
Extended Kalman Filter
16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

xt = Axt�1 +But + ✏t

but motion is not always linear

Motion model of the Kalman filter is linear

Visualizing linear models

x

t =
A

x

t�
1

p(xt�1)

x

xt�1

xt

p(xt)

x

1D motion model
example

Input:  
Gaussian (Belief)

Output:  
Gaussian (Prediction)

Can we use the Kalman
Filter?

(motion model and observation model are linear)

motion model

Visualizing non-linear models

p(xt�1)

x

xt�1

xt

p(xt)

x

x

t =
g(
x

t�
1)

1D motion model
example

Output:
NOT

Gaussian

Input:  
Gaussian (Belief)

motion model

Can we use the Kalman
Filter?

(motion model is not linear)

How do you deal with non-linear models?

p(xt�1)

x

xt�1

xt

p(xt)

x

x

t =
g(
x

t�
1)

1D motion model
example

Input:
Gaussian

Output:
NOT

Gaussian

How do you deal with non-linear models?

p(xt�1)

x

xt�1

xt

p(xt)

x

approximate with a
linear function

Input:
Gaussian

Output:
Gaussian

When does this trick work?

Extended Kalman Filter
• Does not assume linear Gaussian models
• Assumes Gaussian noise
• Uses local linear approximations of model to keep
the efficiency of the KF framework

xt = Axt�1 +But + ✏t

linear motion model non-linear motion model

zt = Ctxt + �t

linear sensor model

zt = H(xt) + �t

non-linear sensor model

Kalman Filter Extended Kalman Filter

xt = g(xt�1, ut) + ✏t

Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)Taylor series expansion

Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)

What’s this called?

Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)

What’s this called?
Jacobian Matrix

‘the rate of change in x’
‘slope of the function’

Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)

Jacobian Matrix

Sensor model linearization

h(xt) ⇡ h(µ̄t) +
@h(µ̄t)

@xt
(xt�1 � µ̄t)

⇡ h(µ̄t) + Ht (xt � µ̄t)

‘the rate of change in x’
‘slope of the function’

µ̄t = Atµt�1 +But

⌃̄t = At⌃t�1A
>
t +R

Kt = ⌃̄tC
>
t (Ct⌃̄tC

>
t +Qt)

�1

µt = µ̄t +Kt(zt � Ctµ̄t)

⌃t = (I �KtCt)⌃̄t

Kalman Filter Extended KF

µ̄t = g(µt�1, ut)

⌃̄t = Gt⌃̄t�1G
>
t +R

Kt = ⌃̄tH
>
t

�
Ht⌃̄tH

> +Q
��1

µt = µ̄t +Kt(zt � h(µ̄t))

⌃t = (I �KtHt)⌃̄t

New EKF Algorithm  
(pretty much the same)

2D example

displacement x

di
sp

la
ce

m
en

t yran
ge

bearing

✓

r

x =

2

664

x

ẋ

y

ẏ

3

775

state: position-velocity

position

velocity

position

velocity

constant velocity motion model

A =

2

664

1 �t 0 0
0 1 0 0
0 0 1 �t
0 0 0 1

3

775

with additive Gaussian noise

Motion model is linear but …

displacement x

di
sp

la
ce

m
en

t yran
ge

bearing

✓

r

measurement: range-bearing

measurement model

z =


r

✓

�

=

 p
x

2 + y

2

tan�1(y/x)

�

z = h(r, ✓)
Is the measurement model linear?

with additive Gaussian noise

displacement x

di
sp

la
ce

m
en

t yran
ge

bearing

✓

r

measurement: range-bearing

measurement model

z =


r

✓

�

=

 p
x

2 + y

2

tan�1(y/x)

�

z = h(r, ✓)
Is the measurement model linear?

with additive Gaussian noise

non-linear!

What should we do?

linearize the observation/measurement model!

z =


r

✓

�

=

 p
x

2 + y

2

tan�1(y/x)

� H =
@z

@x
=?

What is the Jacobian?

H =

2

4
@r

@x

@r

@ẋ

@r

@y

@r

@ẏ

@✓

@x

@✓

@ẋ

@✓

@y

@✓

@ẏ

3

5
=

2

4
cos(✓) 0 sin(✓) 0

�sin(✓)/r 0 cos(✓)/r 0

3

5

Jacobian used in the Taylor series expansion looks like …

z =


r

✓

�

=

 p
x

2 + y

2

tan�1(y/x)

� H =
@z

@x
=?

What is the Jacobian?

H =

2

4
@r

@x

@r

@ẋ

@r

@y

@r

@ẏ

@✓

@x

@✓

@ẋ

@✓

@y

@✓

@ẏ

3

5
=

2

4
cos(✓) 0 sin(✓) 0

�sin(✓)/r 0 cos(✓)/r 0

3

5

[x P] = EKF(x,P,z,dt)

 r = sqrt (x(1)^2+x(3)^2);
 b = atan2(x(3),x(1));
 y = [r; b];

 H = [cos(b) 0 sin(b) 0;
 -sin(b)/r 0 cos(b)/r 0];

 x = F*x;
 P = F*P*F' + Q;

 K = P*H'/(H*P*H' + R);

 x = x + K*(z - y);
 P = (eye(size(K,1))-K*H)*P;

Parameters:
Q = diag([0 .1 0 .1]);
R = diag([50^2 0.005^2]);
F = [1 dt 0 0;
 0 1 0 0;
 0 0 1 dt;
 0 0 0 1];

extra computation for
the EKF measurement

model Jacobian

Problems with EKFs

Taylor series expansion = poor approximation of non-linear functions
success of linearization depends on limited uncertainty and amount

of local non-linearity

Computing partial derivatives is a pain

Drifts when linearization is a bad approximation

Cannot handle multi-modal (multi-hypothesis) distributions

