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Course announcements

• Homework 4 has been posted.
- Due Friday March 23rd (one-week homework!)
- Any questions about the homework?
- How many of you have looked at/started/finished homework 4?

• Talk this week: Katie Bouman, “Imaging the Invisible”.
- Wednesday, March 21st 10:00 AM GHC6115.
- How many of you attended this talk?



Overview of today’s lecture
• Leftover from color lecture.

• Imaging sensor primer.

• Color sensing in cameras.

• In-camera image processing pipeline.

• Some general thoughts on the image processing pipeline.

• Radiometric calibration (a.k.a. HDR imaging)

• Color calibration.

Take-home message: The values of pixels in a photograph and 
the output of your camera’s sensor are two very different things.



Slide credits

A lot of inspiration and quite a few examples for these slides were taken directly from:

• Kayvon Fatahalian (15-769, Fall 2016).

• Michael Brown (CVPR 2016 Tutorial on understanding the image processing pipeline).



spectral reflectance

illuminant spectrum

Human visual system

spectral radiance

retinal color: 
linear radiance 
measurement



spectral reflectance

illuminant spectrum

Digital imaging system

spectral radiance

What functional of 
radiance are we 

measuring?



The modern photography pipeline



The modern photography pipeline

post-capture processing 
(16-385, 15-463)

optics and 
optical controls

(15-463)

sensor, analog 
front-end, and 

color filter array

(this lecture)

in-camera image 
processing 

pipeline

(this lecture)



Imaging sensor primer



Imaging sensors

Canon 6D sensor
(20.20 MP, full-frame)

• Very high-level overview of digital imaging sensors.

• We could spend an entire course covering imaging sensors.



What does an imaging sensor do?

When the camera shutter opens…

array of photon buckets

… photon buckets begin to store photons...

close-up view of photon buckets

photons
… exposure begins…

… until the camera shutter closes. Then, they 
convert stored photons to intensity values.



Nobel Prize in Physics

Do you know who this is?



Photoelectric effect

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics,
and especially for his discovery of the law of the photoelectric effect”

Albert Einstein

incident 
photons

emitted 
electrons



Basic imaging sensor design

made of silicon, emits 
electrons from photons

photodiodephotodiode

silicon for read-
out etc. circuitry

color filtercolor filter

helps photodiode 
collect more light 

(also called lenslet)

microlensmicrolens

We will see what the color filters are for later in this lecture.

• Lenslets also filter the image 
to avoid resolution artifacts.

• Lenslets are problematic when 
working with coherent light.

• Many modern cameras do not 
have lenslet arrays.

We will discuss these issues in 
more detail at a later lecture.potential 

well
potential 

well

stores emitted 
electrons



Photodiode quantum efficiency (QE)

How many of the incident photons will the photodiode 
convert into electrons?

QE   =
# electrons

# photons

• Fundamental optical performance metric of imaging sensors.

• Not the only important optical performance metric!

• We will see a few more later in the lecture.

incident 
photons

emitted 
electrons



Photodiode response function
For silicon photodiodes, usually linear, but:

• non-linear when potential well is 
saturated (over-exposure)

• non-linear near zero (due to noise)

We will see how to deal with these issues in a 
later lecture (high-dynamic-range imaging).

over-exposure 
(non-linearity due 

to sensor saturation)

under-exposure 
(non-linearity due 
to sensor noise)



Photodiode full well capacity

How many electrons can photodiode 
store before saturation?

• Another important optical performance metric of imaging sensors.



Two main types of imaging sensors

Charged Coupled Device (CCD): 
converts electrons to voltage using 

readout circuitry separate from pixel

Complementary Metal Oxide Semiconductor (CMOS): 
converts electrons to voltage using 

per-pixel readout circuitry

Can you think of advantages and disadvantages of each type?



Two main types of imaging sensors

Charged Coupled Device (CCD): 
converts electrons to voltage using 

readout circuitry separate from pixel

Complementary Metal Oxide Semiconductor (CMOS): 
converts electrons to voltage using 

per-pixel readout circuitry

higher sensitivity
lower noise

faster read-out
lower cost



CCD vs CMOS

• Modern CMOS sensors 
have optical performance 
comparable to CCD 
sensors.

• Most modern 
commercial and 
industrial cameras use 
CMOS sensors.

Can you guess what the 
QE of the human eye is?



CMOS sensor (very) simplified layout

…
exposed region 
(light gets here)

optically black region 
(no light gets here)photodiode 

(pixel)

row selection 
register

analog front-end

bitsrow buffer

Can anyone guess why there are 
pixels in the optically black region?

active pixel sensor 
(2D array of pixels)



Analog front-end

analog amplifier (gain):
• gets voltage in range 

needed by A/D converter.
• accommodates ISO settings.
• accounts for vignetting.

look-up table (LUT):
• corrects non-linearities in 

sensor’s response function 
(within proper exposure).

• corrects defective pixels.

analog-to-digital 
converter (ADC):
• depending on sensor, 

output has 10-16 bits.
• most often (?) 12 bits.

analog 
voltage

analog 
voltage

discrete 
signal

discrete 
signal



Vignetting
Fancy word for: pixels far off the center receive less light

white wall under uniform light more interesting example of vignetting



Vignetting
Four types of vignetting:

• Mechanical: light rays blocked by hoods, filters, and other objects.

• Lens: similar, but light rays blocked by lens elements.

• Natural: due to radiometric laws (“cosine fourth falloff”).

• Pixel: angle-dependent sensitivity of photodiodes.

non-uniform 
gain



What does an imaging sensor do?
When the camera shutter opens, the sensor:

• at every photodiode, converts incident photons into electrons

• stores electrons into the photodiode’s potential well until it is full

… until camera shutter closes. Then, the analog front-end:

• reads out photodiodes’ wells, row-by-row, and converts them to analog signals

• applies a (possibly non-uniform) gain to these analog signals

• converts them to digital signals

• corrects non-linearities

… and finally returns an image.



Remember these?

made of silicon, emits 
electrons from photons

photodiodephotodiode

silicon for read-
out etc. circuitry

color filtercolor filter

helps photodiode 
collect more light 

(also called lenslet)

microlensmicrolens

We will see what the color filters are for later in this lecture.

• Lenslets also filter the image 
to avoid resolution artifacts.

• Lenslets are problematic when 
working with coherent light.

• Many modern cameras do not 
have lenslet arrays.

We will discuss these issues in 
more detail at a later lecture.potential 

well
potential 

well

stores emitted 
electrons



Color sensing in cameras



Color is an artifact of human perception

• “Color” is not an objective physical property of light (electromagnetic radiation).
• Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very small 

range of these wavelengths.

electromagnetic 
spectrum



Spectral Sensitivity Function (SSF)

• Any light sensor (digital or not) has different sensitivity to different wavelengths.

• This is described by the sensor’s spectral sensitivity function          .

• When measuring light of a some SPD           , the sensor produces a scalar response:

sensor 
response

light SPD sensor SSF

Weighted combination of light’s SPD: light contributes more at 
wavelengths where the sensor has higher sensitivity.



Spectral Sensitivity Function of Human Eye

• The human eye is a collection of light sensors called cone cells.

• There are three types of cells with different spectral sensitivity functions.

• Human color perception is three-dimensional (tristimulus color).

“short”

“medium”

“long”

cone distribution 
for normal vision 
(64% L, 32% M)



Color filter arrays (CFA)

• To measure color with a digital sensor, mimic cone cells of human vision system.

• “Cones” correspond to pixels that are covered by different color filters, each with its 
own spectral sensitivity function.

photodiodephotodiode

color filtercolor filter

microlensmicrolens

potential 
well

potential 
well

photodiode

color filter

microlens

potential 
well



What color filters to use?

Two design choices:

• What spectral sensitivity functions            to use for each color filter?

• How to spatially arrange (“mosaic”) different color filters? 

Bayer 
mosaic

SSF for 
Canon 50D

Why more 
green pixels?

Generally do not 
match human LMS. 



Many different CFAs
Finding the “best” CFA mosaic is an active research area.

CYGM
Canon IXUS, Powershot

RGBE
Sony Cyber-shot

How would you go about designing your own 
CFA? What criteria would you consider?



Many different spectral sensitivity functions

Each camera has its more or less unique, and most of the time secret, SSF.
• Makes it very difficult to correctly reproduce the color of sensor measurements.

Images of the same scene captured using 3 different cameras with identical sRGB settings.



Aside: can you think of other ways to capture color?



Aside: can you think of other ways to capture color?

[Slide credit: Gordon Wetzstein]



What does an imaging sensor do?
When the camera shutter opens, the sensor:

• at every photodiode, converts incident photons into electrons using mosaic’s SSF

• stores electrons into the photodiode’s potential well until it is full

… until camera shutter closes. Then, the analog front-end:

• reads out photodiodes’ wells, row-by-row, and converts them to analog signals

• applies a (possibly non-uniform) gain to these analog signals

• converts them to digital signals

• corrects non-linearities

… and finally returns an image.



After all of this, what does an image look like?

lots of 
noise

mosaicking 
artifacts

• Kind of disappointing.
• We call this the RAW image. 



The modern photography pipeline

post-capture processing 
(lectures 3-12)

optics and 
optical controls

(lectures 13-16)

sensor, analog 
front-end, and 

color filter array

(this lecture)

in-camera image 
processing 

pipeline

(this lecture)



The in-camera image processing pipeline



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)

see color lecture see 18-793



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



White balancing
Human visual system has chromatic adaptation:
• We can perceive white (and other colors) correctly under different light sources.

Retinal vs 
perceived color.



White balancing
Human visual system has chromatic adaptation:
• We can perceive white (and other colors) correctly under different light sources.
• Cameras cannot do that (there is no “camera perception”).

White balancing: The process of removing color casts so that colors that we would 
perceive as white are rendered as white in final image.

different whites
image captured 

under fluorescent
image white-

balanced to daylight



White balancing presets

Cameras nowadays come with a large number of presets: You can select which light you 
are taking images under, and the appropriate white balancing is applied.



Manual vs automatic white balancing

How can we do automatic white balancing?

Manual white balancing:
• Manually select object in photograph that is color-neutral and use it to normalize.
• Select a camera preset based on lighting.



Manual vs automatic white balancing

Manual white balancing:
• Manually select object in photograph that is color-neutral and use it to normalize.
• Select a camera preset based on lighting.

Automatic white balancing:
• Grey world assumption: force average color of scene to be grey.
• White world assumption: force brightest object in scene to be white.
• Sophisticated histogram-based algorithms (what most modern cameras do).



Automatic white balancing
Grey world assumption:
• Compute per-channel average.
• Normalize each channel by its average.
• Normalize by green channel average.

White world assumption:
• Compute per-channel maximum.
• Normalize each channel by its maximum.
• Normalize by green channel maximum. 

sensor RGBwhite-balanced 
RGB

sensor RGBwhite-balanced 
RGB



Automatic white balancing example

input image grey world white world



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



CFA demosaicing

Produce full RGB image from mosaiced sensor output.

Any ideas on how to do this?



CFA demosaicing

Produce full RGB image from mosaiced sensor output.

Interpolate from neighbors:
• Bilinear interpolation (needs 4 neighbors).
• Bicubic interpolation (needs more neighbors, may overblur).
• Edge-aware interpolation.
Large area of research.



Demosaicing by bilinear interpolation

Bilinear interpolation: Simply average your 4 neighbors.

G?G1

G4

G3

G2

G? =
G1 + G2 + G3 + G4

4

Neighborhood changes for different channels:



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Noise in images

Can be very pronounced in low-light images.



Three types of sensor noise
1) (Photon) shot noise:

• Photon arrival rates are a random process (Poisson distribution).

• The brighter the scene, the smaller the variance of the distribution.

2) Dark-shot noise:

• Emitted electrons due to thermal activity (becomes worse as sensor gets hotter.)

3) Read noise:

• Caused by read-out and AFE electronics (e.g., gain, A/D converter).

Bright scene and large pixels: photon shot noise is the main noise source.



How to denoise?



How to denoise?

Simple denoising: look at the neighborhood around you.

I5I4

I8

I6

I2I1 I3

I7 I9

I’
5 =

9

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9

• Mean filtering (take average):

• Median filtering (take median):

I’
5 = I1 , I2 , I3 , I4 , I5 , I6 , I7 , I8 , I9median( )

Large area of research.



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Tone reproduction

• Also known as gamma correction.

• Without tone reproduction, images look very dark.

Why does this happen?



Perceived vs measured brightness by human eye
We have already seen that sensor response is linear.

Human-eye response (measured brightness) is also linear.

However, human-eye perception (perceived brightness) is 
non-linear:
• More sensitive to dark tones.
• Approximately a Gamma function.



What about displays?
We have already seen that sensor response is linear.

Human-eye response (measured brightness) is also linear.

However, human-eye perception (perceived brightness) is 
non-linear:
• More sensitive to dark tones.
• Approximately a Gamma function.

Displays have a response opposite to that of human 
perception.



Tone reproduction

• Because of mismatch in displays and human eye perception, images look very dark.

How do we fix this?



Tone reproduction

• Because of mismatch in displays and human eye perception, images look very dark.

• Pre-emptively cancel-out the display response curve.
• Add inverse display transform here.
• This transform is the tone reproduction or gamma correction.



Tone reproduction curves

The exact tone reproduction curve depends on the camera.
• Often well approximated as Lγ, for different values of the power γ (“gamma”).
• A good default is γ = 1 / 2.2.

before gamma after gamma

Warning: Our values are no longer linear relative to scene radiance!



Tone reproduction
Question: Why not just keep measurements linear and do gamma correction right before we 
display the image?



Tone reproduction
Question: Why not just keep measurements linear and do gamma correction right before we 
display the image?

Answer: After this stage, we perform compression, which includes change from 12 to 8 bits.
• Better to use our available bits to encode the information we are going to need.



The (in-camera) image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Some general thoughts on the image processing 
pipeline



Do I ever need to use RAW?



Do I ever need to use RAW?

Emphatic yes!

• Every time you use a physics-based computer vision algorithm, you need linear 
measurements of radiance.

• Examples: photometric stereo, shape from shading, image-based relighting, illumination 
estimation, anything to do with light transport and inverse rendering, etc.

• Applying the algorithms on non-linear (i.e., not RAW) images will produce completely 
invalid results.



What if I don’t care about physics-based vision?



What if I don’t care about physics-based vision?

You often still want (rather than need) to use RAW!

• If you like re-finishing your photos (e.g., on Photoshop), RAW makes your life much easier 
and your edits much more flexible.



Is it even possible to get access to RAW images?



Is it even possible to get access to RAW images?

Quite often yes!

• Most DSLR cameras provide an option to store RAW image files.

• Certain phone cameras allow, directly or indirectly, access to RAW.

• Sometimes, it may not be “fully” RAW. The Lightroom app provides images after 
demosaicking but before tone reproduction.



I forgot to set my camera to RAW, can I still get the RAW file?

Nope, tough luck.

• The image processing pipeline is lossy: After all the steps, information about the original 
image is lost.

• Sometimes we may be able to reverse a camera’s image processing pipeline if we know 
exactly what it does (e.g., by using information from other similar RAW images).

• The conversion of PNG/JPG back to RAW is know as “de-rendering” and is an active 
research area.



Derendering



Why did you use italics in the previous slide?

What I described today is an “idealized” version of what we think commercial cameras do.

• Almost all of the steps in both the sensor and image processing pipeline I described 
earlier are camera-dependent.

• Even if we know the basic steps, the implementation details are proprietary information 
that companies actively try to keep secret.

• I will go back to a few of my slides to show you examples of the above.



The hypothetical image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end?

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance?
CFA 

demosaicing?
denoising?

color 
transforms?

tone 
reproduction?

compression
?

final RGB 
image (non-
linear, 8-bit)



Various curves

All of these sensitivity curves are different from camera to camera and kept secret.



Radiometric calibration 
(a.k.a. high dynamic range imaging)

(a.k.a. capturing linear images)



The image processing pipeline

Which parts of the image processing pipeline introduce non-linearities?

analog front-
end

RAW image

white 
balance

CFA 
demosaicing

denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image



The image processing pipeline

Is using RAW images sufficient to get linear images?

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Photodiode response function
For silicon photodiodes, usually linear, but:

• non-linear when potential well is saturated 
(over-exposure)

• non-linear near zero (due to noise)

We will see how to deal with these issues in a 
later lecture (high-dynamic-range imaging).

over-exposure 
(non-linearity due 

to sensor saturation)

under-exposure 
(non-linearity due 
to sensor noise)



Over/under exposure

in shadows we are 
limited by noise

in highlights we are 
limited by clipping











Slide credits



Our devices do not match the world



1500

1

25,000

400,000

2,000,000,000

The world has a high dynamic range



The world has a high dynamic range

10-6 106

adaptation range of our eyes

common real-world scenes



(Digital) sensors also have a low dynamic range

10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106

sensor



(Digital) images have an even lower dynamic range

10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

low exposure



(Digital) images have an even lower dynamic range

10-6 106

adaptation range of our eyes

common real-world scenes

10-6 106
image

high exposure



Our devices do not match the real world
• 10:1 photographic print (higher for glossy paper)

• 20:1 artist's paints

• 200:1 slide film

• 500:1 negative film

• 1000:1 LCD display

• 2000:1 digital SLR (at 12 bits)

• 100000:1 real world

Two challenges:

1. HDR imaging – which parts of the world to include to the 8-12 bits available to our device?

2. Tonemapping – which parts of the world to display in the 4-10 bits available to our device?



Key idea
1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image



Key idea
1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image



Ways to vary exposure
1. Shutter speed

2. F-stop (aperture, iris)

3. ISO

4. Neutral density (ND) filters

Pros and cons of each?



Ways to vary exposure
1. Shutter speed

– Range: about 30 sec to 1/4000 sec (6 orders of magnitude)
– Pros: repeatable, linear
– Cons: noise and motion blur for long exposure

2. F-stop (aperture, iris)
– Range: about f/0.98 to f/22 (3 orders of magnitude)
– Pros: fully optical, no noise
– Cons: changes depth of field

3. ISO
– Range: about 100 to 1600 (1.5 orders of magnitude)
– Pros: no movement at all
– Cons: noise

3. Neutral density (ND) filters
– Range: up to 6 densities (6 orders of magnitude)
– Pros: works with strobe/flash
– Cons: not perfectly neutral (color shift), extra glass (interreflections, aberrations), 

need to touch camera (shake)



Shutter speed

Note: shutter times usually obey a power series – each “stop” is a factor of 2

1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

usually really is

1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:

1. How many exposures?

2. What exposures?



Shutter speed

Note: shutter times usually obey a power series – each “stop” is a factor of 2

1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

usually really is

1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Questions:

1. How many exposures?

2. What exposures?

Answer: Depends on the scene, but a good default is 5 exposures, 
metered exposure and +- 2 stops around that



Key idea
1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image



RAW images have a linear response curve

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row

when not over/under exposed

No need for calibration in this case



Over/under exposure

in shadows we are 
limited by noise

in highlights we are 
limited by clipping



RAW (linear) image formation model

Exposure time:
t5 t4 t3 t2 t1

Real scene radiance for image pixel (x,y):    L(x, y) 

What is an expression for the image I(x,y) as a function of L(x,y)?



RAW (linear) image formation model

Exposure time:
t5 t4 t3 t2 t1

Real scene radiance for image pixel (x,y):    L(x, y) 

What is an expression for the image Ilinear(x,y) as a function of L(x,y)?

Ilinear(x,y) = clip[ ti ⋅ L(x,y) + noise ]

How would you merge these images into an HDR one?



Merging RAW (linear) exposure stacks

t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

How would you 
implement steps 1-2?



Merging RAW (linear) exposure stacks

t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

valid

noise

clipped



Merging RAW (linear) exposure stacks

t5 t4 t3 t2 t1

For each pixel:

1. Find “valid” images

2. Weight valid pixel values appropriately

3. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti



Merging result (after tonemapping)



What if I cannot use raw?



The image processing pipeline

The sequence of image processing operations applied by the camera’s image signal 
processor (ISP) to convert a RAW image into a “conventional” image.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Processed images have a non-linear response curve

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row

We must calibrate the response curve



The image processing pipeline

Which part of the pipeline does the non-linear response curve correspond to?

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



The image processing pipeline

Which part of the pipeline does the non-linear response curve correspond to?
• The tone reproduction (mostly).

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicing
denoising

color 
transforms

tone 
reproduction

compression
final RGB 

image (non-
linear, 8-bit)



Non-linear image formation model
Real scene radiance for image pixel (x,y): L(x, y)

How would you merge the non-linear images into an HDR one?

Exposure time: ti

Ilinear(x,y) = clip[ ti ⋅ L(x,y) + noise ]

Inon-linear(x,y) = f[ Ilinear(x,y) ]



Non-linear image formation model
Real scene radiance for image pixel (x,y): L(x, y)

Use inverse transform to estimate linear image, then proceed as before

Exposure time: ti

Ilinear(x,y) = clip[ ti ⋅ L(x,y) + noise ]

Inon-linear(x,y) = f[ Ilinear(x,y) ] Iest(x,y) = f-1[ Inon-linear(x,y) ]



Linearization

Inon-linear(x,y) = f[ Ilinear(x,y) ]

Iest(x,y) = f-1[ Inon-linear(x,y) ]



Merging non-linear exposure stacks

1. Calibrate response curve

2. Linearize images

For each pixel:

3. Find “valid” images

4. Weight valid pixel values appropriately

5. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti

Note: many possible weighting schemes



What if I cannot measure response curve?



Tone reproduction curves

The exact tone reproduction curve depends on the camera.
• Often well approximated as Lγ, for different values of the power γ (“gamma”).
• A good default is γ = 1 / 2.2.

before gamma after gamma

If nothing else, take the square of your image to approximately remove effect of tone 
reproduction curve.



Relative vs absolute radiance
Final fused HDR image gives radiance only up to a global scale
• If we know exact radiance at one point, we can convert relative HDR 

image to absolute radiance map

HDR image 
(relative radiance)

spotmeter (absolute 
radiance at one point)

absolute 
radiance map



Basic HDR approach

1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Any problems with this approach?



Basic HDR approach

1. Capture multiple LDR images at different exposures

2. Merge them into a single HDR image

Problem: Very sensitive to movement

• Scene must be completely static

• Camera must not move

Most modern automatic HDR solutions include an alignment step before merging exposures



Another type of HDR images
Light probes: place a chrome sphere in the scene and capture an HDR image
• Used to measure real-world illumination environments (“environment maps”)

Application: image-
based relighting 

(later lecture)



Another way to create HDR images

Physics-based renderers simulate radiance maps 
(relative or absolute)

• Their outputs are very often HDR images



A note about HDR today

• Most cameras (even phone cameras) 
have automatic HDR modes/apps

• Popular-enough feature that phone 
manufacturers are actively competing 
about which one has the best HDR

• The technology behind some of those apps 
(e.g., Google’s HDR+) is published in 
SIGGRAPH and SIGGRAPH Asia conferences



Color calibration
(a.k.a., measuring your camera’s color space)



Many different spectral sensitivity functions

Each camera has its more or less unique, and most of the time secret, SSF.
• Makes it very difficult to correctly reproduce the color of sensor measurements.

Images of the same scene captured using 3 different cameras with identical sRGB settings.



Linear color spaces

can insert any invertible M

basis for retinal color ⇔ color matching functions ⇔ primary colors ⇔ color space

change of basis matrix
representation of retinal 

color in LMS space
representation of retinal 

color in space of primaries



Linear color spaces
Change of color space:

desired reference color 
space (i.e., XYZ)

camera color 
space

𝑐′ = 𝐻 ∙ 𝑐

What does this look like?



Linear color spaces
Change of color space:

desired reference color 
space (i.e., XYZ)

camera color 
space

𝑐′ = 𝐻 ∙ 𝑐

What does this look like?
- It’s a homography!

How do we compute homographies?



Linear color spaces
Change of color space:

desired reference color 
space (i.e., XYZ)

camera color 
space

𝑐′ = 𝐻 ∙ 𝑐

What does this look like?
- It’s a homography!

How do we compute homographies?
- We use SVD and the DLT!

How many colors do we need to match?



Linear color spaces
Change of color space:

desired reference color 
space (i.e., XYZ)

camera color 
space

𝑐′ = 𝐻 ∙ 𝑐

What does this look like?
- It’s a homography!

How do we compute homographies?
- We use SVD and the DLT!

How many colors do we need to match?
- We need at least four colors.



Using (again) a color chart

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row

Color patches manufactured to have 
pre-calibrated XYZ coordinates.

Can we use any color chart image for 
color calibration?



Using (again) a color chart

Calibration chart can be used for:

1. color calibration

2. radiometric calibration (i.e., response curve) using the bottom row

Color patches manufactured to have 
pre-calibrated XYZ coordinates.

Can we use any color chart image for 
color calibration?

- It needs to be a linear image!

- Do radiometric calibration first.



An example

original color-corrected



Quick note

If you cannot do calibration, take a look at the image’s 
EXIF data (if available).

Often contains information about tone reproduction 
curve and color space.



Take-home messages

The values of pixels in a photograph and the values output by your 
camera’s sensor are two very different things.

The relationship between the two is complicated and unknown, 
and we often need to account for it when doing computer vision.
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Basic reading:
• Szeliski textbook, Section 2.3
• Michael Brown, “Understanding the In-Camera Image Processing Pipeline for Computer Vision,” CVPR 2016, 

very detailed discussion of issues relating to color photography and management, slides available at: 
http://www.comp.nus.edu.sg/~brown/CVPR2016_Brown.html

• Nine Degrees Below, https://ninedegreesbelow.com/
amazing resource for color photography, reproduction, and management.
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