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Motion model of the Kalman filter is linear
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but motion is not always linear
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Visualizing linear models
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(motion model and observation model are linear)



Visualizing non-linear models

1D motion model
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(motion model is not linear)



How do you deal with non-linear models”?
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How do you deal with non-linear models”?
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Extended Kalman Filter

* Does not assume linear Gaussian models

- Assumes Gaussian noise
» Uses local linear approximations of model to keep

the efficiency of the KF framework

Kalman Filter Extended Kalman Filter

linear motion model non-linear motion model
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linear sensor model




Motion model linearization
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Taylor series expansion



Motion model linearization
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What's this called?



Motion model linearization
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What'’s this called? ‘the rate of change in X’
‘slope of the function’



Motion model linearization
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‘the rate of change in X’
‘slope of the function’

Sensor model linearization
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New EKF Algorithm

(pretty much the same)
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Ut = At,ut—1 + Buy He = g(,ut—laut)
Z_]t — AtZt_lA;r —|— R it — Gtit_lG;r + R
Ky = 2_JtCl/fT(CtitCtT T Qt)_l Ky = SthT (HtitHT =+ Q)_l
pe = fiy + Ki(ze — Cyjig) pe = e + K (ze — h(fiz))

Zt — (I — KtCt)jt Et — (I — Kth)St



2D example
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state: position-velocity

position

velocity

position

L 8 K

velocity

pearing . constant velocity motion model

displacement y

0 I At 0
' 0
At
1

o OO =
o O =
o = O O

with additive Gaussian noise

Motion model is linear but ...



displacement y

measurement: range-bearing
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measurement model

s the measurement model linear?

z = h(r,0)

with additive Gaussian noise



displacement y

measurement: range-bearing
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measurement model

s the measurement model linear?

z = h(r,0)

with additive Gaussian noise

non-linear!

What should we do?



linearize the observation/measurement model!
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Jacobian used in the Taylor series expansion looks like ...
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EKF (x,P,z,dt)

= sqgrt (x(1)"2+x(3)"2);

= atanZ2 (x(3),x(1));

= [r; Dbl
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F'*x;

Fx*P*E'" + Q;
P*H'/(H*P*H' + R);

= X + K*¥(z - v);
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Problems with EKFs

Taylor series expansion = poor approximation of non-linear functions
success of linearization depends on limited uncertainty and amount
of local non-linearity

Computing partial derivatives is a pain

Drifts when linearization is a bad approximation

Cannot handle multi-modal (multi-hypothesis) distributions



