INntroduction to semantic vision
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16—385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2018, Lecture 17




Course announcements

Homework 5 will be posted tonight.

Yannis has extra office hours today, 4-8 pm.

Yannis’ office hours on Friday will be covered by Neeraj.
How many of you went to Matthias Niessner’s talk today?

Talk: Angela Dai, “Understanding 3D Scans,” Thursday noon, GHC 6115.



Overview of today’s lecture

Leftover from last lecture: radiometric calibration.
New in this lecture:

* Introduction to semantic vision.

* |mage classification.

« Bag-of-words.

« K-means clustering.

« Classification.

« K nearest neighbors.

* Naive Bayes.

« Support vector machine.



Slide credits

Most of these slides were adapted from:
 Kris Kitani (16-385, Spring 2017).
* Noah Snavely (Cornell University).

« Fei-Fei Li (Stanford University).



Course overview

Lectures 1 -7

. -—
. Image processing. See also 18-793: Image and Video Processing

Lectures 7 — 12

(Seometry-based vision See also 16-822: Geometry-based Methods in Vision

Lectures 13 — 16
. Physics-based vision. €« See also 16-823: Physics-based Methods in Vision
See also 15-463: Computational Photography

. Semantic vision. <— \We are starting this part now

. Dealing with motion.



What do we mean by
‘'semantic vision’?



SRS A STTEETNIgNT?
Srification/ classification)




WHETERClethE PECPIE?
- (Detection)
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SR O LAl Pl aCE?
(Identification)




IWIITS 1n the scene?
Semantic segmentation)
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ODbject categorization
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WHEISYIE OIFSCENIENS 12
~(Scene categorization)
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Activity / Event Recognition

at are these
people doing?
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Object recognition
s it really so hard?

Find the chair in this image Output of normalized correlation




Object recognition
s it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

A “popular method is that of template matching, by point to point correlation of a model
pattern with the image pattern. These techniques are inadequate for three-dimensional

scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation
of parts.” Nivatia & Binford, 1977.



And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



How do humans do recognition?

 We don’t completely know yet
* But we have some experimental observations.



Observation 1
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CLRRAE

 We can recognize familiar faces even in low-
resolution images




Observation 2:

Jim Carrey Kevin Costner

* High frequency information is not enough



What is the single most important facial
features for recognition?




What is the single most important facial
features for recognition?




Observation 4:

* Image Warping is OK



Spatial configuration matters too




Spatial configuration matters too




The list goes on

Face Recognition by Humans:
Nineteen Results All Computer
Vision Researchers Should
Know About

* http://web.mit.edu/bcs/sinha/papers/19result
s sinha etal.pdf



http://web.mit.edu/bcs/sinha/papers/19results_sinha_etal.pdf

Why Is this hard?

Variability:  Camera position
[llumination
Shape parameters
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How many object categories are there?
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Challenge: variable viewpoint

ST

Michelangelo 1475-1564



Challenge: variable illumination

image credit: J. Koenderink



and small things

from Apple.

(Actual size)

Challenge: scale




Challenge: deformation
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Challenge:
Occlusion

Magritte, 1957
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Challenge: background clutter

Kilmeny Niland. 1995
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Challenge: intra-class variations

Svetlana Lazebnik



Common approaches



Common approaches:
object recognition

Feature Spatial Window
Matching reasoning classification



-eature matching



What object do these parts belong to?




Some local feature are
very informative

a collection of local features

(bag-of-features)

deals well with occlusion
scale invariant
rotation invariant

Are the positions of the parts important?



Why not use SIFT matching for
everything?

e \Works well for object instances




Pros

. Simple

. Efficient algorithms

- Robust to deformations
Cons

- No spatial reasoning



Common approaches:
object recognition

Feature Spatial Window
Matching reasoning classification



Spatial reasoning



The position of every part depends on the
positions of all the other parts

Many parts, many dependencies!



1. Extract features



1. Extract features 2. Match features



1. Extract features 2. Match features 3. Spatial verification

an old idea...



Fu and Booth. Grammatical Inference. 1975
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Scene Structural (grammatical) description
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The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the
following. Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of “goodness” of matching or detection.

We offer a combined descriptive scheme and decision metric
which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to
dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new
programming system does not need to be written for every new
description; instead, one just specifies descriptions in terms of a
certain set of primitives and parameters.

1972

Daw»

= QA

Description for left edge of face

VALUE(X)=(E+F+G+H)-(A+B+C+D)

Note: VALUE(X) is the value assigned to the
L(EV)A corresponding to the location X
as a function of the intensities of locations
A through H in the sensed scene,



A more probabilistic approach...

think of locations as random variables (RV)

RV RV RV
vttt I ={L1,La,...,La}



A more modern probabilistic approach...

think of locations as random variables (RV)

RV RV RV
wisiiin I ={Lq1,La,...,La}

image (N pixels)

What are the dimensions of R.V. L?

How many possible combinations of part locations?




A more modern probabilistic approach...

think of locations as random variables (RV)

RV RV RV
wisiiin I ={Lq1,La,...,La}

image (N pixels)

What are the dimensions of R.V. L?

L,=|xy]

How many possible combinations of part locations?




A more modern probabilistic approach...

think of locations as random variables (RV)

RV RV RV
wisiiin I ={Lq1,La,...,La}

image (N pixels)

What are the dimensions of R.V. L?

L,=|xy]

How many possible combinations of part locations?

NM




Most likely set of locations L is found by maximizing:

part
locations  image

p(L|I) o< p(I|L)p(L

PN

Posterior Likelihood:
How likely it is to observe image
| given that the M parts are at
locations L
(scaled output of a classifier)

Prior:
spatial prior controls the
geometric configuration of the
parts

What kind of prior can we formulate”



Given any collection of selfie images,
where would you expect the nose to be?

What would be an appropriate prior?

P(Lpgse) =7




A simple factorized model
p(L) = Hp(Lm)
T

Break up the joint probability into
smaller (independent) terms



Independent locations

Each feature is allowed to
move independently

Does not model the relative
location of parts at all



Tree structure

(star model)

I. p(L) — p(Lmot) ]j p(Lm|Lmot)

m=1

Root
(reference)

node Represent the location of

all the parts relative to a single
reference part

Assumes that one
reference part is defined
(who will decide this?)




Fully connected

(constellation model)

Explicitly represents the
joint distribution of locations

Good model:
Models relative location of parts
BUT Intractable for moderate number of parts




Pros
- Retains spatial constraints
- Robust to deformations
Ccons
. Computationally expensive

- (eneralization to large inter-class variation (e.q.,
modeling chairs)



Feature Spatial Window
Matching reasoning classification



Window-based



Template Matching

1. get image window 2. extract features 3. classify

When does this work and when does it fail?

How many templates do you need?



Per-exemplar

exemplar template top hits from test data

find the ‘nearest’ exemplar, inherit its label



Template Matching

| k r
f

'P

1. getimage window | 2 extract features 3. compare to template
(or region proposals) Ne— : .

Do this part with one big classifier
‘end to end learning’



Convolutional
Neural Networks

Convolution Pooling

Image patch

Image patch . F o
9° P (raw pixels values) & = &y

(raw pixels values)

response of one filter’ response of one filter’

A 96 x 96 image convolved with 400 filters Pooling aggregates statistics and
(features) of size 8 x 8 generates about 3 lowers the dimension of convolution
million values (892x400)
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- loggerhead television

s idng door
wombat tigef European fire salamander] African crocodile seat belt television sliding door
Norwegian elkhound tiger cat spotted salamander Gila monster ice lolly microwave shoji wallaby
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wallaby fynx long-horned beetle mud turtle burrito screen window screen Lakeland terrier
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55 384 384 256 1000
Max
256 , 409G
Max Max pooling 09 4096
Stride pooling pooling
224 36
of 4
| 96 filters’
I
224/4=56

630 million connections

60 millions parameters to learn

Krizhevsky, A., Sutskever, |. and Hinton, G. E.

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012.




Pros
- Retains spatial constraints
- Efficient test time performance
Cons
- Many many possible windows to evaluate
- Requires large amounts of data

.+ Sometimes (very) slow to train



History of ideas In recognition

1960s — early 1990s: the geometric era
1990s: appearance-based models
Mid-1990s: sliding window approaches
Late 1990s: local features

Early 2000s: parts-and-shape models
Mid-2000s: bags of features

Present trends: data-driven methods, deep
learning



What Matters in Recognition?

* Learning Techniques
— E.g. choice of classifier or inference method

* Representation
— Low level: SIFT, HoG, GIST, edges

— Mid level: Bag of words, sliding window,
deformable model

— High level: Contextual dependence
— Deep features

e Data

— More is always better
— Annotation is the hard part



Types of Recognition

* |nstance recognition

* Recognizing a known object butin a new
viewpoint, with clutter and occlusion

* Location/Landmark Recognition
 Recognize Paris, Rome, ... in photographs
 |deas from information retrieval

* (Category recognition
 Harder problem, even for humans

 Bag of words, part-based, recognition and
segmentation



Simultaneous recognition and detection

tree . building

bicycle

building

road

building

Sign




PASCAL VOC 2005-2012

20 object classes 22,591 images

Classification: person, motorcycle

Segmentation

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010.



The PASCAL Visual Object Classes
Challenge 2009 (VOC2009)

» 20 object categories (aeroplane to TV/monitor)

* Three (+2) challenges:
— Classification challenge (is there an X in this image?)
— Detection challenge (draw a box around every X)
— Segmentation challenge (which class is each pixel?)

Objects

age
4
5 (7
X 3 '.9 ‘i; s U 7
o\ o




Examples

Aeroplane Bicycle Bottle




Classification Challenge

" Predict whether at least one object of a given
class is present in an image

is there a cat?



Pascal VOC 2007 Average Precision
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Pascal VOC 2012 Average Precision
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Detection Challenge

" Predict the bounding boxes of all objects of a
given class in an image (if any)
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True Positives - Person

UoCTTI_LSYM-MDPM




False Positives - Person

UoCTTI_LSVM-MDPM




“*Near Misses’ - Person

UoCTTI_LSVM-MDPM

£ fpat
L




True Positives - Bicycle

UoCTTI_LSYM-MDPM




False Positives - Bicycle

UoCTTI_LSYM-MDPM




Where to from here?

* Scene Understanding
* Big data — lots of images
* Crowd-sourcing — lots of people
 Deep Learning — lots of compute



24 Hrs in Photos

http://www.kesselskramer.com/exhibitions/24-hrs-of-photos installation by Erik Kessels



http://www.kesselskramer.com/exhibitions/24-hrs-of-photos

Daily Number of Photos Uploaded & Shared on Select Platforms,
2005 - 2014YTD

1,800
1 Flickr
1,200 m Snapchat
® [nstagram
® Facebook
« WhatsApp (2013, 2014 only)

o R i

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014YTD

E

g

# of Photos Uploaded & Shared per Day
(MM)
& o
o o

@ K P c B Source: KPCB estimates based on publicly disclosed company data, 2014 YTD data per latest as of 5/14. 62



Data Sets

ImageNet
— Huge, Crowdsourced, Hierarchical, Iconic objects

PASCAL VOC

— Not Crowdsourced, bounding boxes, 20 categories
SUN Scene Database, Places

— Not Crowdsourced, 397 (or 720) scene categories
LabelMe (Overlaps with SUN)

— Sort of Crowdsourced, Segmentations, Open ended
SUN Attribute database (Overlaps with SUN)

— Crowdsourced, 102 attributes for every scene

OpenSurfaces
— Crowdsourced, materials

Microsoft COCO
— Crowdsourced, large-scale objects



IMAGE N E | Large Scale Visual

Recognition Challenge (ILSVRC) 2010-2012

20-ebjectelesses 22591 images
1000 object classes 1,431,167 images

{4 | NPT l;" 1,‘: f,"‘::‘, :

i ’i‘
Dalmatian *

http://image-net.org/challenges/LSVRC/{2010,2011,2012}



bottles birds

cars

Variety of object classes in ILSVRC

PASCAL
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race car wagon minivan



Variety of object classes in ILSVRC

rewdriver Hatchet Lady bu0 Honeycomb

Amount of Texture

Coffee mug Cleaver Bagel Red Wine

Color Distinctiveness

Shape Distinctiveness

Orange Airhiner

Mask Parachute

Real-world Size

Low High
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Deep Learning or CNNs

e Since 2012, huge impact..., best results
* Can soak up all the data for better prediction



IMAGENE T Large Scale Visual Recognition Challenge

Year 2010 Year 2012 Year 2014
NEC-UIUC SuperVision GoogleNet VGG MSRA
- image m
Ea i
3 conv-64 |
E= conv-64 '
==
== maxpool
Eggm conv-128 .'
s conv-128
[ Dense grid descriptor: ] EE;EE maxpool @
HOG, LBP 9 @
R conv-256 -
J, e e conv-256 Z%UL
( Coding: local coordinate, | ﬁg Egm maxpool )?
super-vector = == conv-512
\ y f1 B ER = -
¢ = A e S i conv-512 4
, ., > s masgoo ”
Pooling, SPM £ | (% 1?; conv-512 3
L ¢ J t - ?a o °°'“"51T | L
z ; mMaxpoo L
f _ ) H n >lffl< ‘:' mgm FC4096 _ <
k Linear SVM ) " l '>I§I<"l - ::ﬂ:m — .a .,
EI__L]'E/ Convolution 8 e e e FC-1000 &
= & Pooling B2 ~ softmax f————
(== ——
-] E =
Other -
[Lin CVPR 2011] [Krizhevsky NIPS 2012] [Szegedy arxiv 2014]  [Simonyan arxiv 2014] [He arxiv 2014]




lmage classification



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat




mage Classification: Problem
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What the computer sees

82% cat
15% dog
2% hat

1% mug

image classification



Data-driven approach

* Collect a database of images with labels
* Use ML to train an image classifier
* Evaluate the classifier on test images

Example training set

mug




Bag of words



What object do these parts belong to?




Some local feature are
very informative

An object as

a collection of local features

(bag-of-features)

deals well with occlusion
scale invariant
rotation invariant



(not so) crazy assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)



bag of features

bag of features

Parts-and-shape model

S Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
airplanes 98.8 97.1 90.2
cars (rear) 098.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)




Bag-of-features

represent a data item (document, texture, image)
as a histogram over features

an old 1dea

(e.g., texture recognition and information retrieval)



Texture recognition
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Vector Space Model

G. Salton. ' '
Mathematics and Information Retrieval’ Journal of Documentation,1979
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A document (datapoint) is a vector of counts over each word (feature

d = [n(wiy 4 waq) -+ n(wrg
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but not all words are created equal



TF-IDF

Term Frequency Inverse Document Frequency
vg = [n(wr,q) n(wz,d) -+ n(wrd)]

weigh each word by a heuristic

vg = [n(w1 q)ar n(weg)as - - n(wrq)ar]




Standard BOW pipeline

(for image classification)



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs



Dictionary Learning:
Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images




Dictionary Learning:
Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)




What kinds of features can we extract?



e Regular grid
e Vogel & Schiele, 2003
e Fei-Fei & Perona, 2005

¢ |nterest point detector
e Csurka et al. 2004
e Fei-Fei & Perona, 2005
e Sivic et al. 2005

e Other methods

e Random sampling (Vidal-Naquet &
Ullman, 2002)

e Segmentation-based patches (Barnard
et al. 2003)




!

. S
Compute SIFT
descriptor Normalize patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid "02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]






How do we learn the dictionary?
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Visual vocabulary

Clustering



K-means clustering



1. Select initial
centroids at random



v

1. Select initial
centroids at random

2. Assign each object to
the cluster with the
nearest centroid.



v

2. Assign each object to
the cluster with the
nearest centroid.

1. Select initial
centroids at random

‘- .“..‘_
LI 9 -
LI L

b

3. Compute each centroid as the
mean of the objects assigned to
it (go to 2)



1.

Select initial

centrolds at random

3.

mean of the objects assigned to

1t

Compute each centroid as the

(go to 2)

v

v

2. Assign each object to
the cluster with the
nearest centroid.

2. Assign each object to
the cluster with the
nearest centroid.



v

2. Assign each object to
the cluster with the
nearest centroid.

1. Select initial
centroids at random

v

3. Compute each centroid as the 2. Assign each object to
mean of the objects assigned to the cluster with the
it (go to 2) nearest centroid.

Repeat previous 2 steps until no change



K-means Clustering

Given k:
1.Select 1nitial centroids at random.

2.Assign each object to the cluster with the nearest
centroid.

3.Compute each centroid as the mean of the objects
assigned to 1it.

4 .Repeat previous 2 steps until no change.



From what data should | learn the
dictionary?



From what data should | learn the
dictionary?
— Dictionary can be learned on separate training
set

— Provided the training set is sufficiently
representative, the dictionary will be
“universal”



Example visual dictionary
b L T T T e
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Example dictionary

SED-=- aakE TR -wkOd
#NET TECenETEYNY “anda™
!F"EHI-A“EQ*EEI-IBE
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EE*H.E'?”“.l'uﬂ.I!I
MhoEORYENSEN RSN
ambEsSN=SEE iS2nSdE8E S
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i TERORNSEsE INE IS

P
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e e e e L e

F EEFBEED
o< 1] 5 ] [

- [ATAfe ATEara A .|

i b o L |
arsisiciclc

N -EN AN RS

el WL LI
Appearance codebook

Source: B. Leibe



Another dictionary

AERETEERR LA EXER
EARRSAGARLALLRA

-FTRNEFITIFEANT VTN
- EAERNE RN
"KREXKARAXRKAR

salatabainlate
R

Appearance codebook

Source: B. Leibe



Encode:
build Bags-of-Words (BOW) vectors
for each image



N C

1 1. Quantization: image features gets
associated to a visual word (nearest
cluster center)

Encode:
build Bags-of-Words (BOW) vectors
for each image




Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the
number of visual word

OCccurrences




frequency

TLaONENRLS, B

codewords



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classity:
Train and test data using BOWSs



K nearest neighbors

Support Vector Machine

Naive Bayes




K nearest neighbors



Distribution of data from two classes
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Distribution of data from two classes
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Which class does g belong too?



Distribution of data from two classes



K-Nearest Neighbor (KNN) Classifier

0 o) = Non-parametric pattern classification
o 00 Gﬂ = approach
O Op |::|' Eﬂ Consider a two class problem where
o o) o B nﬂ each sample consists of two
O o ﬂ o u measurements (x,y).
o ﬂ
=
For a given query point q, K="1 o O
assign the class of the nearest O J
neighbor o L]
=
Compute the k nearest k=3 |0 -
neighbors and assign the O#_’o
class by majority vote. o 0
u B




Nearest Neighbor is competitive
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Test Error Rate (%)

Linear classifier (1-layer NN)

12.

MNIST Digit Recognition

Handwritten digits

5.0
2.4

deskewed
K-NN, Tangent Distance, 16x16

K-nearest-neighbors, Euclidean
K-nearest-neighbors, Euclidean,
K-NN, shape context matching
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Yann LeCunn

3.6

1000 RBF + linear classifier



What is the best distance metric between data points?
— Typically Euclidean distance
— Locality sensitive distance metrics

— Important to normalize.
Dimensions have different scales

How many K?
— Typically k=1 is good

— Cross-validation (try different k!)



Distance metrics

D(z,y) = (z1—y1)2+ -+ (zn — yn)?

D(x,y) = Y T1Y1 + NYN

lelllyl Y, 22, vR

Euclidean

Cosine

Chi-squared



Choice of distance metric

* Hyperparameter

L1 (Manhattan) distance L2 (Euclidean) distance
di(I, 1) = Z iy — L] dy(I1, 1) = \,.""'Z 7 - If};)z

- Two most commonly used special cases of p-norm

1

\|:z:\p:(\$1,P+..,+,w71'p)7 p>lzeR"



Visualization: L2 distance
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CIFAR-10 and NN results

Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.

airplane 5.% » ..=":
automobile Eanh‘
bird imB NE yEREY
« EESHNEEEs P
deer N--Rﬁ&nm'
HE~IsBr. .
voo i N I I 2 I C N B
ose SRR EIP MERETETR
e R e T e
o T 0 I A

For every test image (first column),
examples of nearest neighbors in rows




k-nearest neighbor

Find the k closest points from training data
Labels of the k points “vote” to classify

the data NN classifier




Hyperparameters

What is the best distance to use?
What is the best value of k to use?

l.e., how do we set the hyperparameters?

Very problem-dependent
Must try them all and see what works best



Try out what hyperparameters work best on test set.

Y

train data

test data




Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

Y

train data test data




Validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

|

use to tune hyperparameters
evaluate on test set ONCE at the end



Cross-validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

-

e
) ~
~— .
SN ~
~— ~—
~ ~ .
_tu "~
) ~
b - A
—~— Ky
— ~

% \
N \\‘

- Cross-validation
cycle through the choice of which fold
Is the validation fold, average results.



Cross-valhidation on k

0.3

Example of
5-fold cross-validation
for the value of k.

031

Each point: single
outcome.

029

0.28

The line goes

through the mean, bars
Indicated standard
deviation

s-validation acourac

2
A H]

026 |

025

(Seems that k ~= 7 works best
028 - - - - for this data)

=20 0 20 40 &0 80 100 120




How to pick hyperparameters?

Methodology

— Train and test
— Train, validate, test

Train for original model
Validate to find hyperparameters
Test to understand generalizability



Pros
— simple yet effective

cons
— search is expensive (can be sped-up)
— storage requirements
— difficulties with high-dimensional data



KNN -- Complexity and Storage

N training images, M test images

Training: O(1)
Testing: O(MN)

Hmm...

— Normally need the opposite
— Slow training (ok), fast testing (necessary)



k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original messed up darkened

(all 3 images have same L2 distance to the one on the left)



Naive Bayes



Distribution of data from two classes
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Which class does g belong too?



Distribution of data from two classes

o - Learn parametric model for each class
(o) . Compute probability of query



This is called the posterior.
the probability of a class Z given the observed features X

p(2]|X)

For classification, z is a

discrete random variable
(e.g., car, person, building)

X Is a set of observed features
(e.g., features from a single image)

(it's a function that returns a single probability value)



This is called the posterior:
the probability of a class Z given the observed features X

p(z|lxy,...,TN)

For classification, z is a

discrete random variable
(e.g., car, person, building)

Each x is an observed feature
(e.g., visual words)

(it's a function that returns a single probability value)



The posterior can be decomposed according to
Bayes’ Rule

p(B|A)p(A)
n(A|B) =
(post‘erior) p(B)

In our context...

p(x1,...,xN|2)p(2)

Z|T1,...,TN) =
plziz: ) p(Z1,...,TN)



The naive Bayes’ classifier is solving this optimization

z = argmax p(z|X)
ZEZ

MAP (maximum a posteriori) estimate

e PXIRE)
ZEZ p(X)

Bayes’ Rule

¢ = arg max p(X|z)p(2)
ZEZ

Remove constants

fg
To optimize this...we need to compute this

Compute the likelihood...



A naive Bayes’ classifier assumes all features are
conditionally independent

p(xy,...,eN|2) =p(x1|2)p(T9,...,TN]|2)
= p(x1|2)p(z2|2)p(T3, . . ., ZN|2)
= p(x1|2)p(z2|2) - - p(xN|2)

X

Recall:

p(z,y) = p(zly)p(y)  p(z,y) = p(z)p(y) )




To compute the MAP estimate

Given (1) a set of known parameters (2) observations

p(z) p(x|z) {z1,29,...,2N}

Compute which z has the largest probability

Z — arg max Ll <
sy ple) L ool
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DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie Mellon
University's National
Robotics Engineering
Center ranked third among
teams competing in the
Defense Advanced
Research Projects Agency
(DARPA) Robotics
Challenge  Tpals  this
weekend in Homestead,
Fla,, and was selected by
the agency as one of eight
teams eligible for DARPA

funding to' prepare for next
December's finals. The
team's four-limbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, robot
scored 18 out of apossible
32 . points . dunng, the
two-day trials. . It
demonstrated its ability to
petform  such tasks  as
removing debiis, cutting a
hole through a wall and
closing a series of valves.
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count 1 6 2 1 0 0 0

word Tartan robot CHIMP CcMU bio soft ankle

p(x|z) 0.09 0.55 0.18 0.09 0.0 0.0 0.0

1
sensor

0.09

p(X|z) = | [ p(zy]2))

(0.09)'(0.55)° - - - (0.09)*

Numbers get really small so use log probabilities

log p(X|z = ‘grandchallenge’) = —2.42 — 3.68 — 3.43 — 2.42 — 0.07 — 0.07 — 0.07 — 2.42 = —14.58

log p(X |z = ‘softrobot’) = —7.63 — 9.37 — 15.18 — 2.97 — 0.02 — 0.01 — 0.02 — 2.27 = —37.48

* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior
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DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie Mellon
University's National
Robotics Engineering
Center ranked third among
teams competing in the
Defense Advanced
Research Projects Agency
(DARPA) Raobotics
Challenge  Trals  this
weekend in Homestead,
Fla, and was selected by
the agency asone of eight
teams eligible for DARPA

funding to' prepare for next
December's  finals. The
team's four-limbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, robot
scored 18 out of apossible
32 . points . dunng . the
two-day trials. . It
demonstrated its ability to
petform  such tasks  as
removing debris, cutting a
hole through a wall and
closing a series of valves.

Ren
folly
mp

The
that
rela
the
beh
of a
exp:
inli
its

beh

 @artan Tim

Monday, Jamary 20, 2014 |
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Bio-Inspired Robotic Device

PITTSBURGH—A  soft,
wearable  device that
mimics the muscles,
tendons and ligaments of
the lower leg could aid in
the  rehabilitation = of
patients owith  ankle-foot
disorders such as drop
foot, said Yong-Lae Park
an assistant professor of
robotics  at | Camegie
Mellon University. Park,
working with collaborators
at Harvard University, the
University: of Southem
California, MIT ' and

BioSensics, developed an
active * 'orthotic ~ device
using soft plastics and
composite materials,
instead  of & ngd
exoskeleton. | The  soft
materials,  combined with

pneumatic artificial
muscles (PAMS),
lightweight sensors and
advanced control

software, made it possible
for the robotic device to
achieve natural motions in
the ankle.

http://www.fodey.com/generators/newspaper/snippet.asp
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* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior

count 1 6 2 1 0 0 0 1

word Tartan robot CHIMP CcMU bio soft ankle

p(x|z) 0.09 0.55 0.18 0.09 0.0 0.0 0.0 0.09

sensor

log p(X|z=grand challenge) = - 14.58
log p(X|z=bio inspired) = - 37.48

count O 4 0 1 4 5 3 2

word Tartan robot CHIMP CcMU bio soft ankle

p(x|z) 0.0 0.21 0.0 0.05 0.21 0.26

sensor

0.16 0.11

log p(X|z=grand challenge) = - 94.06
log p(X|z=bio inspired) = - 32.41



Support Vector Machine



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat




Score function

class scores

i J . )«A“.’V!/ VN ;
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Linear Classifier

define a score function data (histogram)

/

f(wzawvb) =Wz +b

; \

“weights”

ublas Vectoru
class scores

uparametersu



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Convert image to histogram representation

input image

1

3.2

-96.8

02 |-05| 01 | 2.0 516

15 | 1.3 | 2.1 | 0.0 231
0 |025]| 02 |-03 24
|14 2

-1.2

437.9

61.95

f(wi; W7 b)

cat score

dog score

ship score



Distribution of data from two classes
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Distribution of data from two classes




First we need to understand hyperplanes...



Hyperplanes (lines) in 2D

w11+ woxre +b6=0

a line can be written as
dot product plus a bias

w-x+b=0

w € R?

another version, add a weight 1 and
push the bias inside

w-x =0

w e R3



Hyperplanes (lines) in 2D

w - -+ b =10 (offset/bias outside) - = ()  (offset/bias inside)

w1T1 + waxe + b =0

\mg:
N &




Hyperplanes (lines) in 2D

w - -+ b =10 (offset/bias outside) - = ()  (offset/bias inside)

w1T1 + wexre + b6 =0

Important property:
Free to choose any normalization of w

The line

Wwix1 + woxo +b =20

and the line

)\(wlml + WoXg + b) = (

define the same line




What is'the distance
to origin?

(hint: use normal form)

aaaaaaaaaaaaaaaaa

11111111111111111

w-x+b=0



w-x+b=0

scale w-x+b=0 by m

you get the normal form
xcosl +ysinf = p




What Is the distance 1
between two parallel lines?

(hint: use distance to origin) 'w-:][’:—|—b: —1
e ...;...1:...‘..3’;1,_
| w-x+b=0




distance

between two

parallel lines w-xr+b=—1
. w-x+b=0

Difference of distance to origin

b+ 1 b 1

|wl|  Jwl w]




Now we can go to 3D ...

Hyperplanes (planes) in 3D

w what are the dimensions of
this vector?

[wl]
w-z+b=0

What happens if you change b?



Hyperplanes (planes) in 3D

w

4




Hyperplanes (planes) in 3D

What’s the distance
between these W
parallel planes?

w-xr+b=-1

w-x+b=0

w-x+b=1



Hyperplanes (planes) in 3D

2
|w]|

w-xr+b=-1

w-x+b=0

w-x+b=1



What’s the best w?



What’s the best w?




What’s the best w?




What’s the best w?




What’s the best w?




What’s the best w?

Intuitively, the line that is the
farthest from all interior points



What’s the best w?

Maximum Margin solution:
most stable to perturbations of data



What’s the best w?

/“ support vectors

Want a hyperplane that is far away from ‘inner points’



Find hyperplane w such that ...

w-xz+b=1
w-x+b=20

w-x+b=-—1

the gap between parallel hyperplanes m IS maximized



Can be formulated as a maximization problem

What does this constraint mean? K
- label of the data point

Why is it +1 and -17?



Can be formulated as a maximization problem

Equivalently,

Where did the 2 go?

What happened to the labels?




‘Primal formulation’ of a linear SVM

min ||w||
w

Objective Function

subject to y;(w-x; +6) >1 for 2 =1,...,N

Constraints

This is a convex quadratic programming (QP) problem

(a unique solution exists)



‘soft” margin



What’s the best w?



What’s the best w?

o) O Very narrow margin

oo 2 o



Separating cats and dogs
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What’s the best w?

o O
o ©O O
© ©O0g4 © “
O |
oo o O Very narrow margin
O
o o © % o
o © ¢
© o o
o ©
O

Intuitively, we should allow for some misclassification if we
can get more robust classification



What’s the best w?

Trade-off between the MARGIN and the MISTAKES
(might be a better solution)



Adding slack variables &; > 0

misclassified
point

|w]



‘soft” margin

objective subject to



‘soft” margin

objective subject to

The slack variable allows for mistakes, -
= as long as the inverse margin is minimized.



‘soft” margin

objective subject to

Every constraint can be satisfied if slack is large
C Is a regularization parameter
Small C: ignore constraints (larger margin)
Big C. constraints (small margin)
Still QP problem (unique solution)



C = Infinity hard margin

feature y

0.4 0.2
feature x

Comment Window

SWM (L1) by Sequential Minimal Optimizer
Kernel linear (-), C: Inf
Kernel evaluations: 971

|

Mumber of Support Yectors: 3
Margin: 0.0966
Training error: 0.00%

3




feature y

10 soft margin

e’ 08 06 0.4 0.2 0

feature x

Comment YWindow

SWM (L1) by Sequential Minimal Optimizer
Kernel linear (-), C: 10.0000

Kernel evaluations: 2645

Mumber of Support Vectors: 4

Margin: 0.2265

Training error. 3.70%

0.4

0.6

0.8
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