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Optical Flow
Problem Definition

Assumptions

Brightness constancy

Small motion

Given two consecutive image frames, 
estimate the motion of each pixel
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… the brightness between two consecutive image 
frames is the same
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For a really small space-time step…
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Equality is not obvious. Where does this come from?

These assumptions yield the …

Brightness Constancy Equation
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Where does this come from?

These assumptions yield the …

Brightness Constancy Equation

proof!
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For small space-time step, brightness of a point is the same



I(x+ u�t, y + v�t, t+ �t) = I(x, y, t)
For small space-time step, brightness of a point is the same

Insight:
If the time step is really small,  

we can linearize the intensity function
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Equation
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(x-flow) (y-flow)

(1 x 2) (2 x 1)
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brightness constancy equation represent?
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(putting the math aside for a second…) 

What do the term of the  
brightness constancy equation represent?

flow velocities

temporal gradient

How do you compute these terms?

Image gradients 
(at a point p)
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frame differencingWe need to solve for this!
(this is the unknown in the 

optical flow problem)
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(u, v)
Solution lies on a line

Cannot be found uniquely 
with a single constraint 

How do you compute …
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We need at least ____ equations to solve for 2 unknowns.
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Where do we get more equations (constraints)?
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Solution lies on a straight line

The solution cannot be determined uniquely with 
a single constraint (a single pixel)

many combinations of u and v will satisfy the equality
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How can we use the brightness constancy equation to 
estimate the optical flow?


