

Image Alignment

16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

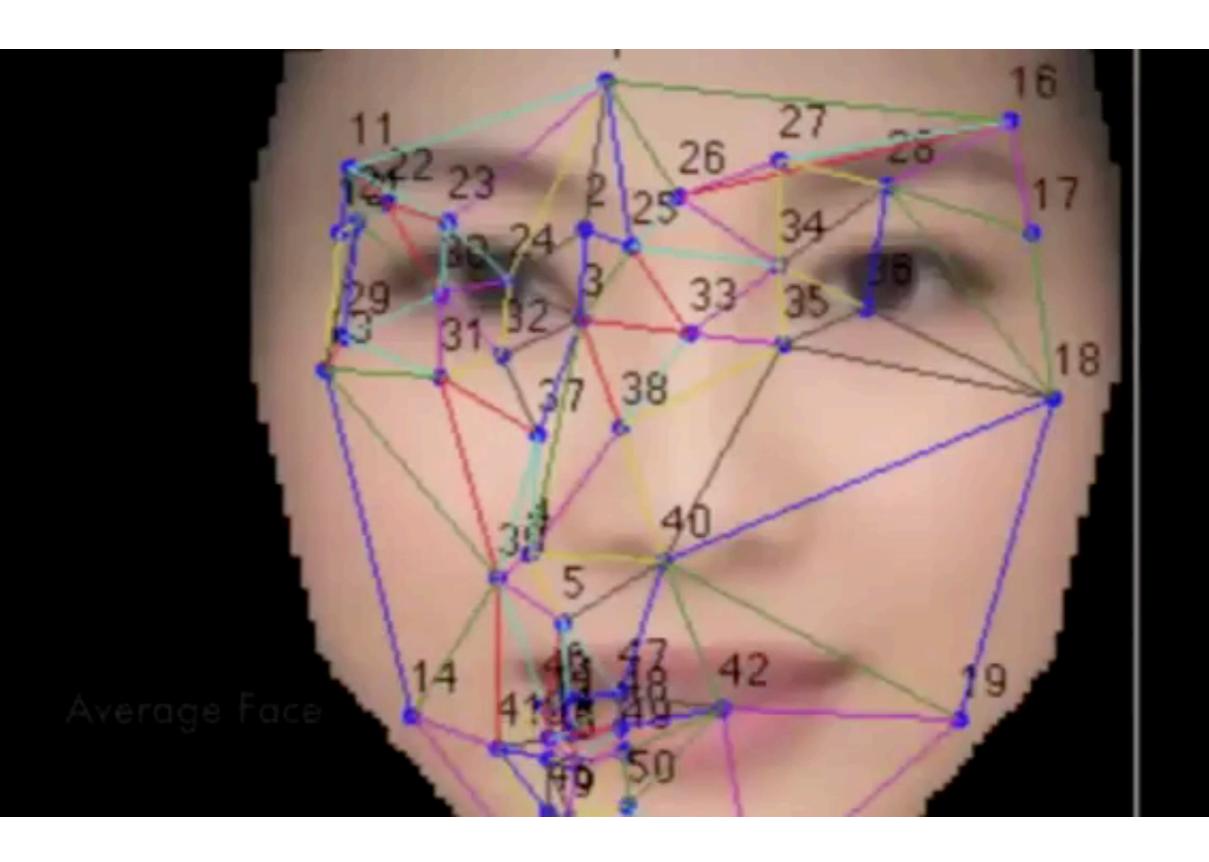


Image Alignment

(start with an initial solution, match the image and template)



Image Alignment Objective Function

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Given an initial solution...several possible formulations

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

incremental perturbation of parameters

Image Alignment Objective Function

$$\sum_{\mathbf{r}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

Given an initial solution...several possible formulations

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

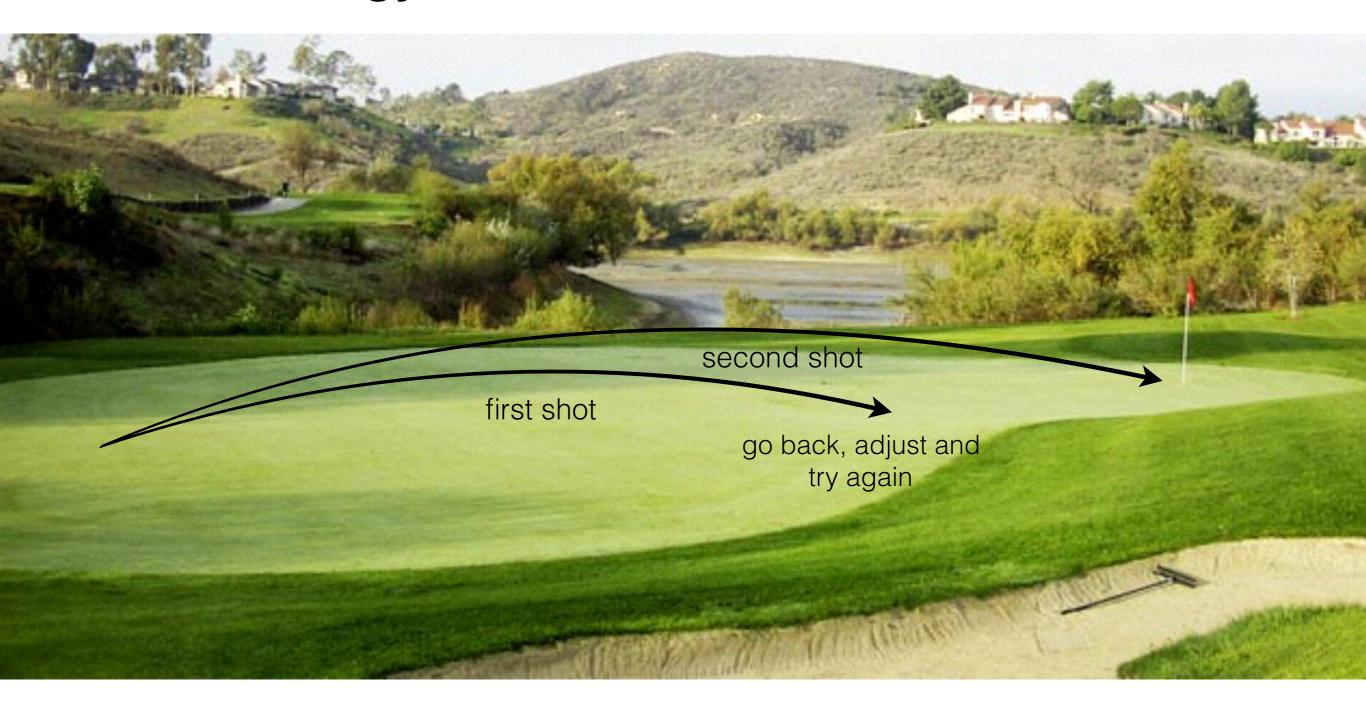
incremental perturbation of parameters

Compositional Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^{2}$$

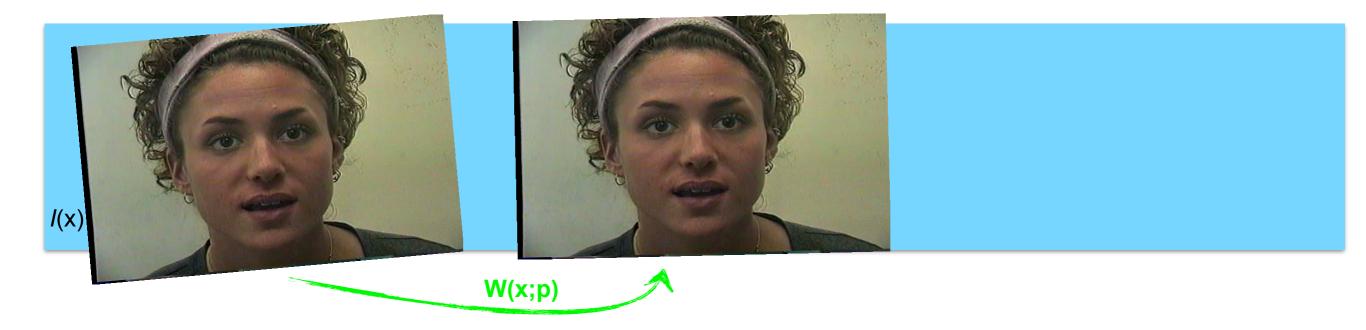
incremental warps of image

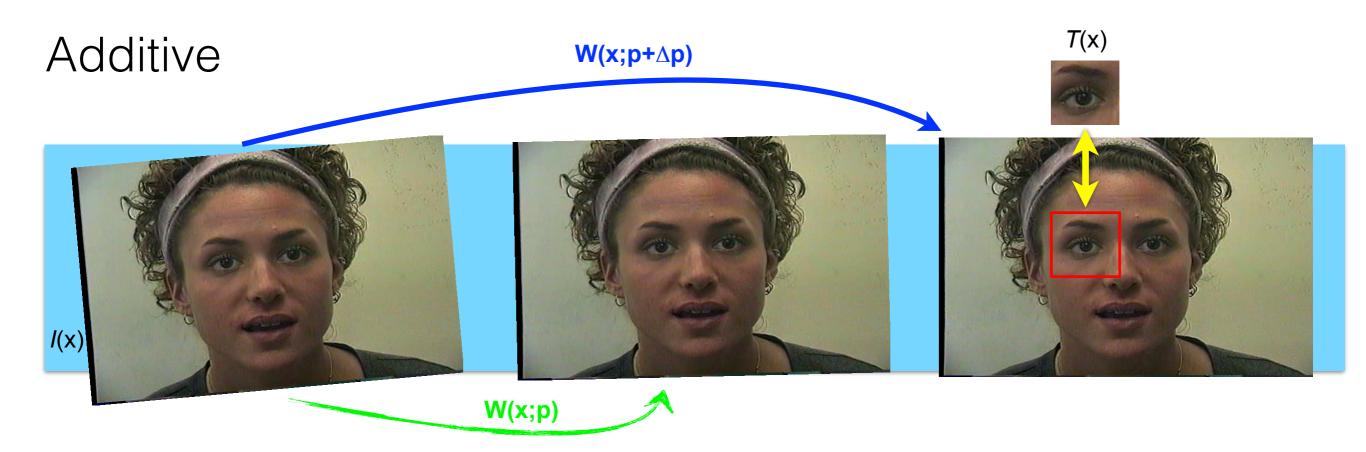
Additive strategy

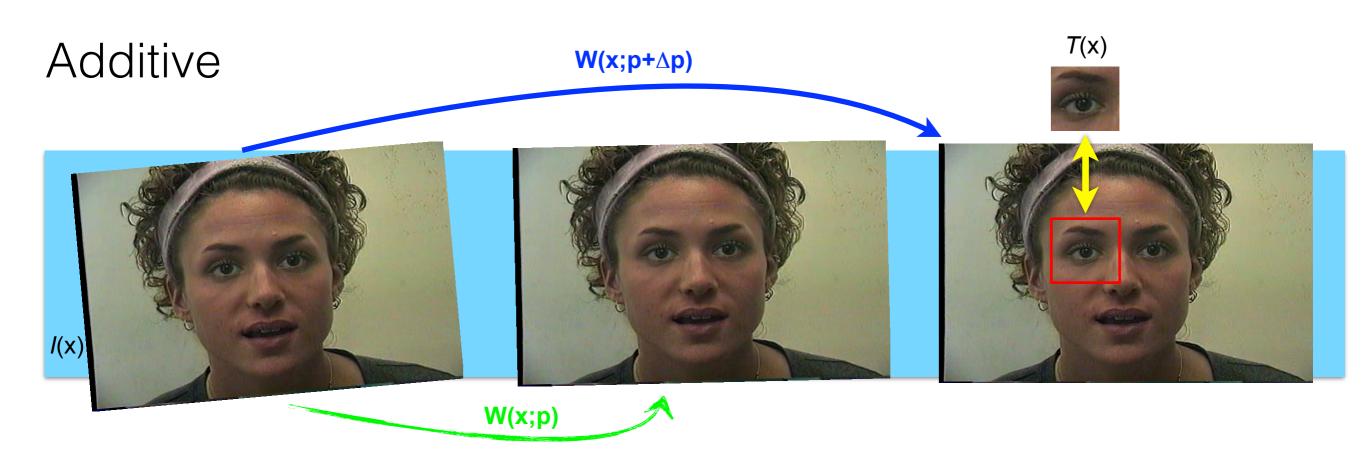


Compositional strategy

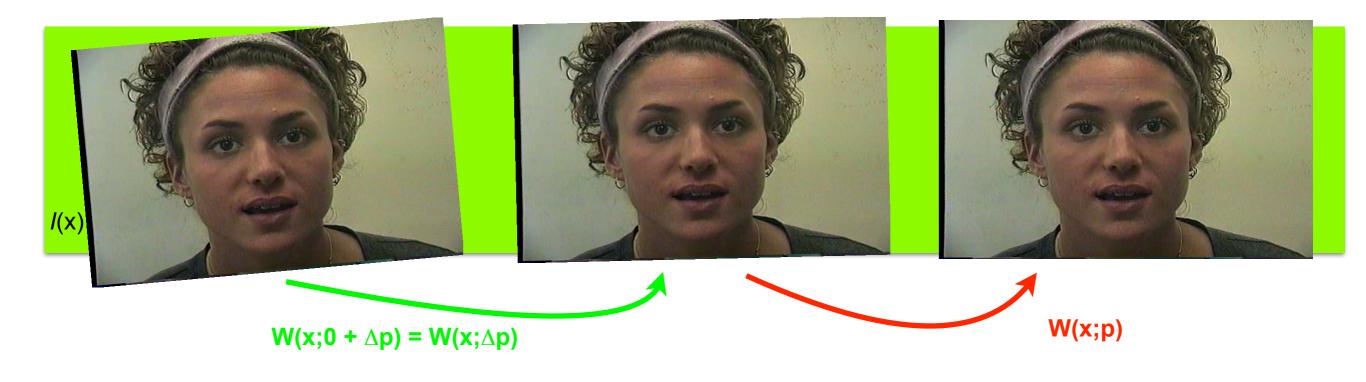
Additive

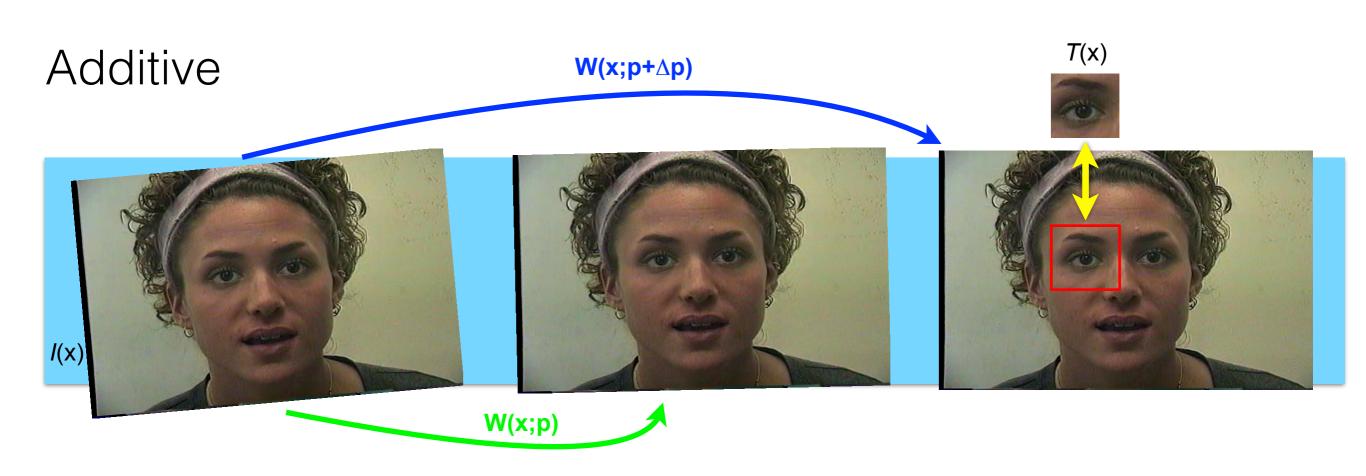


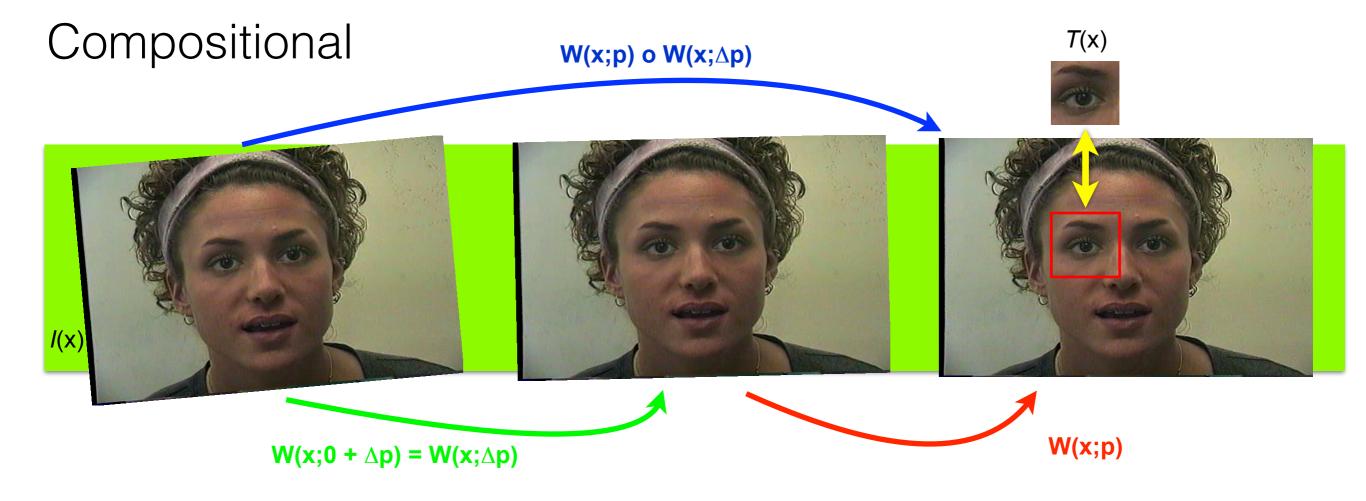




Compositional







Compositional Alignment

Original objective function (SSD)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Assuming an initial solution **p** and a compositional warp increment

$$\sum_{m{x}} \left[I(\mathbf{W}(\ \mathbf{W}(m{x};\Deltam{p});m{p}\) - T(m{x})
ight]^2$$

Compositional Alignment

Original objective function (SSD)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Assuming an initial solution **p** and a compositional warp increment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

Another way to write the composition

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p}) \equiv \mathbf{W}(\ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p});\boldsymbol{p}\)$$

Identity warp

$$\mathbf{W}(x; \mathbf{0})$$

Compositional Alignment

Original objective function (SSD)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Assuming an initial solution **p** and a compositional warp increment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

Another way to write the composition

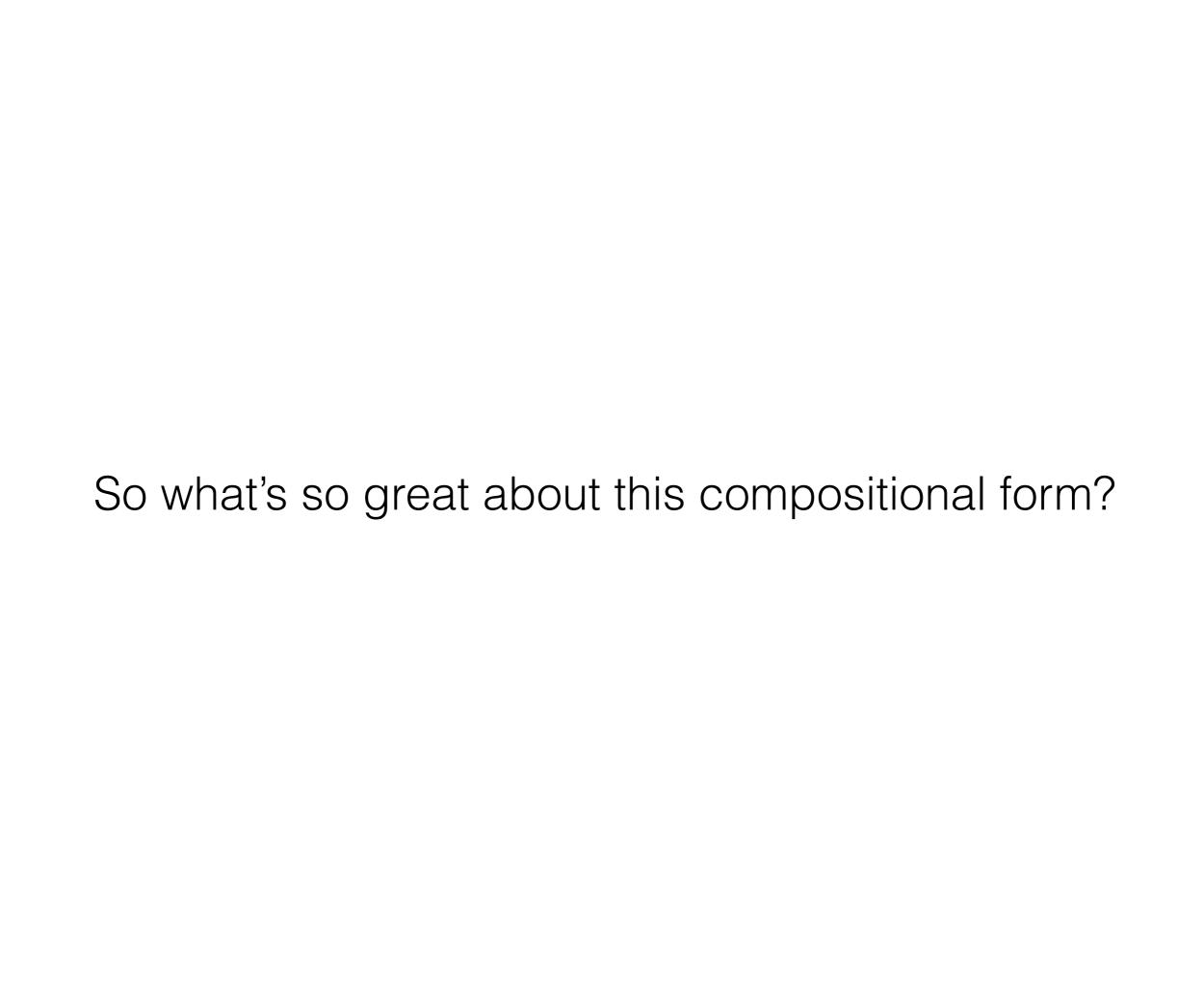
$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p}) \equiv \mathbf{W}(\ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p});\boldsymbol{p}\)$$

Identity warp

$$\mathbf{W}(x; \mathbf{0})$$

Skipping over the derivation...the new update rule is

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta \boldsymbol{p})$$



Additive Alignment

$$\sum_{\mathbf{r}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^{2}$$

Compositional Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

linearized form

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2$$

linearized form

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2 \qquad \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}(\boldsymbol{x};\boldsymbol{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2$$

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Compositional Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

linearized form

$$\sum_{m{x}} \left[I(\mathbf{W}(m{x}; m{p})) + \nabla I(m{x}') \frac{\partial \mathbf{W}}{\partial m{p}} \Delta m{p} - T(m{x}) \right]^2$$

Jacobian of W(x;p)

linearized form

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2 \sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I(\boldsymbol{x}') \frac{\partial \mathbf{W}(\boldsymbol{x};\mathbf{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2$$
Jacobian of W(x;p)

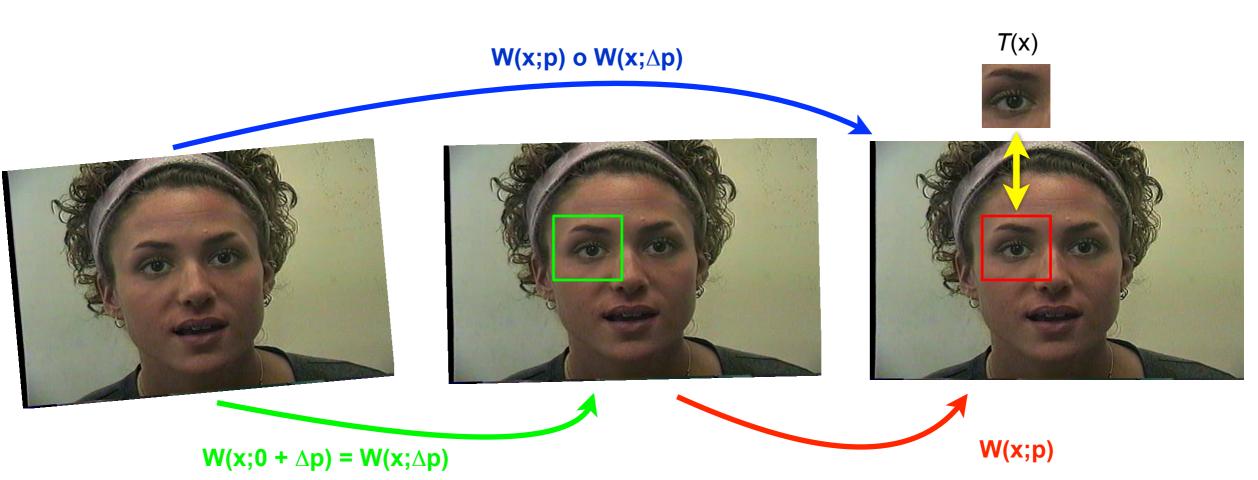
$$\mathbf{W}(\mathbf{x};\mathbf{0})$$

The Jacobian is constant. Jacobian can be precomputed!

Compositional Image Alignment

Minimize

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}); \mathbf{p})) - T(\mathbf{x}) \right]^{2} \approx \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}) \right]^{2}$$



Jacobian is simple and can be precomputed

Lucas Kanade (Additive alignment)

- 1. Warp image $I(\mathbf{W}(x; p))$
- 2. Compute error image $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
- 3. Compute gradient $\nabla I(\boldsymbol{x}')$
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
- 5. Compute Hessian H
- 6. Compute Δp
- 7. Update parameters $p \leftarrow p + \Delta p$

Shum-Szeliski (Compositional alignment)

- 1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 2. Compute error image $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
- 3. Compute gradient $\nabla I(x')$
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}}$
- 5. Compute Hessian H
- 6. Compute Δp
- 7. Update parameters $\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p})$

Any other speed up techniques?

Why not compute warp updates on the template?

Additive Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) + T(\boldsymbol{x}) \right]^{2}$$

Compositional Alignment

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

Why not compute warp updates on the template?

Additive Alignment

$$\sum [I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p} + \Delta \boldsymbol{p})) + T(\boldsymbol{x})]^{3}$$

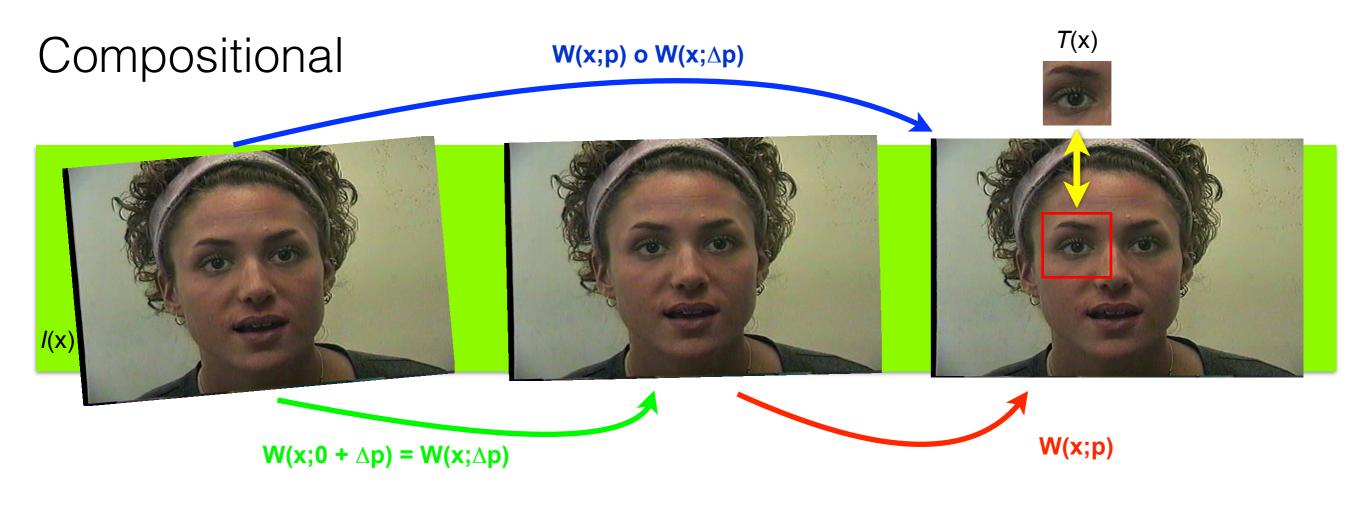
Compositional Alignment

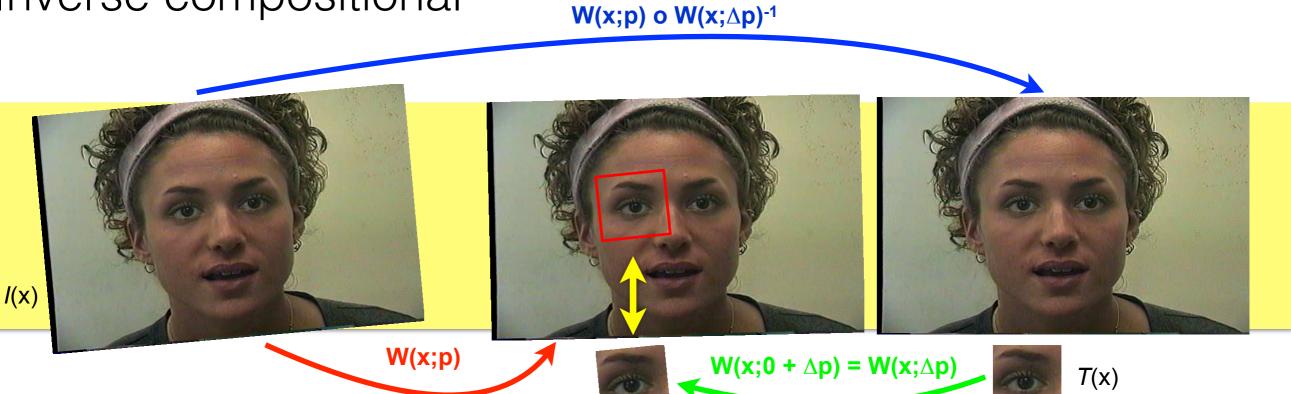
$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\ \mathbf{W}(\boldsymbol{x}; \Delta \boldsymbol{p}); \boldsymbol{p}\) - T(\boldsymbol{x}) \right]^2$$

What happens if you let the template be warped too?

Inverse Compositional Alignment

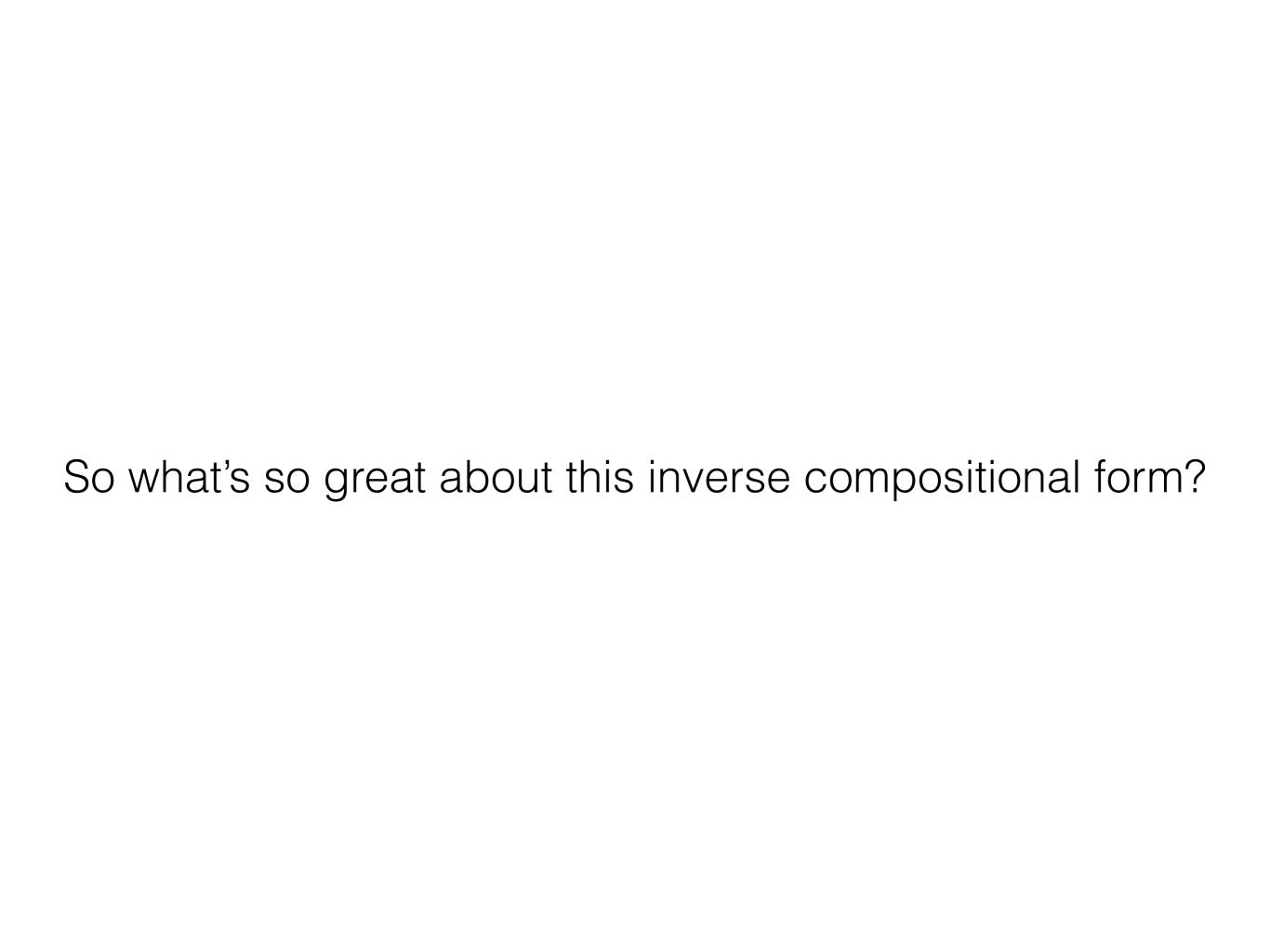
$$\sum_{\mathbf{r}} \left[T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^2$$





Compositional strategy

Inverse Compositional strategy



Inverse Compositional Alignment

Minimize

$$\sum_{\mathbf{x}} \left[T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^2 \approx \sum_{\mathbf{x}} \mathbf{x} \left[T(\mathbf{W}(\mathbf{x}; \mathbf{0})) + \nabla T \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^2$$

Solution

$$H = \sum_{\boldsymbol{r}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]$$

can be precomputed from template!

$$\Delta \boldsymbol{p} = \sum_{\boldsymbol{r}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Update

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta \boldsymbol{p})^{-1}$$

Properties of inverse compositional alignment

Jacobian can be precomputed It is constant - evaluated at W(x;0)

Gradient of template can be precomputed It is constant

Hessian can be precomputed

$$H = \sum_{\boldsymbol{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]$$

$$\Delta \boldsymbol{p} = \sum_{\boldsymbol{x}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$
(main term that needs to be computed)

Warp must be invertible

Lucas Kanade (Additive alignment)

- 1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 2. Compute error image $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
- 3. Compute gradient $\nabla I(\mathbf{W})$
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
- 5. Compute Hessian H
- 6. Compute Δp
- 7. Update parameters $p \leftarrow p + \Delta p$

Shum-Szeliski (Compositional alignment)

- 1. Warp image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- 2. Compute error image $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$
- 3. Compute gradient $\nabla I(\boldsymbol{x}')$
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}(\mathbf{x}; \mathbf{0})}{\partial \mathbf{p}}$
- 5. Compute Hessian H
- 6. Compute Δp
- 7. Update parameters $\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p})$

Baker-Matthews (Inverse Compositional alignment)

- 1. Warp image $I(\mathbf{W}(x; p))$
- 2. Compute error image $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]$
- 3. Compute gradient $\nabla T(\mathbf{W})$
- 4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
- 5. Compute Hessian H

$$H = \sum_{\boldsymbol{x}} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]$$

6. Compute Δp

$$\Delta \boldsymbol{p} = \sum_{\boldsymbol{x}} H^{-1} \left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

7. Update parameters $\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x};\boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x};\Delta\boldsymbol{p})^{-1}$

Algorithm	Efficient	Authors
Forwards Additive	No	Lucas, Kanade
Forwards compositional	No	Shum, Szeliski
Inverse Additive	Yes	Hager, Belhumeur
Inverse Compositional	Yes	Baker, Matthews