Structure from motion

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2018, Lecture 12



Course announcements

Homework 3 has been posted and is due on March 9t

- Any questions about the homework?

- How many of you have looked at/started/finished homework 37
Grades for homework 1 have been posted.
Vote for Yannis’ office hours on Piazza.

Talk: Pulkit Agrawal, "Computational Sensorimotor Learning," Tuesday 10:00am
NSH 3305.



Overview of today’s lecture

Leftover from lecture 11:

« Structured light.

New in lecture 12:

* A note on normalization.

« Two-view structure from motion.

« Ambiguities in structure from motion.
 Affine structure from motion.

* Multi-view structure from motion.

« Large-scale structure from motion.



Slide credits

Many of these slides were adapted from:
 Kris Kitani (16-385, Spring 2017).
* Noah Snavely (Cornell University).

* Rob Fergus (New York University).



A note on normalization



Estimating F — 8-point algorithm

* The fundamental matrix F is defined by

X' Fx =0

for any pair of matches x and x” in two images.

f11 f12 13

e Letx=(u,v,1)"and x’=(u,v,1)T, F=f, f
f, f, f

31 32 33

22 23

each match gives a linear equation

uu f11+vu f12+u f13+uv f21+w f22+v f23+uf31+vf32+ f33:0



Problem with 8-point algorithm

1:11
f12
_ ) ) ; , , , . 1:13
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10000 ~10000 ~100  ~10000 ~10000 ~100 ~100 ~100 1 f31
Orders of magnitude difference 32
between column of data matrix f33
— least-squares yields poor results B -



Normalized 8-point algorithm

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]
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Normalized 8-point algorithm

1. Transform input by X, =Tx,, X. = TX.

Vo

2. Call 8-point on k., X.to obtain F
3. F=T'"FT

X' 'Fx =0

T |:|r k=0
>

/\.T
X

>4




Normalized 8-point algorithm

(x1, Tl] = normaliseZdpts(x1);
(x2, T2] = normalise2dpts (x2);

A= [x2((1,:)".*x1(1,:)"
X2 (2,:)".*x1(1, :)"
x1 (1, :)"

[U,D,V] = svd(A);

FF = reshape(V(:,9),3,3)"';

(U,D,V] = svd(F);
F = U*diag ([D(1l,1) D(2,2)

% Denormalise
FFo= T2'"*F*T1;

x2(1,:)"'.*x1 (2,
X2 (2,:)"'.*x1 (2,
x1(2,:)"

0])*VvV';

2)
2)

x2 (1, :)"
X2 (2, :)"
ones (npts, 1)



Results (ground truth)

B Ground truth with standard stereo calibratiqn




Results (8-point algorithm)

m 8-point algorithm




Results (normalized 8-point algorithm)

B Normalized 8-point algorithm




Two-view structure from motion



Structure Motion
(scene geometry) (camera geometry)

Measurements

3D to 2D

Poese Estimation known estimate e, R

2D to 2D

Triangulation estimate known coorespondences

2D to 2D

Reconstruction estimate estimate T
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Camera calibration &
triangulation

. Suppose we know 3D points

- And have matches between these points and an image

- How can we compute the camera parameters?

- Suppose we have know camera parameters, each of

which observes a point

- How can we compute the 3D location of that point?



Structure from motion

. SfM solves both of these problems at once
- A kind of chicken-and-egg problem

. (but solvable)



Reconstruction
(2 view structure from motion)

Given a set of matched points

{:BE': iB;}

Estimate the camera matrices

P.P

Estimate the 3D point

X



Reconstruction
(2 view structure from motion)

Given a set of matched points

{:B‘i: :B;}

Estimate the camera matrices

[ oo
P: P < ‘motion’

(of the cameras)

Estimate the 3D point

W ‘ :
X. < structure



Two-view StM

Al
xz Fx, =0



Two-view StM

8-point algorithm

/T _
xz Fx, =0



Two-view StM

8-point algorithm

P=[I|0] and P'=[[e]F| e}




Camera matrices corresponding to the
fundamental matrix F may be chosen as

P = [I|0] P’ =[[ex]F|€]

(See Hartley and Zisserman C.9 for proof)



Find the configuration where the points Is in front of both cameras

(c) d)



Two-view StM

8-point algorithm

P=[I|0] and P"=[[ek]F|e']

3. For each point correspondence, compute the point X In

DLTwithx =P Xandx' =P X




Triangulation

Find 3D object point

image 1 Image 2

camera 1 with matrix P camera 2 with matrix Pf



Two-view StM

8-point algorithm

P=[I|0] and P"=[[ek]F|e']

3. For each point correspondence, compute the point X In

DLTwithx =P Xandx' =P X




s StM always uniquely
solvable?



Ambiguities In structure
from motion



s StM always uniquely
solvable?

A7
< >

- No...




SfM — Failure cases

* Necker reversal

b4 4
\\\\\\ : ll///// \‘
K / /,ﬂp“""“"“k\
T w woaoa T // Q&
¥ “ R
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Projective Ambiguity

- Reconstruction is ambiguous by an arbitrary 3D

projective transformation without prior knowledge of
camera parameters



Structure from motion

» Given: m images of n fixed 3D points
le:PIXj’ i:].,...,m, j:].,...,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences Xx;

7




Structure from motion ambiguity

* |If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same:

(1
X=PX =| —P |[(kX)
K

It Is Impossible to recover the absolute scale of the scene!



Structure from motion ambiguity

* |If we scale the entire scene by some factor k and, at
the same time, scale the camera matrices by the
factor of 1/k, the projections of the scene points in the
Image remain exactly the same

* More generally: If we transform the scene using a
transformation Q and apply the inverse transformation

to the camera matrices, then the images do not
change

x =PX =(PQ™|QX)



(similarity projection ambiguity)

\ g / Calibrated cameras

Sllll]lﬂl‘lt}'

\

Uncalibrated cameras
(projective projection ambiguity)




Types of ambiguity

Projective A t] ’ Preserves intersection and
15dof T ‘ tangency
_V V_

Affine At Preserves parallellism,
12dof 07 1 volume ratios
Similarity SR t] Preserves angles, ratios of
7dof 07 1 length
Euclidean ‘Rt |

Preserves angles, lengths
odof 07 1

« With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction

* Need additional information to upgrade the reconstruction to

affine, similarity, or Euclidean | |
Slide: S. Lazebnik



Projective ambiguity
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Projective amb




Affine ambiguity

\ g a8
L ﬂ/

X = PX = (F>QA Q, X)




Affine ambiguity




Similarity ambiguity

x =PX = (PQ)Q.X)



Similarity ambiguity




What can we do to remove ambiguities?




Affine structure from
motion



Structure from motion

« Let's start with affine cameras (the math Is easier)

center at
Infinity

perspective weak perspective

increasing focal length -

increasing distance from camera -




Recall: Orthographic Projection

Special case of perspective projection
* Distance from center of projection to image plane is infinite

* Projection matrix:

1 0007]|" x
0100 gzy:>(x,y)
000 1]]] 1




Affine cameras

Orthographic Projection

P ¢

/N

® R

® 0

/N

®p

Q
Parallel Projection g /N‘




Affine cameras

* A general affine camera combines the effects of an
affine transformation of the 3D space, orthographic
projection, and an affine transformation of the image:

P =[3x 3affine ]

0 a,,
0 [4x4affine ]=)a,
1 0

» Affine projection Is a linear mapping + translation in
Inhomogeneous coordinates

X/

A e._.

ag

~<.
~
~
~
S~
~<.
~
~
~
~
S

(X )

<)

Projection of
world origin



Affine structure from motion

* Given: m images of n fixed 3D points:
Xj=A;Xj+b;, 1=1...,m j=1 ..
» Problem: use the mn correspondences x; to estimate

m projection matrices A; and translation vectors b,
and n points X;

* The reconstruction is defined up to an arbitrary affine
transformation Q (12 degrees of freedom):

A b A bl| | [XJ [X]
—> Q y — Q
0 1 0 1 1 1

 We have 2mn knowns and 8m + 3n unknowns (minus
12 dof for affine ambiguity)

 Thus, we must have 2Zmn >=8m + 3n - 12
* For two views, we need four point correspondences



Affine structure from motion

» Centering: subtract the centroid of the image points

* For simplicity, assume that the origin of the world
coordinate system is at the centroid of the 3D points

» After centering, each normalized point x; Is related to
the 3D point X; by

X. =A.X.

J | )



Affine structure from motion

» Let's create a 2m x n data (measurement) matrix:

_)A(ll )A(12 )A(ln )
D — Xa Xz 0 X cameras
| (2m)
_)A(ml )A(mZ )A(mn _
points (n)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Affine structure from motion

» Let's create a 2m x n data (measurement) matrix:

Xll

X21

m1l

X12

X22

m 2

Xln

X2n

mn

Al
A
— : [Xl XZ >(n ]
points (3 x n)
_A m _
cameras
(2m x 3)

The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Factorizing the measurement matrix




Factorizing the measurement matrix

« Singular value decomposition of D:

M

W

Iy H
< > < > n n
< > <€ >
I
: X.x.ﬂpI
J
3




Factorizing the measurement matrix

« Singular value decomposition of D:

1 1

< > <

> n n
< > = >
g
><.)‘. H
i
To reduce to rank 3, we

just need to set all the
singular values to 0 except
3 for the first 3




Factorizing the measurement matrix

2m

Obtaining a factorization from SVD:

A

Il
3
3 - I~

Possible decomposition:

M=UW" S=wW!"V’

<

This decomposition minimizes
ID-MS|?




Affine ambiguity

<

* The decomposition is not unique. We get the same D
by using any 3x3 matrix C and applying the
transformations M — MC, S —-C-1S

* That Is because we have only an affine transformation
and we have not enforced any Euclidean constraints
(like forcing the image axes to be perpendicular, for
example)



Eliminating the affine ambiguity

e Orthographic: image axes are perpendicular
and of unit length

a,-a,=0

|| = |a,[c=1




Solve for orthographic constraints

Three equations for each image |

a CC'a, =1 where A;=

~ T T~T
a,CC a., =0

 Solve forL=CCT

* Recover C from L by Cholesky decomposition: L
= CCT

e Update Aand X: A=AC, X=C1X

Slide: D. Hoiem



Algorithm summary

Given: m images and n features X;
For each image I, center the feature coordinates

Construct a 2m x n measurement matrix D:
* Column j contains the projection of point j in all views
* Row i contains one coordinate of the projections of all the n
points in image |
Factorize D:
« Compute SVD:D=UW VT
» Create U, by taking the first 3 columns of U
« Create V; by taking the first 3 columns of V
» Create W, by taking the upper left 3 x 3 block of W

Create the motion and shape matrices:
« M=U,W;%2and S =W,>V,;" (or M=Uzand S = W,;V,")
Eliminate affine ambiguity



Reconstruction results
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. 1JCV, 9(2):137-154, November 1992.



http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Multi-view projective
structure from motion



Projective structure from motion

» Given: m images of n fixed 3D points

lexlj:PIXj’ i:].,...,m, ]:1, ... , N

 Problem: estimate m projection matrices P; and n 3D
points X; from the mn correspondences Xx;

7




Projective structure from motion

» Given: m images of n fixed 3D points
* Problem: estimate m projection matrices P; and n 3D

points X; from the mn correspondences Xx;

* With no calibration info, cameras and points can only
be recovered up to a 4x4 projective transformation Q:

X — QX, P - PQ!
* We can solve for structure and motion when
2Zmn >=11m +3n - 15
* For two cameras, at least 7 points are needed



Projective SFM: Two-camera case

» Compute fundamental matrix F between the two views
* First camera matrix: [1[0]

» Second camera matrix: [A|b]

 Then b is the epipole (F'b =0), A=—-[b,]F




Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation points
*For each additional view: reeeeeee
* @ @ & & @& 2 @
« Determine projection matrix of A EEEEEE
new camera using all the known g EEEEEREEREK
3D points that are visible in its E| |e® e s 808 00
image — calibration SHRE I L
* @ @ & & @ 9 @
*® @ & & & & @& 8 @
- ———5—50 & @
* & & & @9




Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation points

For each additional view:

« Determine projection matrix of
new camera using all the known
3D points that are visible in its
Image — calibration

cameras
* & & & & 9 9 @
@ o & 0 0 0 0@
® ® 0 0 0 00 00
® o 0 0 00 0 0w
® o 8 0 0 00 0w
> ® @& & & » 9 @

 Reflne and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

* ——8



Sequential structure from motion

eInitialize motion from two images
using fundamental matrix

eInitialize structure by triangulation points

For each additional view:

« Determine projection matrix of
new camera using all the known
3D points that are visible in its
Image — calibration

cameras
* & & & & » 2 @
@ o o 0 0 0 0
* o 0 0 0 00 00
® o 9 00 0 0 00
LB B I I R N R R
> & 5 & & & & 9 »

 Reflne and extend structure:

compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

*Refine structure and motion: bundle
adjustment



Bundle adjustment

* Non-linear method for refining structure and motion
* Minimizing reprojection error
m n 2
E(P,X) =% ¥ D(x,,P,X )
i=1 j=1

X




Review: Structure from motion

* Ambiguity
o Affine structure from motion
 Factorization

» Dealing with missing data
* |ncremental structure from motion

* Projective structure from motion
* Bundle adjustment



Structure Motion
(scene geometry) (camera geometry)

Measurements

3D to 2D

Poese Estimation known estimate e, R

2D to 2D

Triangulation estimate known coorespondences

2D to 2D

Reconstruction estimate estimate T




| arge-scale structure from
motion



Structure from motion

: : gLNEN N
Reconstruction (side) (top)

* |nput: images with points in correspondence
Pij = (Ui,j;V,',j)

* Qutput
* structure: 3D location x; for each point p,

* motion: camera parameters R;, t; possibly K

* Objective function: minimize reprojection error
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Standard way to view photos

Flickr: Crealive Commans - Mozilla Firefox

File Edt View Go Bookmarks Tools Help
[
@-5p- & L D) 1 nitp fwww.flickr. comycreativecommans/by-nc-nd-2.0/ v @Go [IGL
Home | Tags  Groups | People | Invile Logged i os Jimantha [£) | Your Account | Helg | Sign Out :-1
Photos: Yours - Upload - Organize  Your Contacts’ - Explore flickr

Creative Commons / Attribution-NonCommercial-NoDerivs License

()

[ SEARCH SOME AGHTS RESERVED

(Or, browse popular tags)

Here are the 100 most recent licensed pholos:

canen 'dp’ From dizz

ram metarmed
' pane

m nlpha_zone

|

Dane . | Adblock
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Input: Point correspondences

ol = | -

. Feature detection

‘ Feature matching




Feature detection

Detect features using SIFT [Lowe, 1JCV 2004]




Feature description

Describe features using SIFT [Lowe, [JCV 2004]




Feature matching

Match features between each pair of images




Feature matching

Refine matching using RANSAC to estimate fundamental
matrix between each pair




Correspondence estimation

* Link up pairwise matches to form connected components of matches across several
Images

Image 1 Image 2



Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)



http://www.graphviz.org/

Structure from motion

minimize

g(R, T, X)

non-linear least squares

Camera 2

Ra.t



Global structure from motion

 Minimize sum of squared reprojection errors:

d0RT =) i [P, )—[:;‘;;]HZ

(=1 j=1-—--
predlcted observed

l image location image location
indicator variable:
is point i visible in image j ?

* Minimizing this function is called bundle adjustment
— Optimized using non-linear least squares, e.g. Levenberg-Marquardt



Problem size

What are the variables?
How many variables per camera?
How many variables per point?

Trevi Fountain collection

466 input photos
+ > 100,000 3D points
= very large optimization problem



Doing bundle adjustment

* Minimizing g is difficult
— g is non-linear due to rotations, perspective division
—|lots of parameters: 3 for each 3D point, 6 for each camera
—difficult to initialize

—gauge ambiguity: error is invariant to a similarity transform
(translation, rotation, uniform scale)

* Many techniques use non-linear least-squares (NLLS)
optimization (bundle adjustment)

— Levenberg-Marquardt is one common algorithm for NLLS

— Lourakis, The Design and Implementation of a Generic
Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm,
http://www.ics.forth.gr/~lourakis/sba/

— http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm



http://www.ics.forth.gr/~lourakis/sba/
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

Initialization: Incremental structure from motion




Incremental structure from motion




Final reconstruction




More examples




More examples
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More examples
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models/points.ply.0.ply




Even larger scale STM

City-scale structure from motion

* “Building Rome in a day”

http://grail.cs.washington.edu/projects/rome/



http://grail.cs.washington.edu/projects/rome/

SfM applications

3D modeling
Surveying
Robot navigation and mapmaking

Visual effects (“Match moving”)
— https://www.youtube.com/watch?v=RdYWp70P kY



https://www.youtube.com/watch?v=RdYWp70P_kY

Applications — Photosynth

<ot




Applications — Hyperlapse

*

Micros'oft Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY



https://www.youtube.com/watch?v=SOpwHaQnRSY

Summary: 3D geometric vision

* Single-view geometry
* The pinhole camera model
— Variation: orthographic projection
* The perspective projection matrix
 Intrinsic parameters
« EXxtrinsic parameters

 Calibration

* Multiple-view geometry
Triangulation
The epipolar constraint

— Essential matrix and fundamental matrix

Stereo

— Binocular, multi-view

Structure from motion

— Reconstruction ambiguity
— Affine SFM
— Projective SFM



References

Basic reading:
« Szeliski textbook, Chapter 7.
« Hartley and Zisserman, Chapter 18.



