
Structure from motion

16-385 Computer Vision
Spring 2019, Lecture 12http://www.cs.cmu.edu/~16385/



Course announcements
• Homework 3 has been posted and is due on March 10th.

- Yes, this is during the spring break per popular demand.
- No, you don’t have to work during spring break: 

-- This is the same homework that was originally planned for March 8th.
-- You can finish the homework by March 8th.
-- Shifting the deadline to March 10th means that everyone gets two 

extra late days for free.
- Any questions about the homework?
- How many of you have looked at/started/finished homework 3?

• Grades for homework 1 will be posted tonight.

• Grades for homework 2 will be posted before the mid-semester grades are due.

• Yannis will have extra office hours Tuesday 3-5 pm.



Leftover from lecture 11:

• Template matching.

• Structured light.

New in lecture 12:

• A note on normalization.

• Two-view structure from motion.

• Ambiguities in structure from motion.

• Affine structure from motion.

• Multi-view structure from motion.

• Large-scale structure from motion.

Overview of today’s lecture



Slide credits

Many of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

• Noah Snavely (Cornell University).

• Rob Fergus (New York University).



A note on normalization



Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

0=

Fxx'

for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,
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Problem with 8-point algorithm
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!

Orders of magnitude difference

between column of data matrix

→ least-squares yields poor results



Normalized 8-point algorithm
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normalized least squares yields good results

Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

1. Transform input by                ,

2. Call 8-point on           to obtain

3.

ii Txx =ˆ '
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Normalized 8-point algorithm

A = [x2(1,:)'.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...

x1(1,:)'             x1(2,:)'          ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);

F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise

F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



Two-view structure from motion



Structure
(scene geometry)

Motion
(camera geometry)

Measurements

Pose Estimation known estimate
3D to 2D 

correspondences

Triangulation estimate known
2D to 2D 

coorespondences

Reconstruction estimate estimate
2D to 2D 

coorespondences



Structure from motion



Camera calibration & 

triangulation
• Suppose we know 3D points

• And have matches between these points and an image

• How can we compute the camera parameters?

• Suppose we have know camera parameters, each of 
which observes a point

• How can we compute the 3D location of that point?



Structure from motion

• SfM solves both of these problems at once

• A kind of chicken-and-egg problem

• (but solvable)



Given a set of matched points

Estimate the camera matrices

Estimate the 3D point 

Reconstruction
(2 view structure from motion)



Given a set of matched points

Estimate the camera matrices

Estimate the 3D point 

Reconstruction
(2 view structure from motion)

‘structure’

‘motion’
(of the cameras)



Two-view SfM

1. Compute the Fundamental Matrix F from points 

correspondences



Two-view SfM

1. Compute the Fundamental Matrix F from points 

correspondences

8-point algorithm



Two-view SfM

2. Compute the camera matrices P from the Fundamental 

matrix

P = [ I | 0 ]  and  P’ = [ [ex]F | e’ ]

1. Compute the Fundamental Matrix F from points 

correspondences

8-point algorithm



Camera matrices corresponding to the 

fundamental matrix F may be chosen as

(See Hartley and Zisserman C.9 for proof)



Find the configuration where the points is in front of both cameras



Two-view SfM

2. Compute the camera matrices P from the Fundamental 

matrix

P = [ I | 0 ]  and  P’ = [ [e’x]F | e’ ]

3. For each point correspondence, compute the point X in 

3D space (triangularization)

DLT with x = P X and x’ = P’ X

1. Compute the Fundamental Matrix F from points 

correspondences

8-point algorithm



Triangulation

image 2image 1

Find 3D object point

camera 1 with matrix camera 2 with matrix



Two-view SfM

2. Compute the camera matrices P from the Fundamental 

matrix

P = [ I | 0 ]  and  P’ = [ [e’x]F | e’ ]

3. For each point correspondence, compute the point X in 

3D space (triangularization)

DLT with x = P X and x’ = P’ X

1. Compute the Fundamental Matrix F from points 

correspondences

8-point algorithm



Is SfM always uniquely 

solvable?



Ambiguities in structure 

from motion



Is SfM always uniquely 

solvable?

• No…



SfM – Failure cases

• Necker reversal



Projective Ambiguity

• Reconstruction is ambiguous by an arbitrary 3D 

projective transformation without prior knowledge of 

camera parameters



Structure from motion

• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 

n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3



Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same:

It is impossible to recover the absolute scale of the scene!
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Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse transformation 

to the camera matrices, then the images do not 

change

( )( )QXPQPXx
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Calibrated cameras

(similarity projection ambiguity)

Uncalibrated cameras

(projective projection ambiguity)



Types of ambiguity
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean

Slide: S. Lazebnik



Projective ambiguity
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Projective ambiguity



Affine ambiguity
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Affine ambiguity



Similarity ambiguity
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Similarity ambiguity



What can we do to remove ambiguities?



Affine structure from 

motion



Structure from motion

• Let’s start with affine cameras (the math is easier)

center at

infinity



Recall: Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World



Orthographic Projection

Parallel Projection

Affine cameras



Affine cameras

• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 

projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 

inhomogeneous coordinates
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Affine structure from motion

• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12

• For two views, we need four point correspondences
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Affine structure from motion

• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 

coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to 

the 3D point Xi by
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Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Affine structure from motion

• Let’s create a 2m × n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Factorizing the measurement matrix



Factorizing the measurement matrix

• Singular value decomposition of D:



Factorizing the measurement matrix

• Singular value decomposition of D:



Factorizing the measurement matrix

• Obtaining a factorization from SVD:

This decomposition minimizes

|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 

by using any 3×3 matrix C and applying the 

transformations M → MC, S →C-1S

• That is because we have only an affine transformation 

and we have not enforced any Euclidean constraints 

(like forcing the image axes to be perpendicular, for 

example)



• Orthographic: image axes are perpendicular 
and of unit length

Eliminating the affine ambiguity
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2 = 1



Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: L 
= CCT

• Update A and X: A = AC, X = C-1X
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Three equations for each image i

Slide: D. Hoiem



Algorithm summary

• Given: m images and n features xij

• For each image i, center the feature coordinates

• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views

• Row i contains one coordinate of the projections of all the n 

points in image i

• Factorize D:

• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U

• Create V3 by taking the first 3 columns of V

• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:

• M = U3W3
½  and S = W3

½ V3
T (or M = U3 and S = W3V3

T)

• Eliminate affine ambiguity



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 

A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Multi-view projective 

structure from motion



Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3



Projective structure from motion

• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 

points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only 

be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 

2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed



Projective SFM: Two-camera case

• Compute fundamental matrix F between the two views

• First camera matrix: [I|0]

• Second camera matrix: [A|b]

• Then b is the epipole (FTb = 0), A = –[b×]F



Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration c
a
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Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points that 

are also seen by this camera –

triangulation 
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Sequential structure from motion

•Initialize motion from two images 

using fundamental matrix

•Initialize structure by triangulation

•For each additional view:

• Determine projection matrix of 

new camera using all the known 

3D points that are visible in its 

image – calibration

• Refine and extend structure: 

compute new 3D points, 

re-optimize existing points that 

are also seen by this camera –

triangulation 

•Refine structure and motion: bundle 

adjustment
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Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error
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Review: Structure from motion

• Ambiguity

• Affine structure from motion

• Factorization

• Dealing with missing data

• Incremental structure from motion

• Projective structure from motion

• Bundle adjustment



Structure
(scene geometry)

Motion
(camera geometry)

Measurements

Pose Estimation known estimate
3D to 2D 

correspondences

Triangulation estimate known
2D to 2D 

coorespondences

Reconstruction estimate estimate
2D to 2D 

coorespondences



Large-scale structure from 

motion



Structure from motion

• Input: images with points in correspondence      
pi,j = (ui,j,vi,j)

• Output
• structure: 3D location xi for each point pi
• motion: camera parameters Rj , tj possibly Kj

• Objective function: minimize reprojection error

Reconstruction (side)
(top)



15,464 

76,389 

37,383 



Standard way to view photos



Photo Tourism



Input: Point correspondences



Feature detection

Detect features using SIFT [Lowe, IJCV 2004]



Feature description

Describe features using SIFT [Lowe, IJCV 2004]



Feature matching

Match features between each pair of images



Feature matching

Refine matching using RANSAC to estimate fundamental 

matrix between each pair



Correspondence estimation

• Link up pairwise matches to form connected components of matches across several 
images

Image 1 Image 2 Image 3 Image 4



Image connectivity graph

(graph layout produced using  the Graphviz toolkit: http://www.graphviz.org/)

http://www.graphviz.org/


Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize

g(R,T,X)

p1,1

p1,2

p1,3

non-linear least squares



Global structure from motion

• Minimize sum of squared reprojection errors:

• Minimizing this function is called bundle adjustment

– Optimized using non-linear least squares, e.g. Levenberg-Marquardt

predicted
image location

observed
image location

indicator variable:
is point i visible in image j ?



Problem size

• What are the variables? 

• How many variables per camera?

• How many variables per point?

• Trevi Fountain collection

466 input photos

+ > 100,000 3D points

= very large optimization problem 



Doing bundle adjustment

• Minimizing g is difficult
– g is non-linear due to rotations, perspective division
– lots of parameters: 3 for each 3D point, 6 for each camera
– difficult to initialize
– gauge ambiguity: error is invariant to a similarity transform 

(translation, rotation, uniform scale) 

• Many techniques use non-linear least-squares (NLLS) 
optimization (bundle adjustment)
– Levenberg-Marquardt is one common algorithm for NLLS
– Lourakis, The Design and Implementation of a Generic 

Sparse Bundle Adjustment Software Package Based on the 
Levenberg-Marquardt Algorithm, 
http://www.ics.forth.gr/~lourakis/sba/

– http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

http://www.ics.forth.gr/~lourakis/sba/
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm


Incremental structure from motion



Final reconstruction



More examples



More examples



More examples





models/points.ply.0.ply




http://grail.cs.washington.edu/projects/rome/

Even larger scale SfM

City-scale structure from motion

• “Building Rome in a day”

http://grail.cs.washington.edu/projects/rome/


SfM applications

• 3D modeling

• Surveying

• Robot navigation and mapmaking

• Visual effects (“Match moving”)

– https://www.youtube.com/watch?v=RdYWp70P_kY

https://www.youtube.com/watch?v=RdYWp70P_kY


Applications – Photosynth



Applications – Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY

https://www.youtube.com/watch?v=SOpwHaQnRSY


Summary: 3D geometric vision

• Single-view geometry
• The pinhole camera model

– Variation: orthographic projection

• The perspective projection matrix

• Intrinsic parameters

• Extrinsic parameters

• Calibration

• Multiple-view geometry
• Triangulation

• The epipolar constraint
– Essential matrix and fundamental matrix

• Stereo 
– Binocular, multi-view

• Structure from motion
– Reconstruction ambiguity

– Affine SFM

– Projective SFM



References

Basic reading:
• Szeliski textbook, Chapter 7.
• Hartley and Zisserman, Chapter 18.


