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xt = Axt�1 +But + ✏t

but motion is not always linear

Motion model of the Kalman filter is linear



Visualizing linear models
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(motion model and observation model are linear)
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Visualizing non-linear models
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Can we use the Kalman 
Filter? 

(motion model is not linear)



How do you deal with non-linear models?
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How do you deal with non-linear models?
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When does this trick work?



Extended Kalman Filter
• Does not assume linear Gaussian models 
• Assumes Gaussian noise 
• Uses local linear approximations of model to keep 
the efficiency of the KF framework

xt = Axt�1 +But + ✏t

linear motion model non-linear motion model

zt = Ctxt + �t

linear sensor model

zt = H(xt) + �t

non-linear sensor model

Kalman Filter Extended Kalman Filter

xt = g(xt�1, ut) + ✏t



Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)Taylor series expansion



Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
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What’s this called?



Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)

What’s this called?
Jacobian Matrix

‘the rate of change in x’ 
‘slope of the function’



Motion model linearization

g(xt�1, ut) ⇡ g(µt�1, ut) +
@g(µt�1, ut)

@xt�1
(xt�1 � µt�1)

⇡ g(µt�1, ut) + Gt (xt�1 � µt�1)

Jacobian Matrix

Sensor model linearization

h(xt) ⇡ h(µ̄t) +
@h(µ̄t)

@xt
(xt�1 � µ̄t)

⇡ h(µ̄t) + Ht (xt � µ̄t)

‘the rate of change in x’ 
‘slope of the function’



µ̄t = Atµt�1 +But

⌃̄t = At⌃t�1A
>
t +R

Kt = ⌃̄tC
>
t (Ct⌃̄tC

>
t +Qt)

�1

µt = µ̄t +Kt(zt � Ctµ̄t)

⌃t = (I �KtCt)⌃̄t

Kalman Filter Extended KF

µ̄t = g(µt�1, ut)

⌃̄t = Gt⌃̄t�1G
>
t +R

Kt = ⌃̄tH
>
t

�
Ht⌃̄tH

> +Q
��1

µt = µ̄t +Kt(zt � h(µ̄t))

⌃t = (I �KtHt)⌃̄t

New EKF Algorithm  
(pretty much the same)



2D example
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with additive Gaussian noise

Motion model is linear but …
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non-linear!

What should we do?



linearize the observation/measurement model!
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Jacobian used in the Taylor series expansion looks like …
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[x P] = EKF(x,P,z,dt) 

  r   = sqrt (x(1)^2+x(3)^2); 
  b   = atan2(x(3),x(1)); 
  y   = [r; b]; 

  H = [ cos(b)   0  sin(b)    0; 
       -sin(b)/r 0  cos(b)/r  0]; 

  x = F*x; 
  P = F*P*F' + Q; 

  K = P*H'/(H*P*H' + R); 

  x   = x + K*(z - y); 
  P   = (eye(size(K,1))-K*H)*P;

Parameters: 
Q = diag([0 .1 0 .1]); 
R = diag([50^2 0.005^2]); 
F = [ 1 dt 0 0; 
      0 1 0 0; 
      0 0 1 dt; 
      0 0 0 1];

extra computation for 
the EKF measurement 

model Jacobian



Problems with EKFs

Taylor series expansion = poor approximation of non-linear functions 
success of linearization depends on limited uncertainty and amount 

of local non-linearity 

Computing partial derivatives is a pain

Drifts when linearization is a bad approximation 

Cannot handle multi-modal (multi-hypothesis) distributions


