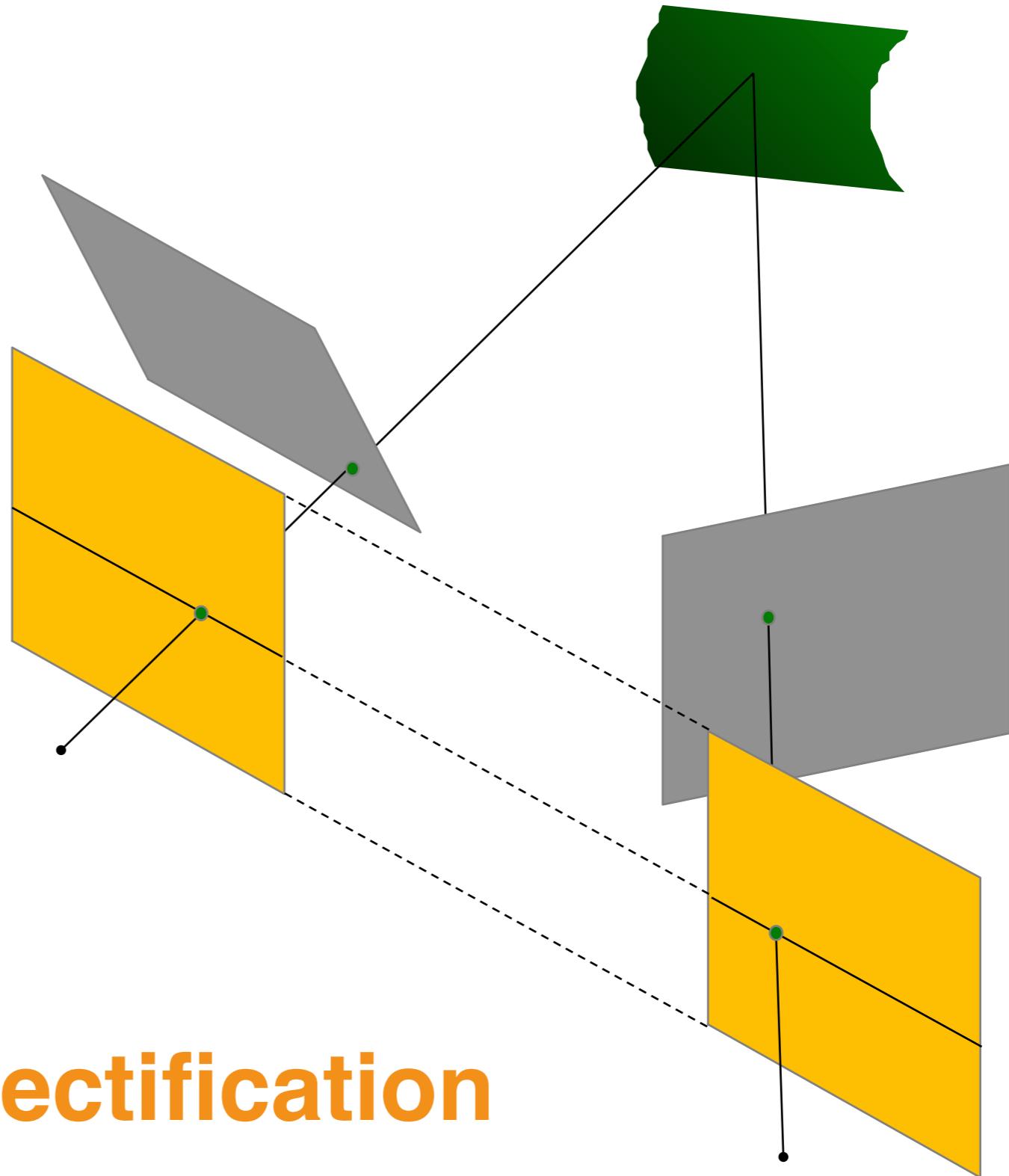


Stereo Matching

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

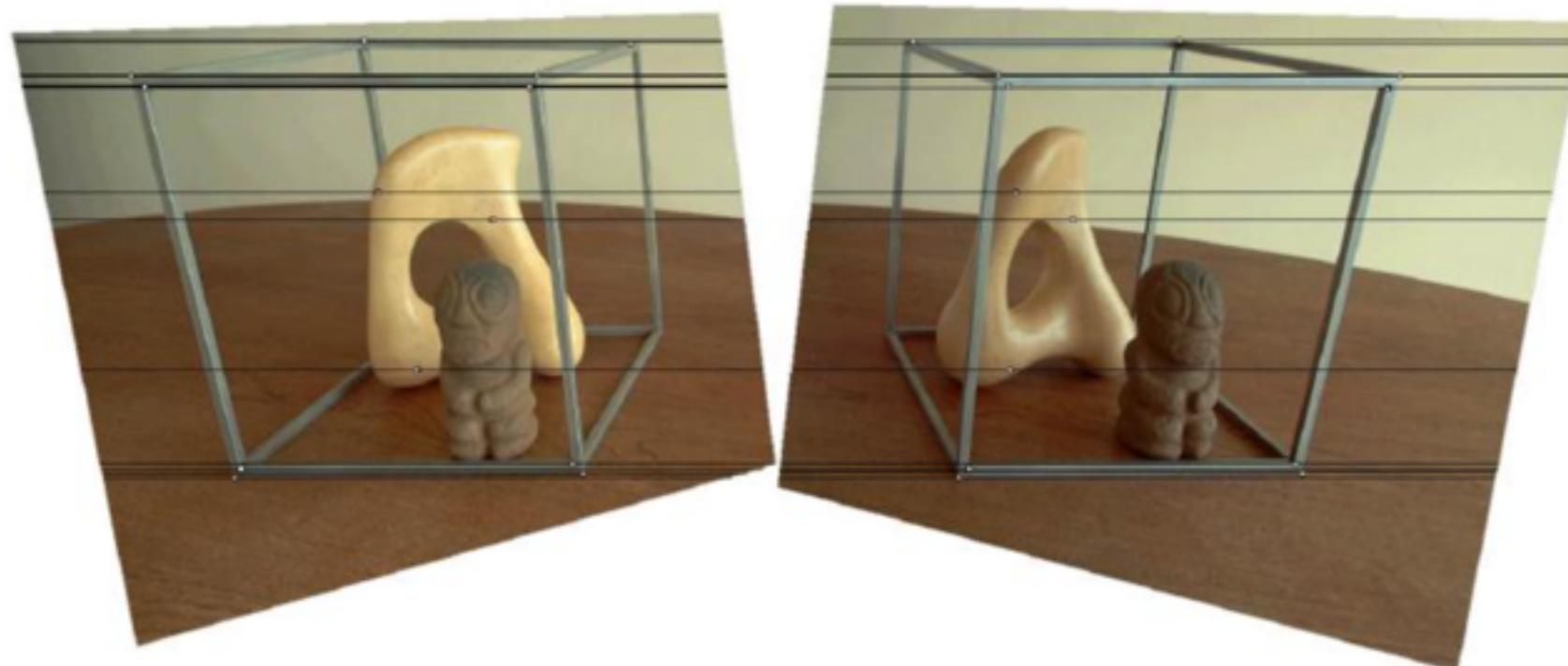
What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

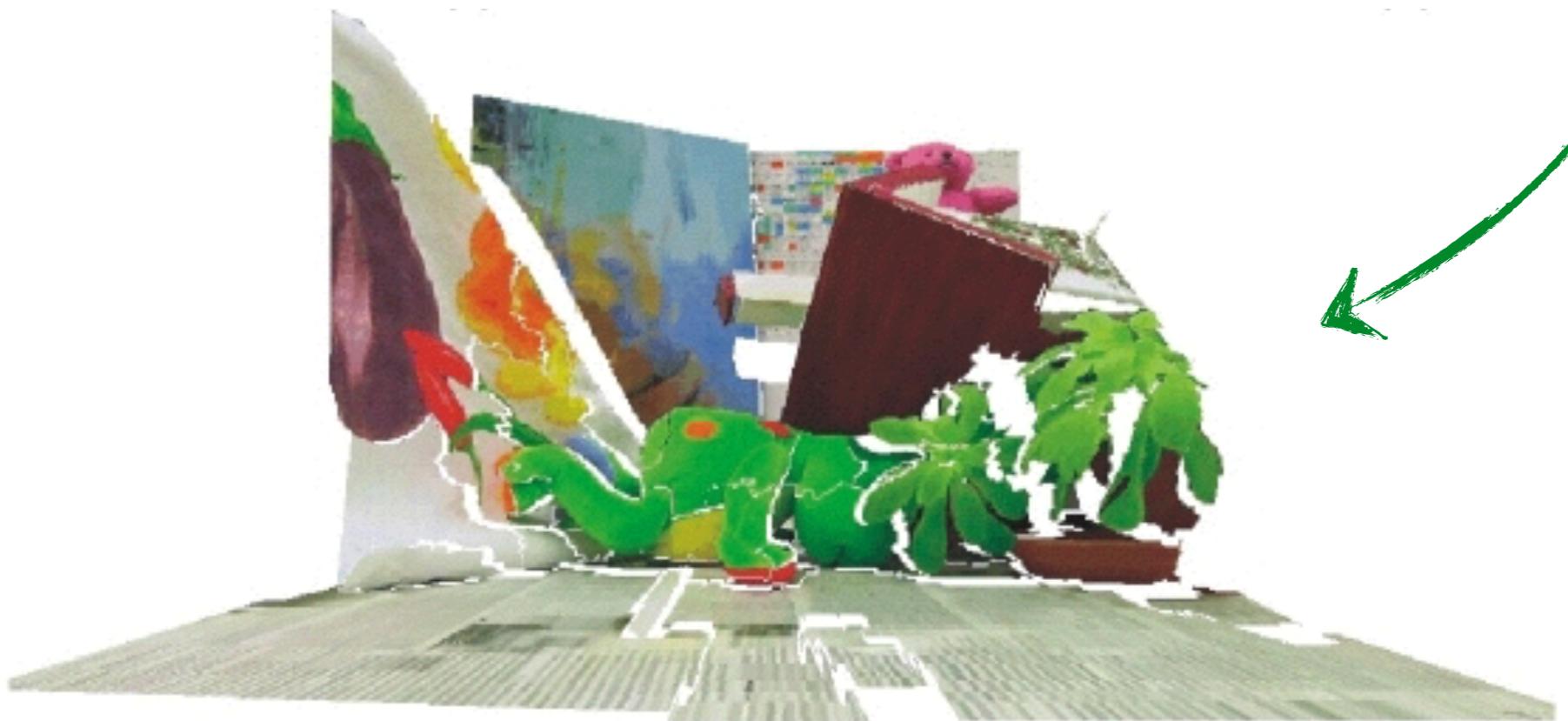


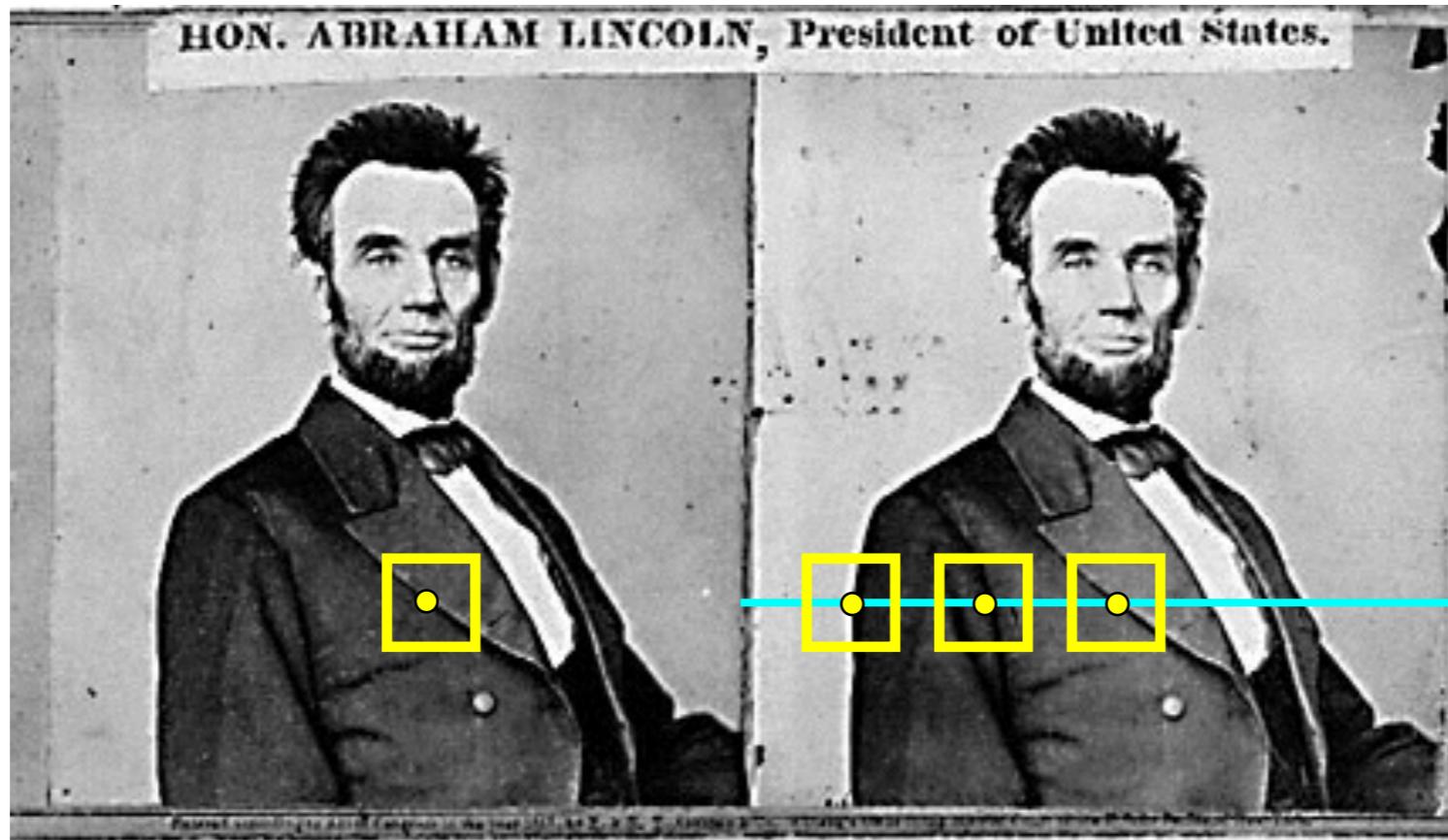
Recall: Stereo Rectification

What can we do after
rectification?



Depth Estimation via Stereo Matching

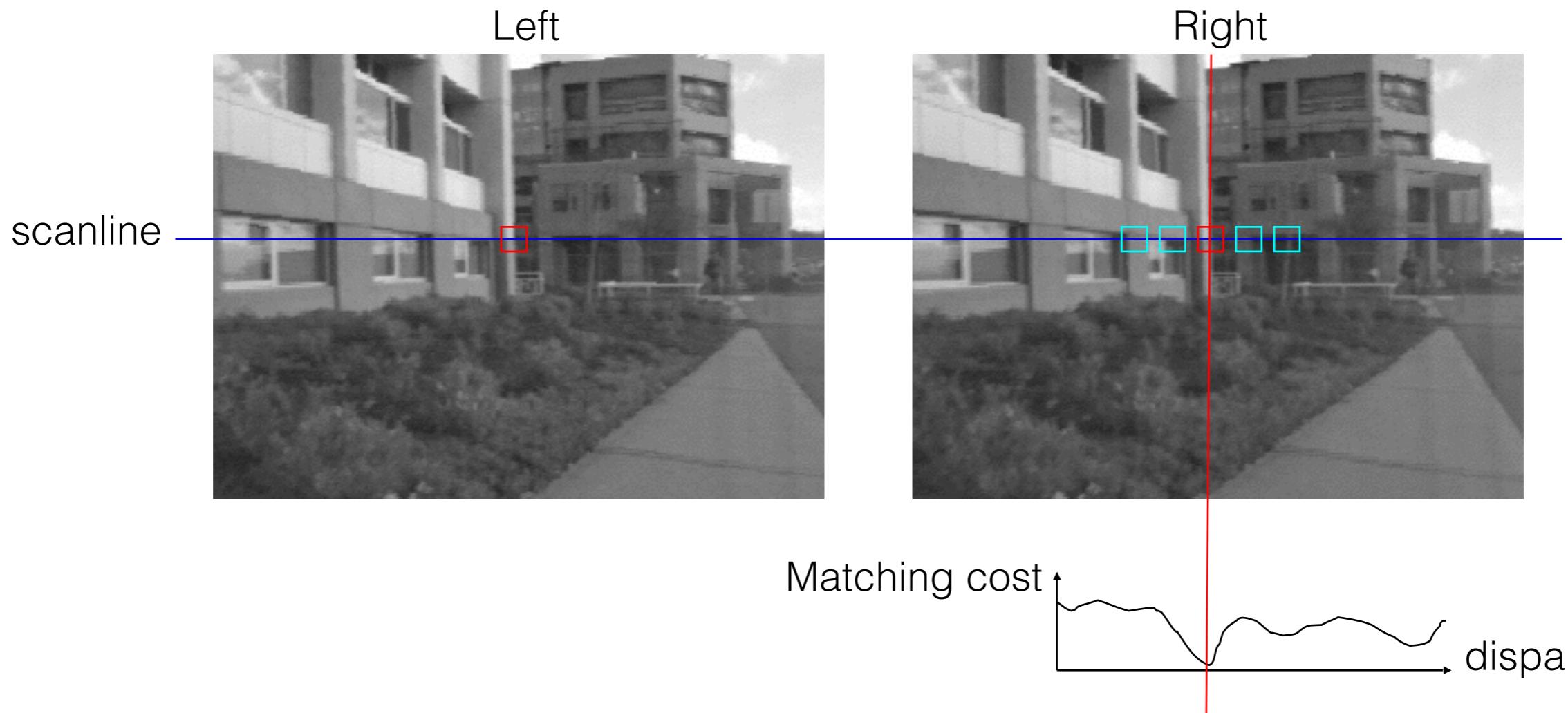




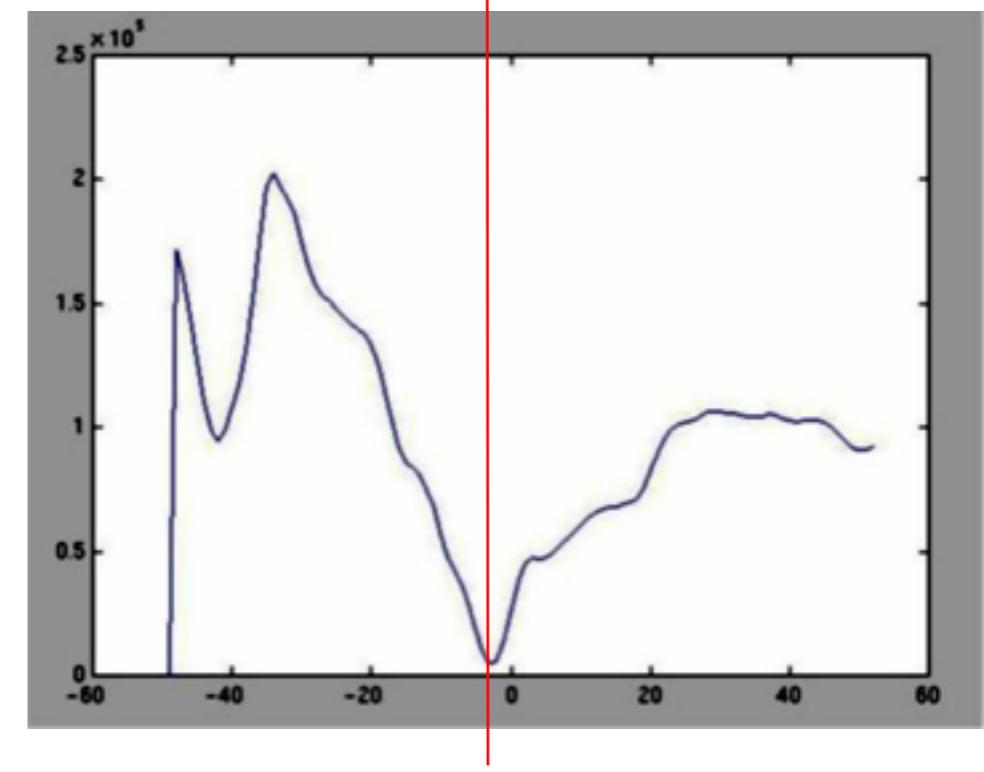
1. Rectify images
(make epipolar lines horizontal)
2. For each pixel
 - a. Find epipolar line
 - b. Scan line for best match
 - c. Compute depth from disparity

$$Z = \frac{bf}{d}$$

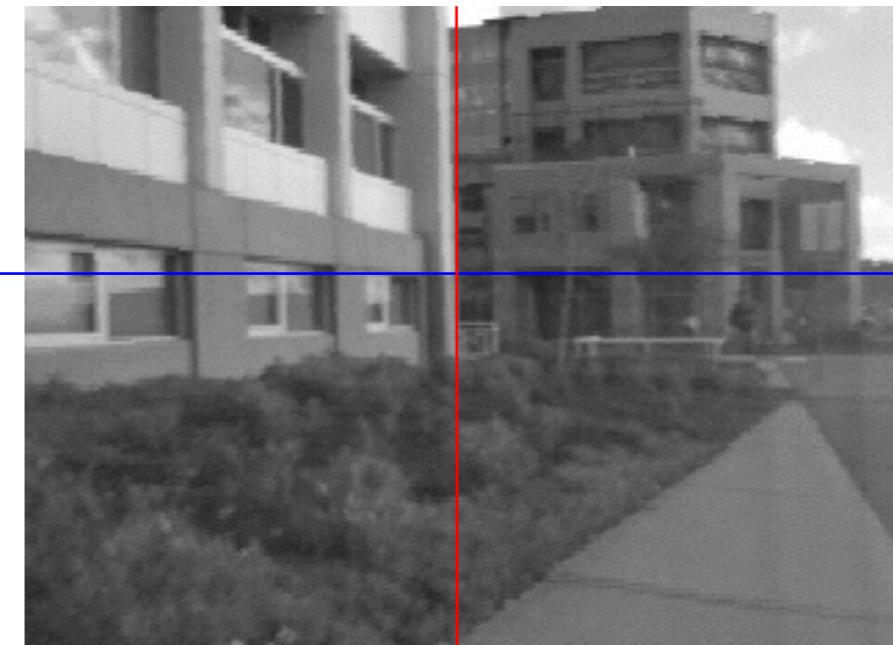
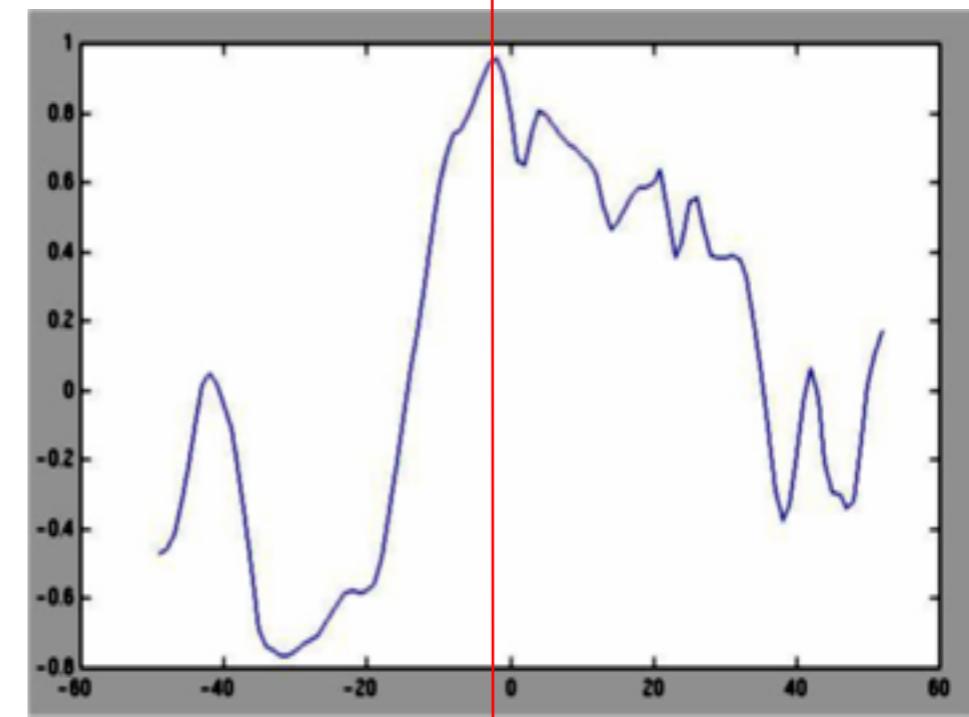
Stereo Block Matching



- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation



SSD



Normalized cross-correlation

Similarity Measure

Formula

Sum of Absolute Differences (SAD)

$$\sum_{(i,j) \in W} |I_1(i,j) - I_2(x+i, y+j)|$$

Sum of Squared Differences (SSD)

$$\sum_{(i,j) \in W} (I_1(i,j) - I_2(x+i, y+j))^2$$

Zero-mean SAD

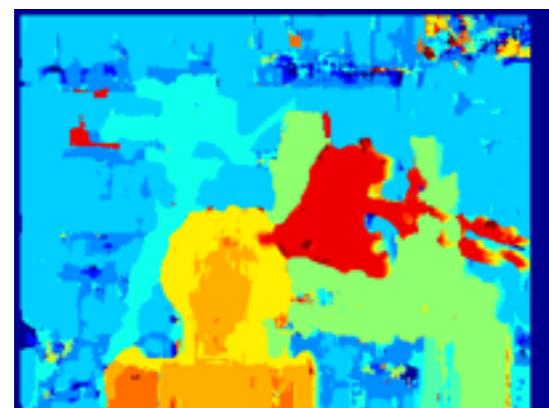
$$\sum_{(i,j) \in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i, y+j) + \bar{I}_2(x+i, y+j)|$$

Locally scaled SAD

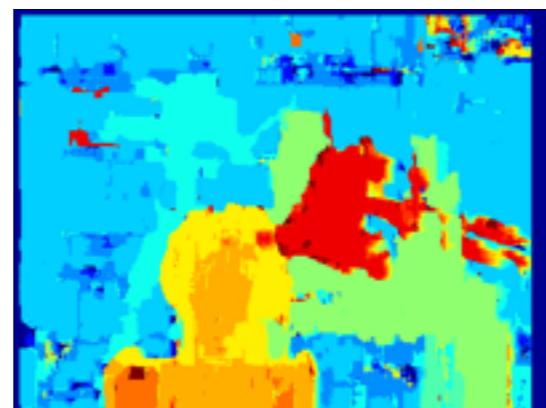
$$\sum_{(i,j) \in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i, y+j)} I_2(x+i, y+j)|$$

Normalized Cross Correlation (NCC)

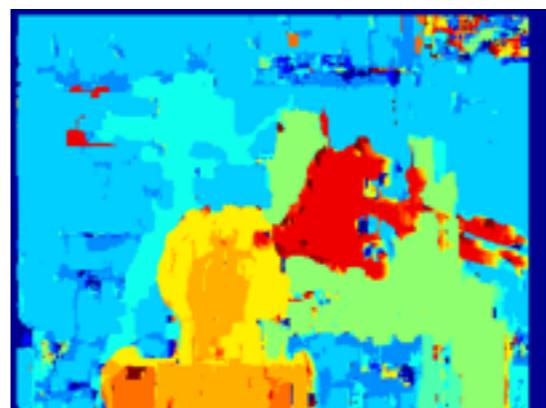
$$\frac{\sum_{(i,j) \in W} I_1(i,j) \cdot I_2(x+i, y+j)}{\sqrt{2} \sqrt{\sum_{(i,j) \in W} I_1^2(i,j) \cdot \sum_{(i,j) \in W} I_2^2(x+i, y+j)}}$$



SAD



SSD

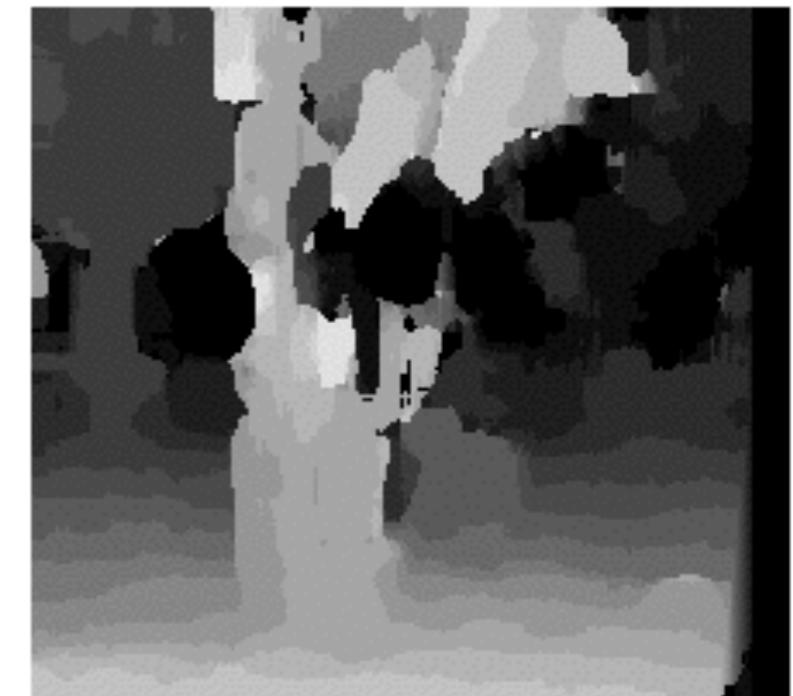


NCC

Ground truth

Effect of window size

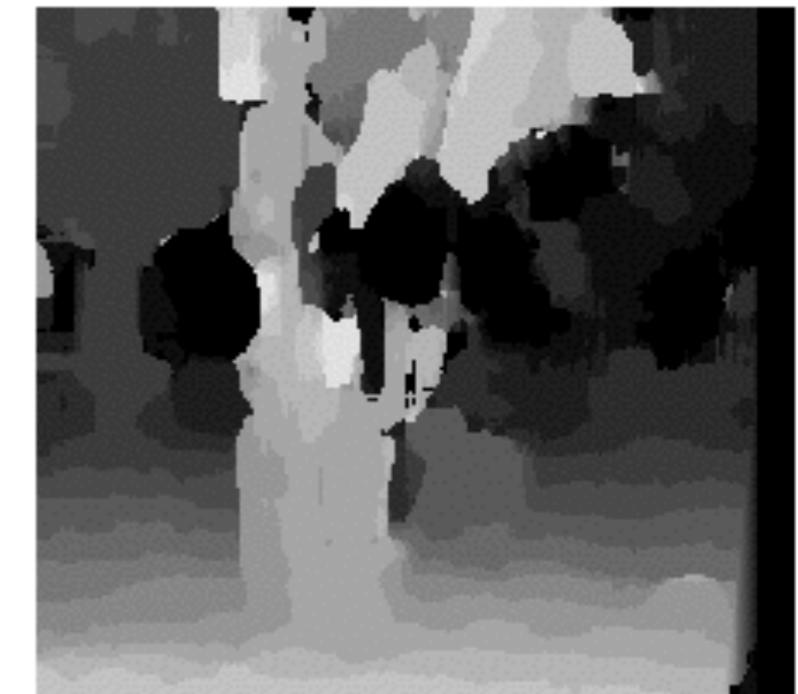
$W = 3$



$W = 20$

Effect of window size

$W = 3$



$W = 20$

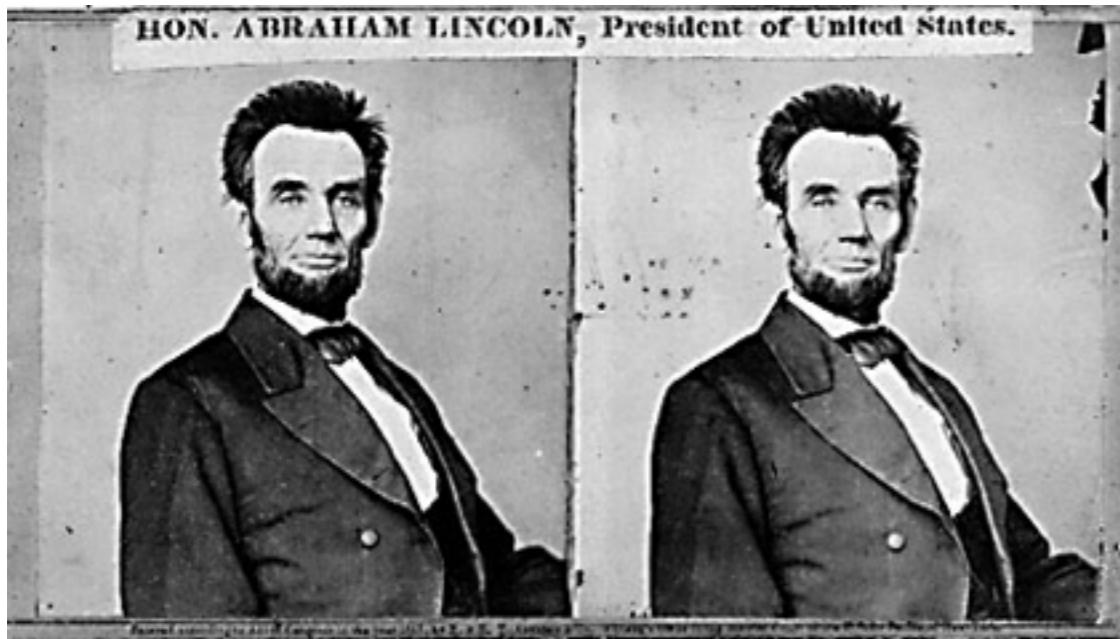
Smaller window

- + More detail
- More noise

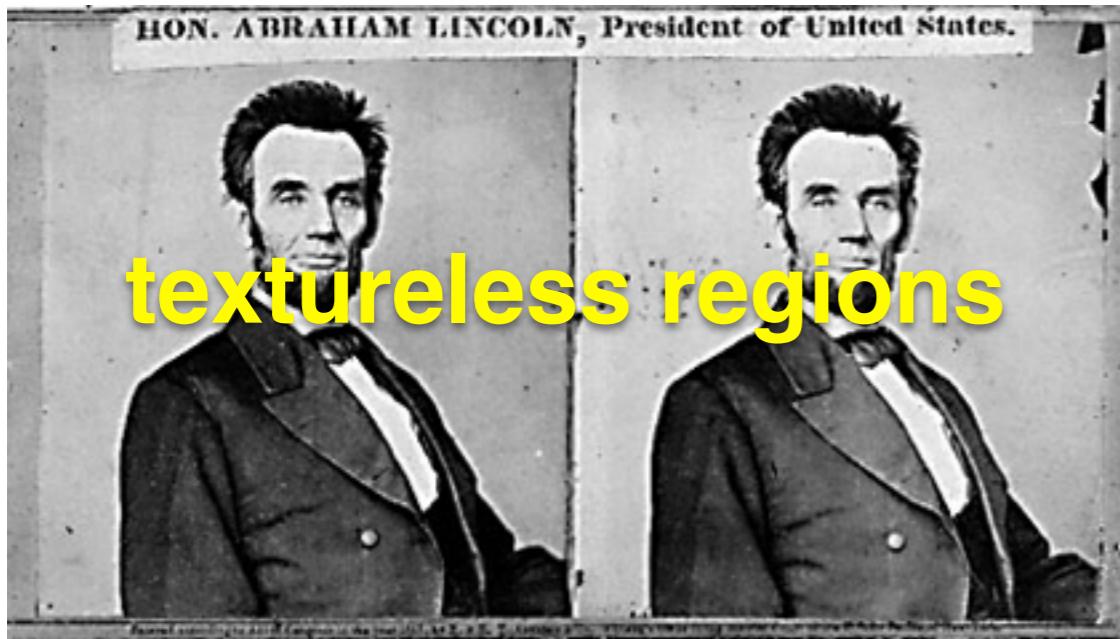
Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

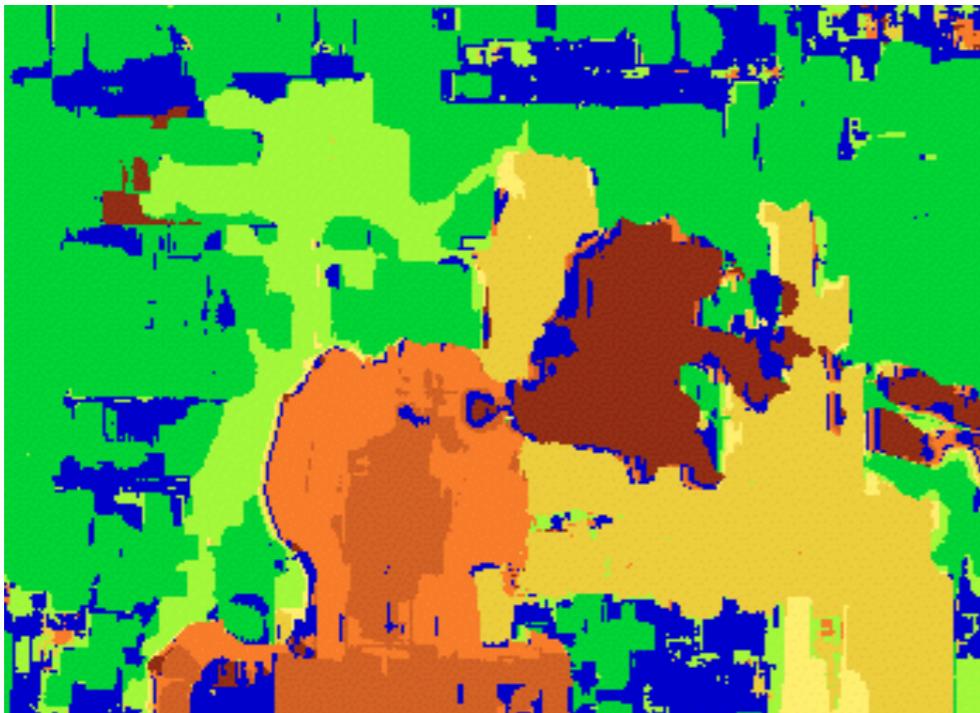


When will stereo block matching fail?

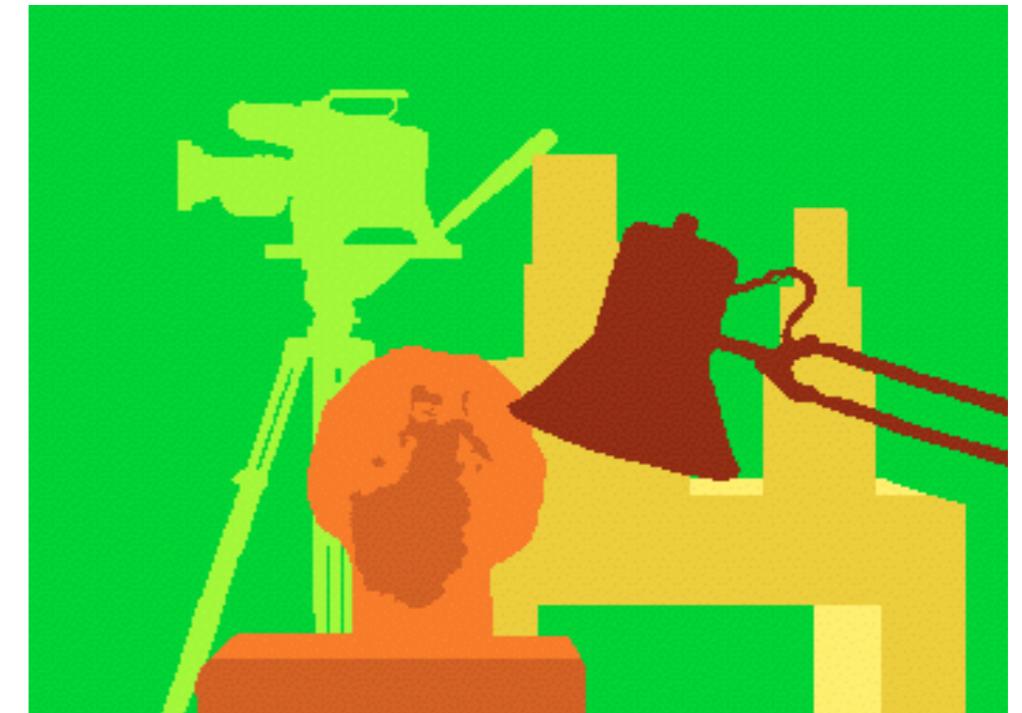


Improving Stereo Block Matching

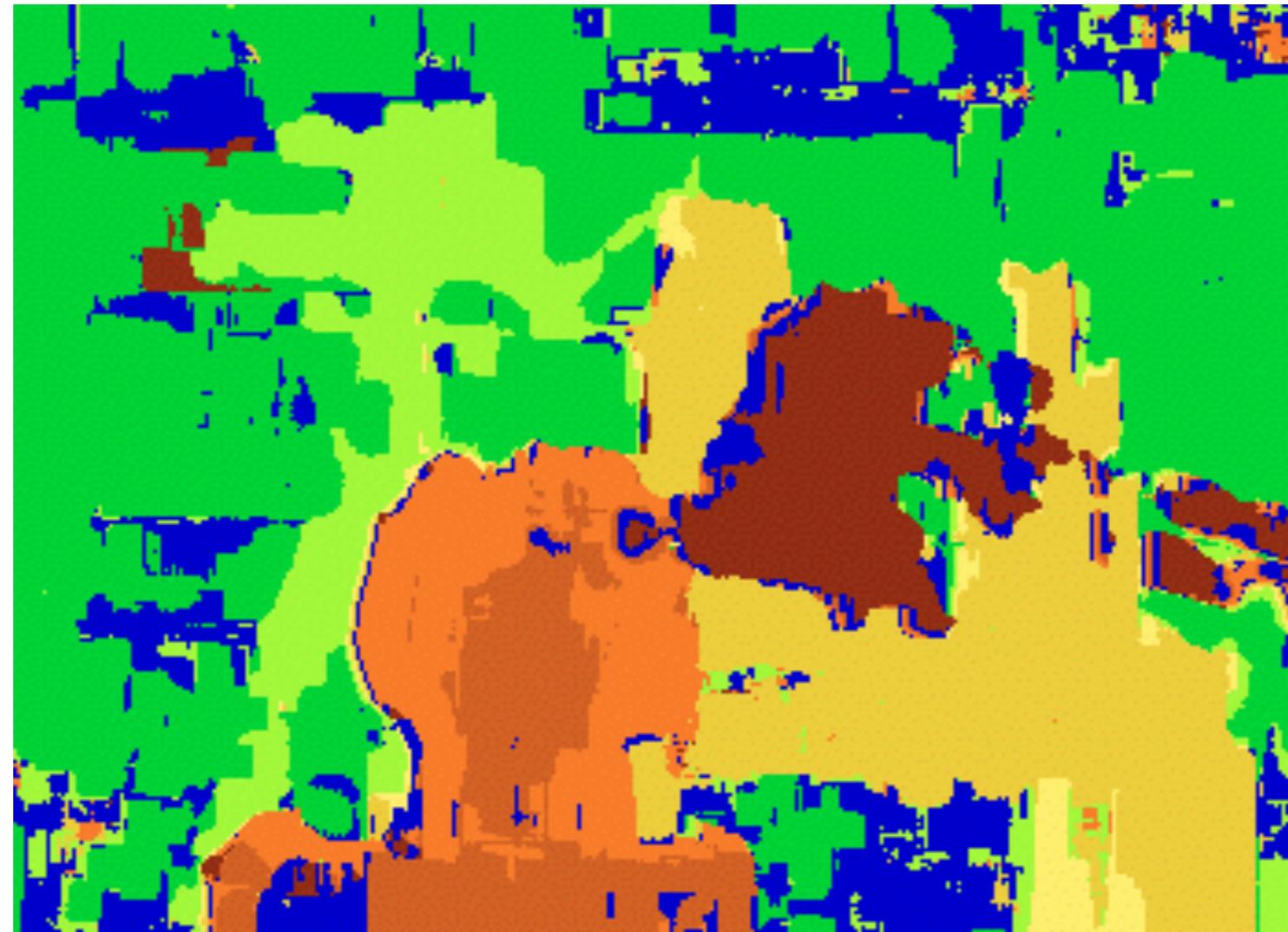
Block matching



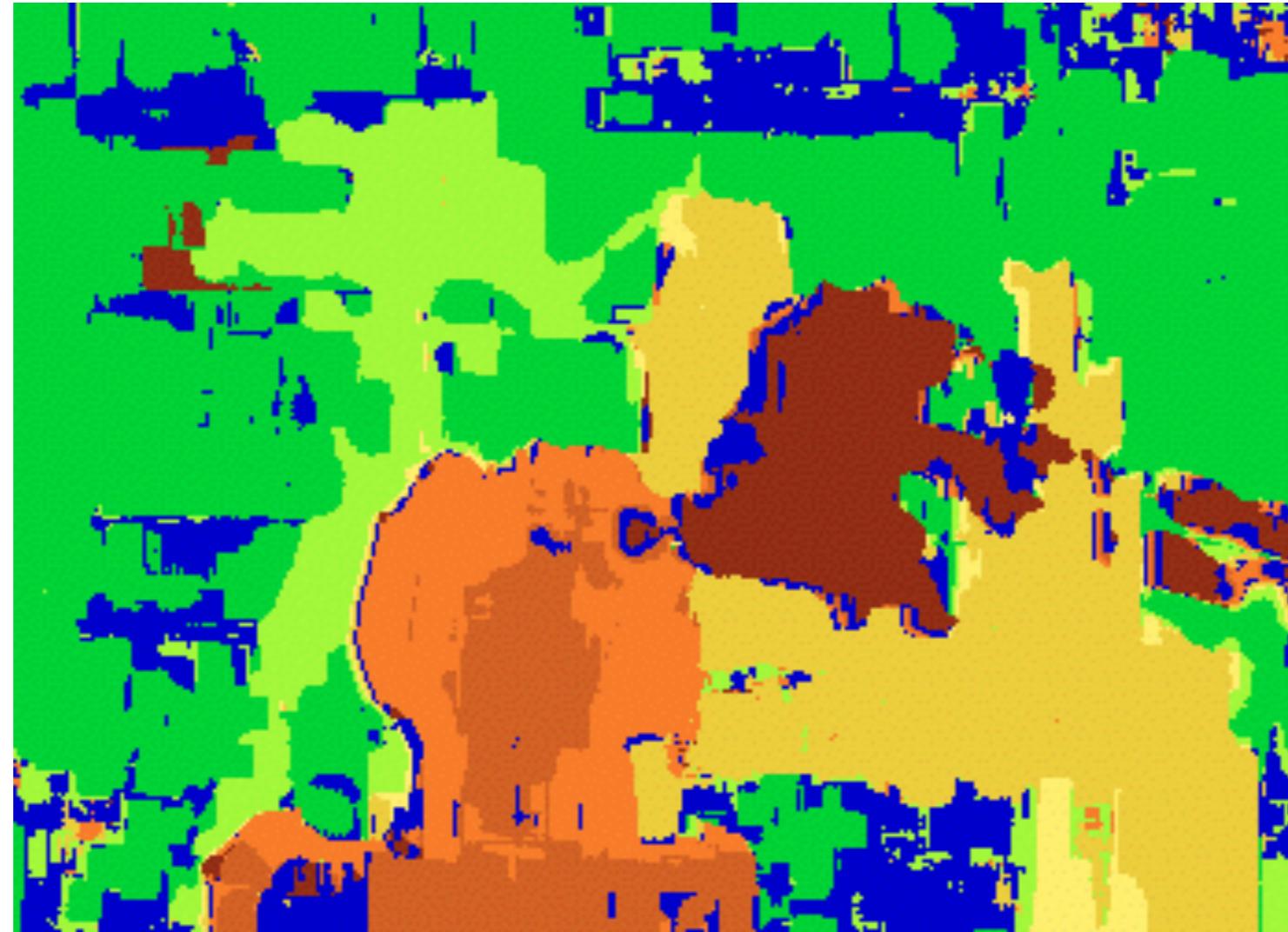
Ground truth



What are some problems with the result?



How can we improve depth estimation?



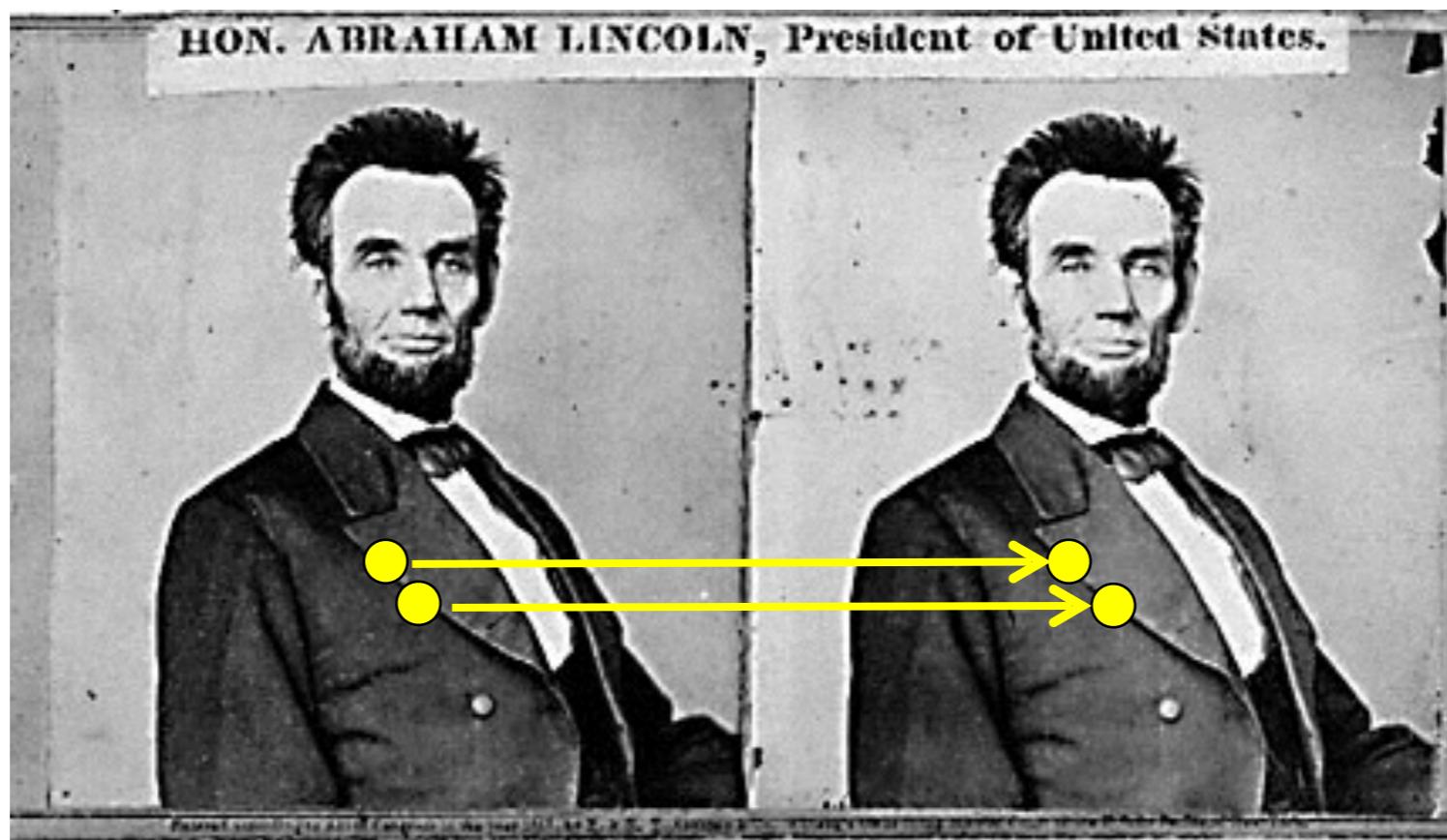
How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption:
depth should change smoothly

Stereo matching as ...

Energy Minimization



What defines a good stereo correspondence?

1. **Match quality**
 - Want each pixel to find a good match in the other image
2. **Smoothness**
 - If two pixels are adjacent, they should (usually) move about the same amount

energy function
(for one pixel)

$$E(d) = \underbrace{E_d(d)}_{\text{data term}} + \lambda \underbrace{E_s(d)}_{\text{smoothness term}}$$

energy function
(for one pixel)

$$E(d) = \underbrace{E_d(d)}_{\text{data term}} + \lambda \underbrace{E_s(d)}_{\text{smoothness term}}$$

Want each pixel to find a good
match in the other image
(block matching result)

Adjacent pixels should (usually)
move about the same amount
(smoothness function)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y) \in I} C(x, y, d(x, y))$$

data term

SSD distance between windows
centered at $I(x, y)$ and $J(x + d(x, y), y)$

$$E(d) = E_d(d) + \lambda E_s(d)$$

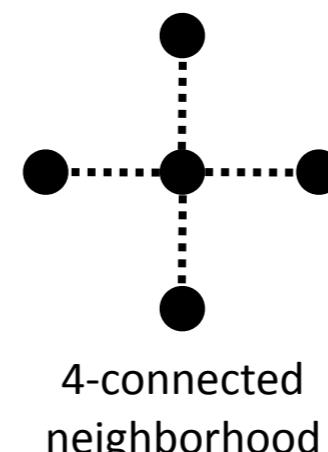
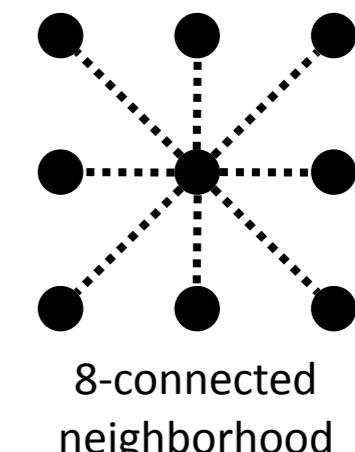
$$E_d(d) = \sum_{(x,y) \in I} C(x, y, d(x, y))$$

SSD distance between windows
centered at $I(x, y)$ and $J(x + d(x, y), y)$

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q)$$

smoothness term

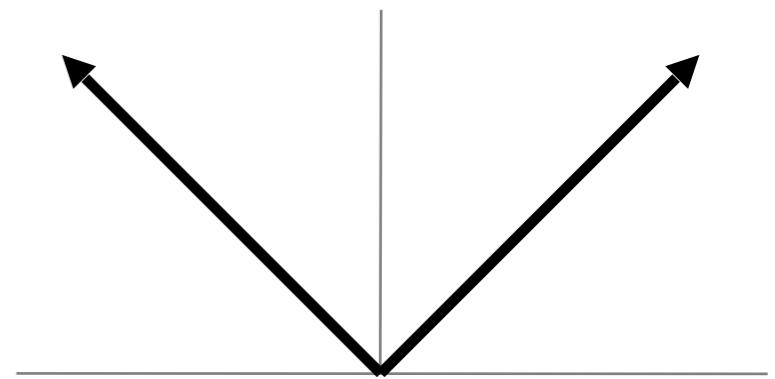
\mathcal{E} : set of neighboring pixels



$$E_s(d) = \sum_{\substack{\text{smoothness term} \\ (p,q) \in \mathcal{E}}} V(d_p, d_q)$$

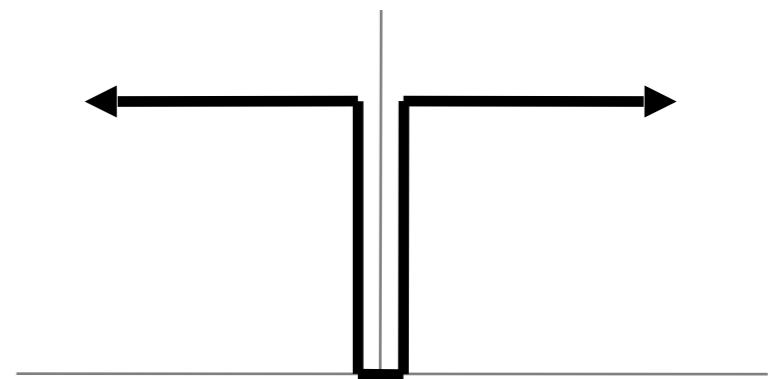
$$V(d_p, d_q) = |d_p - d_q|$$

L_1 distance



$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$

“Potts model”



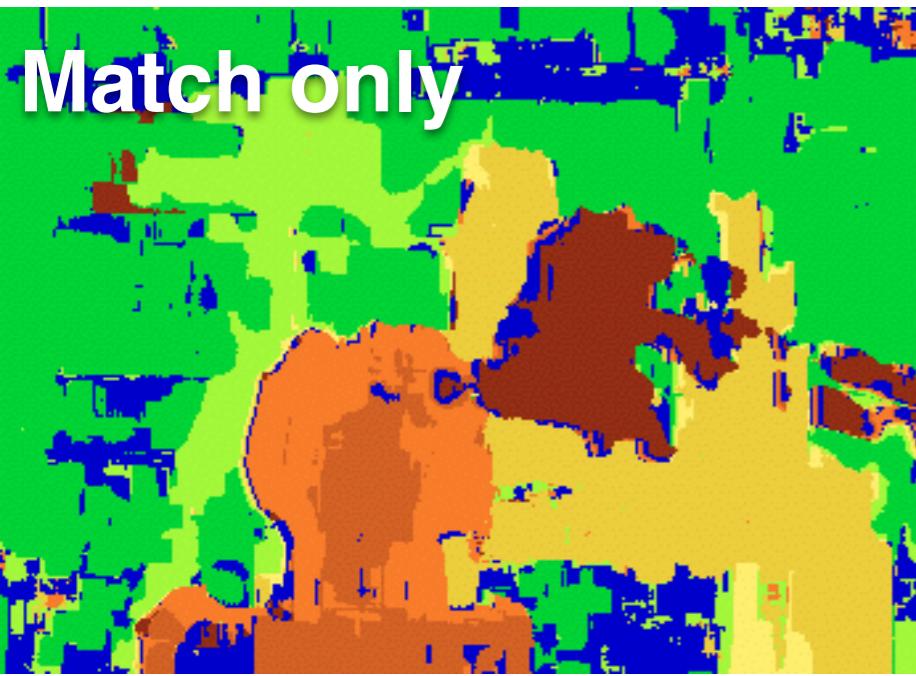
Dynamic Programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline
using dynamic programming (DP)

$D(x, y, d)$: minimum cost of solution such that $d(x, y) = d$

$$D(x, y, d) = C(x, y, d) + \min_{d'} \{D(x - 1, y, d') + \lambda |d - d'|\}$$



Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001