
Structure from motion

16-385 Computer Vision
Spring 2019, Lecture 12http://www.cs.cmu.edu/~16385/

Course announcements
• Homework 3 has been posted and is due on March 10th.

- Yes, this is during the spring break per popular demand.
- No, you don’t have to work during spring break:

-- This is the same homework that was originally planned for March 8th.
-- You can finish the homework by March 8th.
-- Shifting the deadline to March 10th means that everyone gets two

extra late days for free.
- Any questions about the homework?
- How many of you have looked at/started/finished homework 3?

• Grades for homework 1 will be posted tonight.

• Grades for homework 2 will be posted before the mid-semester grades are due.

• Yannis will have extra office hours Tuesday 3-5 pm.

Leftover from lecture 11:

• Template matching.

• Structured light.

New in lecture 12:

• A note on normalization.

• Two-view structure from motion.

• Ambiguities in structure from motion.

• Affine structure from motion.

• Multi-view structure from motion.

• Large-scale structure from motion.

Overview of today’s lecture

Slide credits

Many of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

• Noah Snavely (Cornell University).

• Rob Fergus (New York University).

A note on normalization

Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

0=

Fxx'

for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,





















=

333231

232221

131211

fff

fff

fff

F

each match gives a linear equation

0''''''
333231232221131211
=++++++++ fvfuffvfvvfuvfufvufuu

0

1´´´´´´

1´´´´´´

1´´´´´´

33

32

31

23

22

21

13

12

11

222222222222

111111111111

=





















































f

f

f

f

f

f

f

f

f

vuvvvvuuuvuu

vuvvvvuuuvuu

vuvvvvuuuvuu

nnnnnnnnnnnn



Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!

Orders of magnitude difference

between column of data matrix

→ least-squares yields poor results

Normalized 8-point algorithm

(0,0)

(700,500)

(700,0)

(0,500)

(1,-1)

(0,0)

(1,1)(-1,1)

(-1,-1)























−

−

1

1
500

2

10
700

2

normalized least squares yields good results

Transform image to ~[-1,1]x[-1,1]

Normalized 8-point algorithm

1. Transform input by ,

2. Call 8-point on to obtain

3.

ii Txx =ˆ '

i

'

i Txx =ˆ

'

ii xx ˆ,ˆ

TFTF ˆΤ'=

F̂

0=

Fxx'

0ˆ'ˆ
1

=
−−

xFTTx'

F̂

Normalized 8-point algorithm

A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...

x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...

x1(1,:)' x1(2,:)' ones(npts,1)];

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);

F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise

F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);

Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

Two-view structure from motion

Structure
(scene geometry)

Motion
(camera geometry)

Measurements

Pose Estimation known estimate
3D to 2D

correspondences

Triangulation estimate known
2D to 2D

coorespondences

Reconstruction estimate estimate
2D to 2D

coorespondences

Structure from motion

Camera calibration &

triangulation
• Suppose we know 3D points

• And have matches between these points and an image

• How can we compute the camera parameters?

• Suppose we have know camera parameters, each of
which observes a point

• How can we compute the 3D location of that point?

Structure from motion

• SfM solves both of these problems at once

• A kind of chicken-and-egg problem

• (but solvable)

Given a set of matched points

Estimate the camera matrices

Estimate the 3D point

Reconstruction
(2 view structure from motion)

Given a set of matched points

Estimate the camera matrices

Estimate the 3D point

Reconstruction
(2 view structure from motion)

‘structure’

‘motion’
(of the cameras)

Two-view SfM

1. Compute the Fundamental Matrix F from points

correspondences

Two-view SfM

1. Compute the Fundamental Matrix F from points

correspondences

8-point algorithm

Two-view SfM

2. Compute the camera matrices P from the Fundamental

matrix

P = [I | 0] and P’ = [[ex]F | e’]

1. Compute the Fundamental Matrix F from points

correspondences

8-point algorithm

Camera matrices corresponding to the

fundamental matrix F may be chosen as

(See Hartley and Zisserman C.9 for proof)

Find the configuration where the points is in front of both cameras

Two-view SfM

2. Compute the camera matrices P from the Fundamental

matrix

P = [I | 0] and P’ = [[e’x]F | e’]

3. For each point correspondence, compute the point X in

3D space (triangularization)

DLT with x = P X and x’ = P’ X

1. Compute the Fundamental Matrix F from points

correspondences

8-point algorithm

Triangulation

image 2image 1

Find 3D object point

camera 1 with matrix camera 2 with matrix

Two-view SfM

2. Compute the camera matrices P from the Fundamental

matrix

P = [I | 0] and P’ = [[e’x]F | e’]

3. For each point correspondence, compute the point X in

3D space (triangularization)

DLT with x = P X and x’ = P’ X

1. Compute the Fundamental Matrix F from points

correspondences

8-point algorithm

Is SfM always uniquely

solvable?

Ambiguities in structure

from motion

Is SfM always uniquely

solvable?

• No…

SfM – Failure cases

• Necker reversal

Projective Ambiguity

• Reconstruction is ambiguous by an arbitrary 3D

projective transformation without prior knowledge of

camera parameters

Structure from motion

• Given: m images of n fixed 3D points

xij = Pi Xj , i = 1, … , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and

n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at

the same time, scale the camera matrices by the

factor of 1/k, the projections of the scene points in the

image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

)(
1

XPPXx k
k









==

Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at

the same time, scale the camera matrices by the

factor of 1/k, the projections of the scene points in the

image remain exactly the same

• More generally: if we transform the scene using a

transformation Q and apply the inverse transformation

to the camera matrices, then the images do not

change

()()QXPQPXx
-1

==

Calibrated cameras

(similarity projection ambiguity)

Uncalibrated cameras

(projective projection ambiguity)

Types of ambiguity











v
T

v

tAProjective

15dof

Affine

12dof

Similarity

7dof

Euclidean

6dof

Preserves intersection and

tangency

Preserves parallellism,

volume ratios

Preserves angles, ratios of

length











10

tA

T











10

tR

T

s











10

tR

T

Preserves angles, lengths

• With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean

Slide: S. Lazebnik

Projective ambiguity

()()XQPQPXx
 P

-1

 P
==

Projective ambiguity

Affine ambiguity

()()XQPQPXx
 A

-1

 A
==

Affine

Affine ambiguity

Similarity ambiguity

()()XQPQPXx
S

-1

S
==

Similarity ambiguity

What can we do to remove ambiguities?

Affine structure from

motion

Structure from motion

• Let’s start with affine cameras (the math is easier)

center at

infinity

Recall: Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World

Orthographic Projection

Parallel Projection

Affine cameras

Affine cameras

• A general affine camera combines the effects of an

affine transformation of the 3D space, orthographic

projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in

inhomogeneous coordinates










=





















=





















=
10

bA
P

1000

]affine44[

1000

0010

0001

]affine33[
2232221

1131211

baaa

baaa

x

X
a1

a2

bAXx +=












+






























=













=

2

1

232221

131211

b

b

Z

Y

X

aaa

aaa

y

x

Projection of

world origin

Affine structure from motion

• Given: m images of n fixed 3D points:

xij = Ai Xj + bi , i = 1,… , m, j = 1, … , n

• Problem: use the mn correspondences xij to estimate
m projection matrices Ai and translation vectors bi,
and n points Xj

• The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12

• For two views, we need four point correspondences














→























→








 −

1

X
Q

1

X
,Q

10

bA

10

bA
1

Affine structure from motion

• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world

coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to

the 3D point Xi by

()

ji

n

k

kji

n

k

ikiiji

n

k

ikijij

n

nn

XAXXA

bXAbXAxxx

ˆ1

11
ˆ

1

11

=









−=

+−+=−=





=

==

jiij
XAx =ˆ

Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:

























=

mnmm

n

n

xxx

xxx

xxx

D

ˆˆˆ

ˆˆˆ

ˆˆˆ

21

22221

11211









cameras

(2m)

points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:

 
n

mmnmm

n

n

XXX

A

A

A

xxx

xxx

xxx

D 










21

2

1

21

22221

11211

ˆˆˆ

ˆˆˆ

ˆˆˆ

























=

























=

cameras

(2m × 3)

points (3 × n)

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Factorizing the measurement matrix

Factorizing the measurement matrix

• Singular value decomposition of D:

Factorizing the measurement matrix

• Singular value decomposition of D:

Factorizing the measurement matrix

• Obtaining a factorization from SVD:

This decomposition minimizes

|D-MS|2

Affine ambiguity

• The decomposition is not unique. We get the same D

by using any 3×3 matrix C and applying the

transformations M → MC, S →C-1S

• That is because we have only an affine transformation

and we have not enforced any Euclidean constraints

(like forcing the image axes to be perpendicular, for

example)

• Orthographic: image axes are perpendicular
and of unit length

Eliminating the affine ambiguity

x

X
a1

a2

a1 · a2 = 0

|a1|
2 = |a2|

2 = 1

Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: L
= CCT

• Update A and X: A = AC, X = C-1X










=

T

i

T

i

i

2

1

~

~
~

a

a
Awhere

1
~~

11
=

T

i

TT

i
aCCa

1
~~

22
=

T

i

TT

i
aCCa

0
~~

21
=

T

i

TT

i
aCCa

~ ~

Three equations for each image i

Slide: D. Hoiem

Algorithm summary

• Given: m images and n features xij

• For each image i, center the feature coordinates

• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views

• Row i contains one coordinate of the projections of all the n

points in image i

• Factorize D:

• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U

• Create V3 by taking the first 3 columns of V

• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:

• M = U3W3
½ and S = W3

½ V3
T (or M = U3 and S = W3V3

T)

• Eliminate affine ambiguity

Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf

Multi-view projective

structure from motion

Projective structure from motion

• Given: m images of n fixed 3D points

zij xij = Pi Xj , i = 1,… , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D

points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Projective structure from motion

• Given: m images of n fixed 3D points

zij xij = Pi Xj , i = 1,… , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D

points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only

be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when

2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed

Projective SFM: Two-camera case

• Compute fundamental matrix F between the two views

• First camera matrix: [I|0]

• Second camera matrix: [A|b]

• Then b is the epipole (FTb = 0), A = –[b×]F

Sequential structure from motion

•Initialize motion from two images

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of

new camera using all the known

3D points that are visible in its

image – calibration c
a
m

e
ra

s

points

Sequential structure from motion

•Initialize motion from two images

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of

new camera using all the known

3D points that are visible in its

image – calibration

• Refine and extend structure:

compute new 3D points,

re-optimize existing points that

are also seen by this camera –

triangulation

c
a
m

e
ra

s

points

Sequential structure from motion

•Initialize motion from two images

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of

new camera using all the known

3D points that are visible in its

image – calibration

• Refine and extend structure:

compute new 3D points,

re-optimize existing points that

are also seen by this camera –

triangulation

•Refine structure and motion: bundle

adjustment

c
a
m

e
ra

s

points

Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error

()
2

1 1

,),( 
= =

=

m

i

n

j

jiij
DE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj

Review: Structure from motion

• Ambiguity

• Affine structure from motion

• Factorization

• Dealing with missing data

• Incremental structure from motion

• Projective structure from motion

• Bundle adjustment

Structure
(scene geometry)

Motion
(camera geometry)

Measurements

Pose Estimation known estimate
3D to 2D

correspondences

Triangulation estimate known
2D to 2D

coorespondences

Reconstruction estimate estimate
2D to 2D

coorespondences

Large-scale structure from

motion

Structure from motion

• Input: images with points in correspondence
pi,j = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side)
(top)

15,464

76,389

37,383

Standard way to view photos

Photo Tourism

Input: Point correspondences

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature description

Describe features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental

matrix between each pair

Correspondence estimation

• Link up pairwise matches to form connected components of matches across several
images

Image 1 Image 2 Image 3 Image 4

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

http://www.graphviz.org/

Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize

g(R,T,X)

p1,1

p1,2

p1,3

non-linear least squares

Global structure from motion

• Minimize sum of squared reprojection errors:

• Minimizing this function is called bundle adjustment

– Optimized using non-linear least squares, e.g. Levenberg-Marquardt

predicted
image location

observed
image location

indicator variable:
is point i visible in image j ?

Problem size

• What are the variables?

• How many variables per camera?

• How many variables per point?

• Trevi Fountain collection

466 input photos

+ > 100,000 3D points

= very large optimization problem

Doing bundle adjustment

• Minimizing g is difficult
– g is non-linear due to rotations, perspective division
– lots of parameters: 3 for each 3D point, 6 for each camera
– difficult to initialize
– gauge ambiguity: error is invariant to a similarity transform

(translation, rotation, uniform scale)

• Many techniques use non-linear least-squares (NLLS)
optimization (bundle adjustment)
– Levenberg-Marquardt is one common algorithm for NLLS
– Lourakis, The Design and Implementation of a Generic

Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm,
http://www.ics.forth.gr/~lourakis/sba/

– http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

http://www.ics.forth.gr/~lourakis/sba/
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

Incremental structure from motion

Final reconstruction

More examples

More examples

More examples

models/points.ply.0.ply

http://grail.cs.washington.edu/projects/rome/

Even larger scale SfM

City-scale structure from motion

• “Building Rome in a day”

http://grail.cs.washington.edu/projects/rome/

SfM applications

• 3D modeling

• Surveying

• Robot navigation and mapmaking

• Visual effects (“Match moving”)

– https://www.youtube.com/watch?v=RdYWp70P_kY

https://www.youtube.com/watch?v=RdYWp70P_kY

Applications – Photosynth

Applications – Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY

https://www.youtube.com/watch?v=SOpwHaQnRSY

Summary: 3D geometric vision

• Single-view geometry
• The pinhole camera model

– Variation: orthographic projection

• The perspective projection matrix

• Intrinsic parameters

• Extrinsic parameters

• Calibration

• Multiple-view geometry
• Triangulation

• The epipolar constraint
– Essential matrix and fundamental matrix

• Stereo
– Binocular, multi-view

• Structure from motion
– Reconstruction ambiguity

– Affine SFM

– Projective SFM

References

Basic reading:
• Szeliski textbook, Chapter 7.
• Hartley and Zisserman, Chapter 18.

