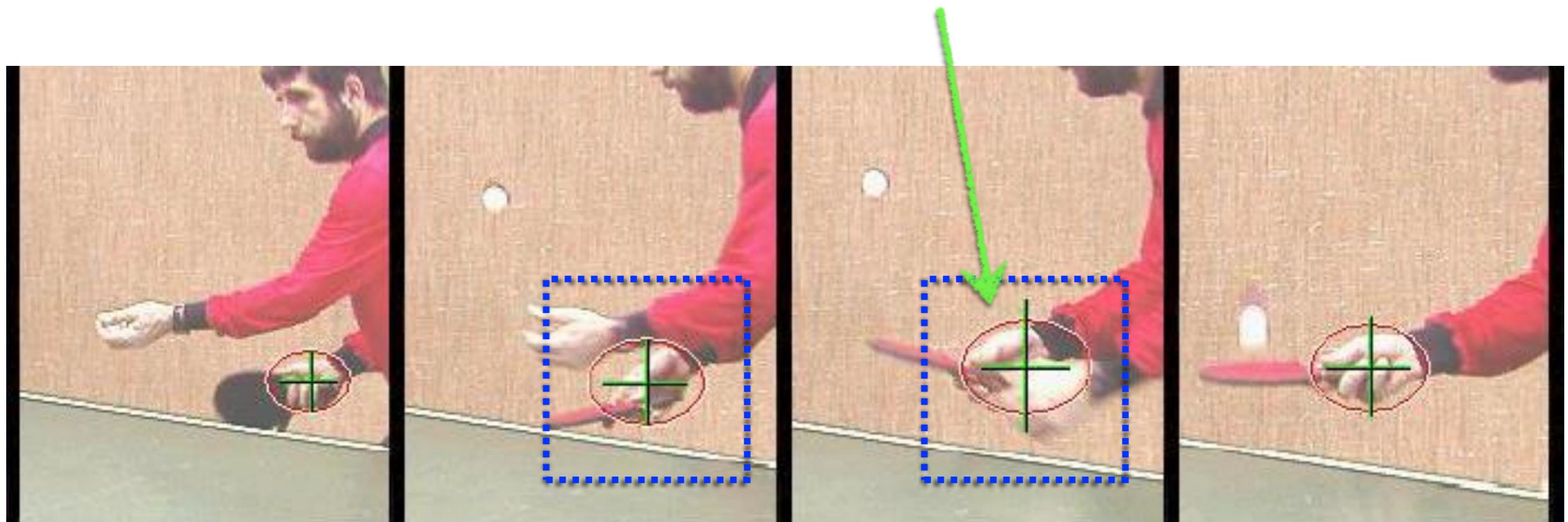
Compute a descriptor for the new target



Target

q

Search for similar descriptor in neighborhood in next frame



Target

Candidate

$$\max_{\mathbf{y}} \rho[\mathbf{p}(\mathbf{y}), \mathbf{q}]$$

Modern trackers

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

References

Basic reading:

- Szeliski, Sections 4.1.4, 5.3, 8.1.