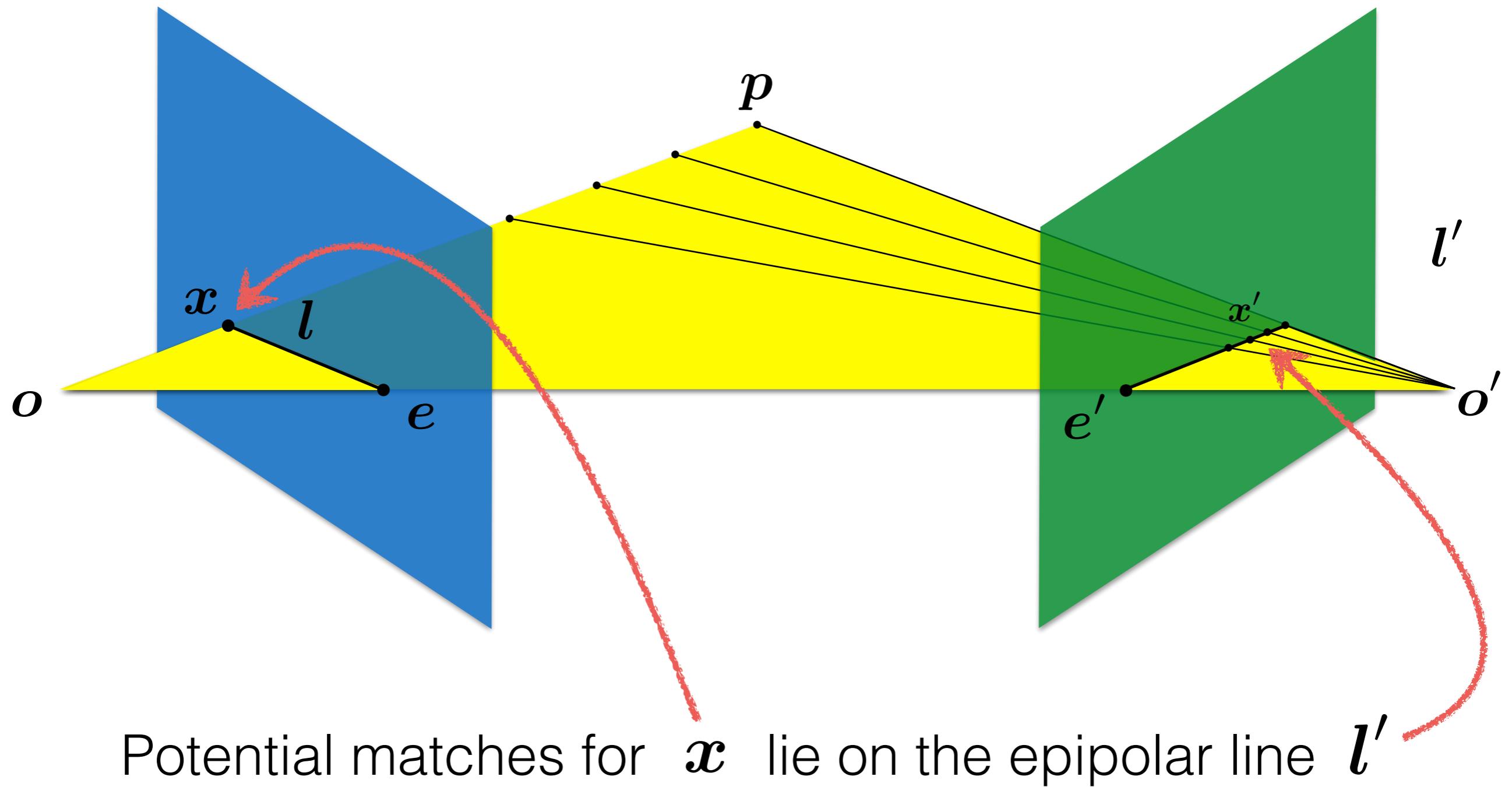


E

Essential Matrix

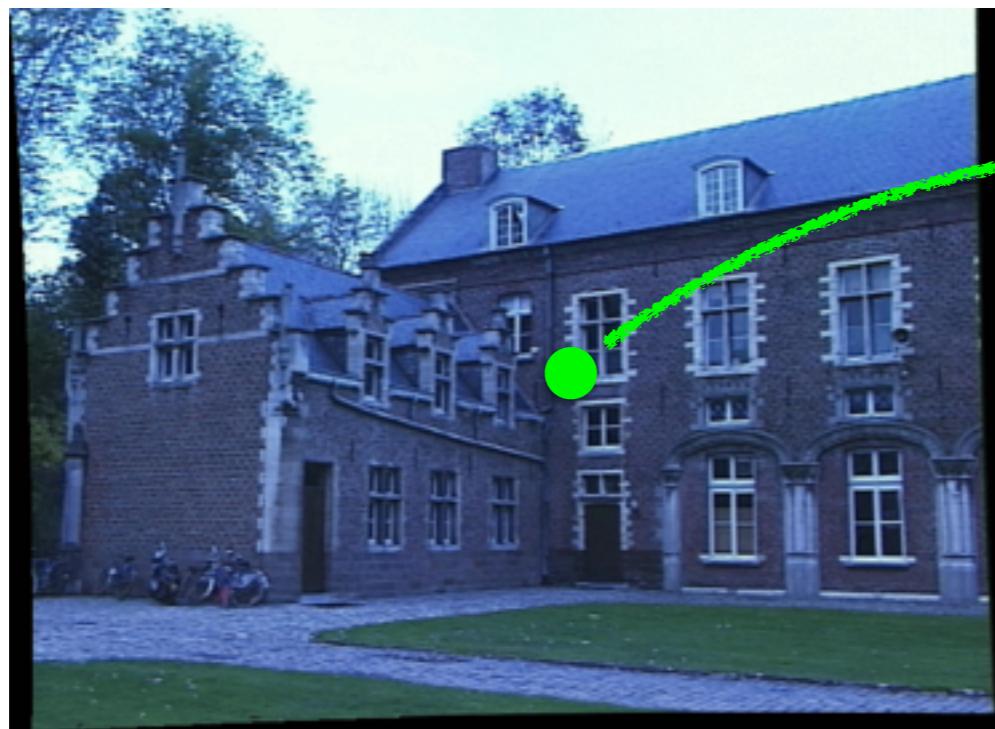
16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Recall: Epipolar constraint

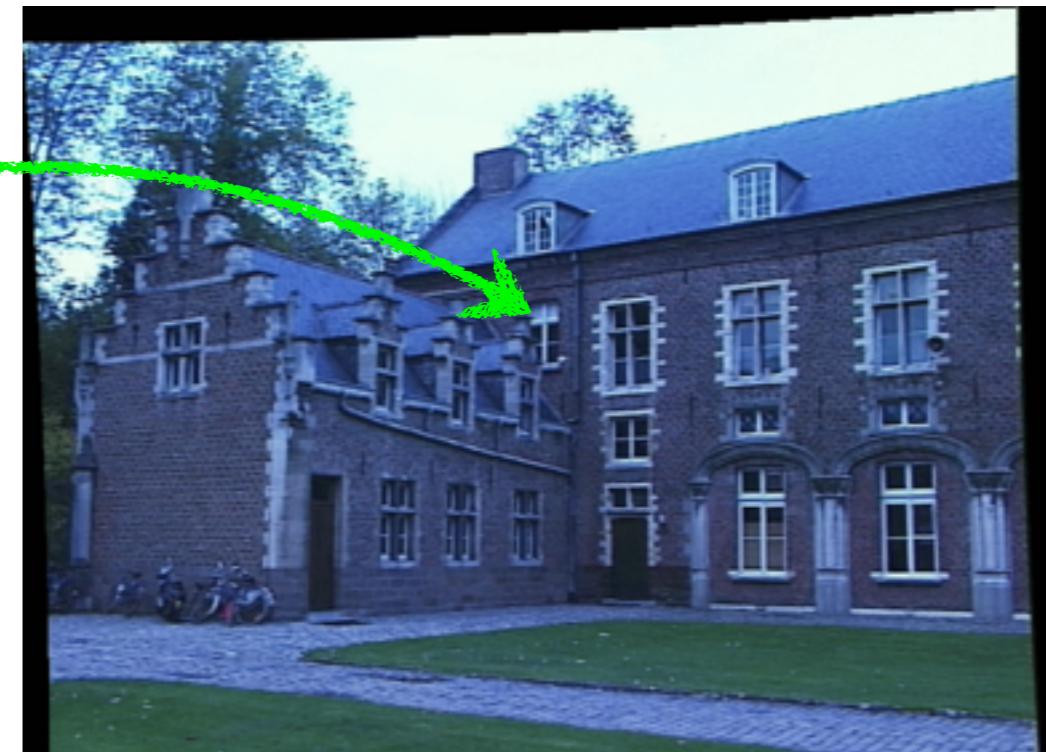


The epipolar geometry is an important concept for stereo vision

Task: Match point in left image to point in right image



Left image

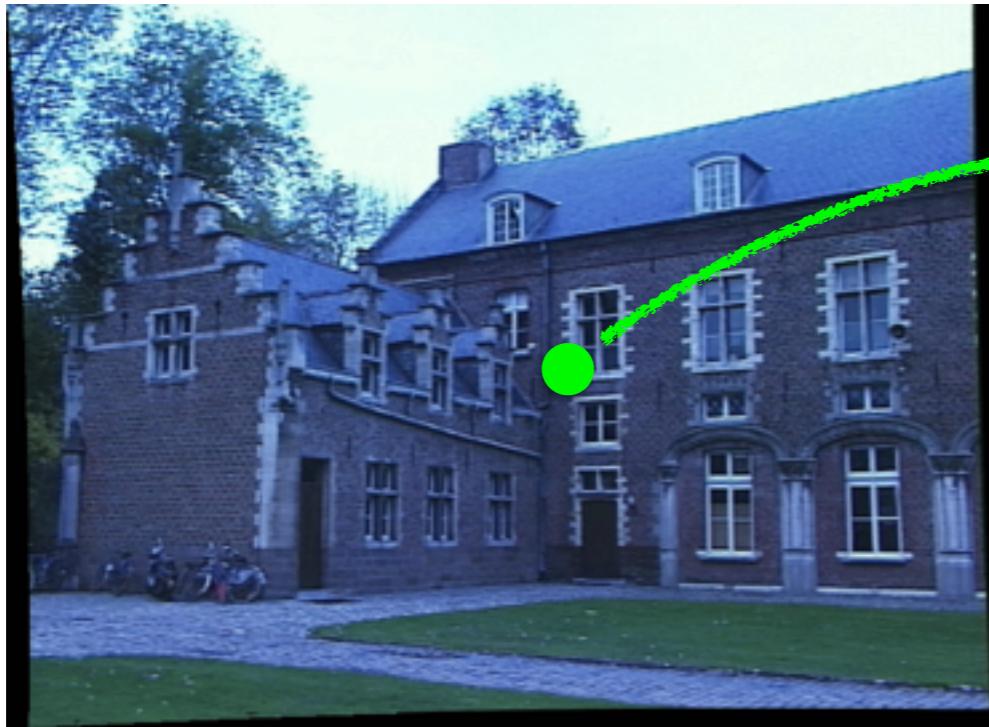


Right image

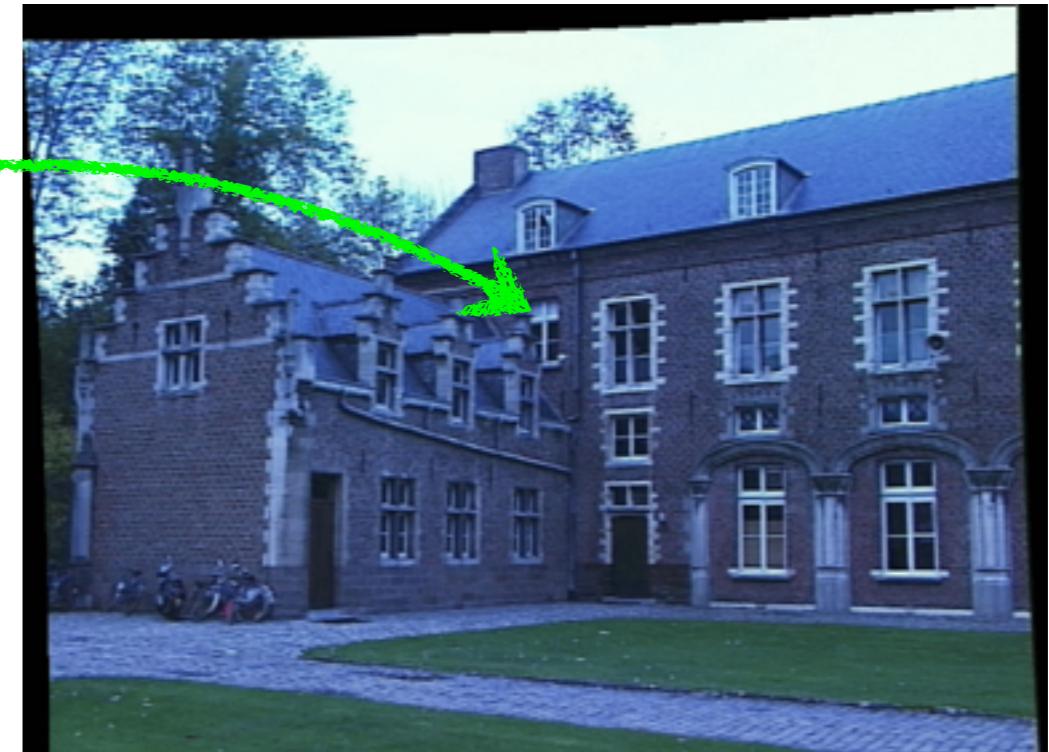
How would you do it?

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image



Left image



Right image

Epipolar constraint reduces search to a single line

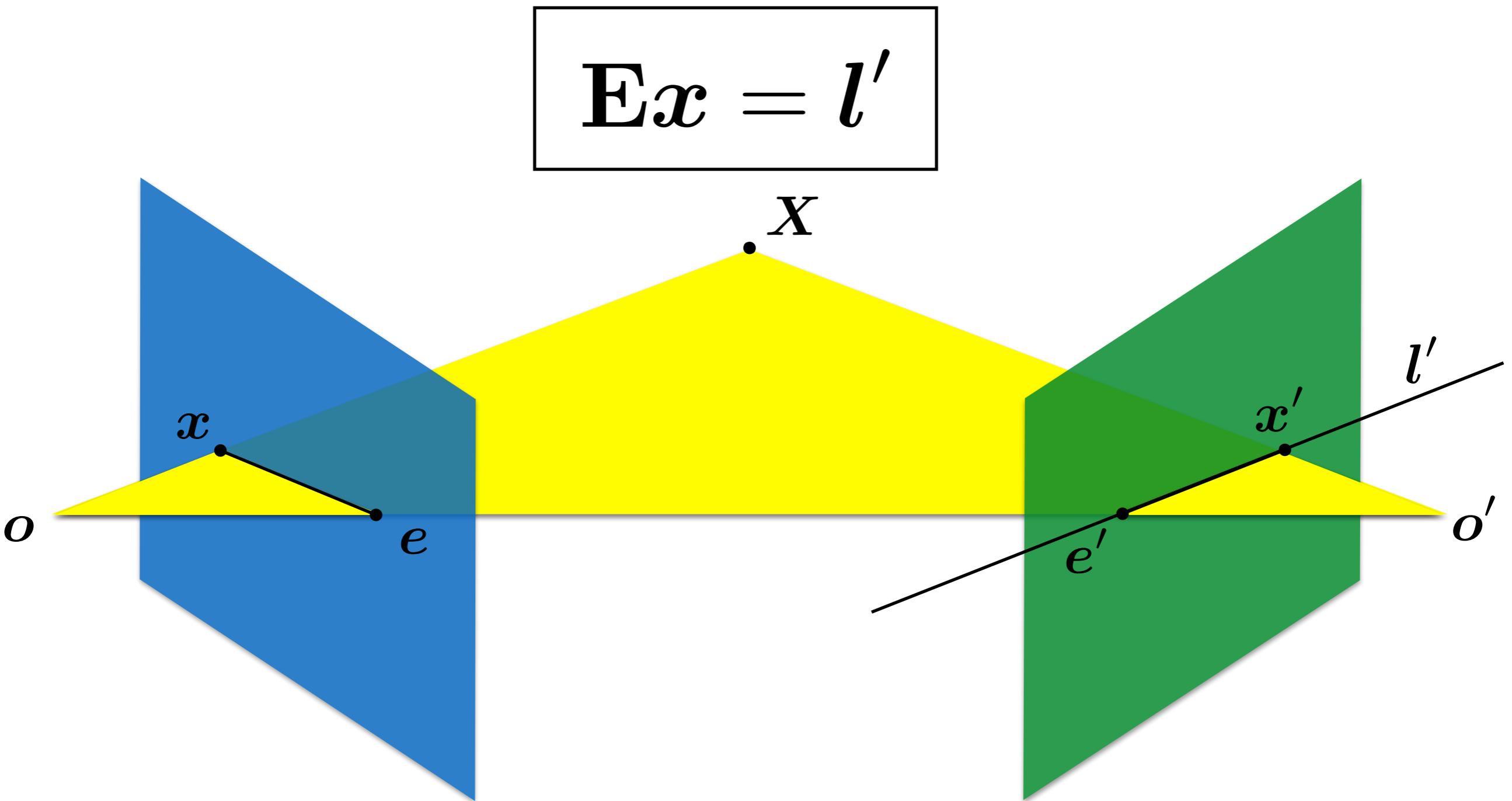
How do you compute the epipolar line?

Essential Matrix

E

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image,
multiplying by the **essential matrix** will tell us
the **epipolar line** in the second view.



Representing the ...

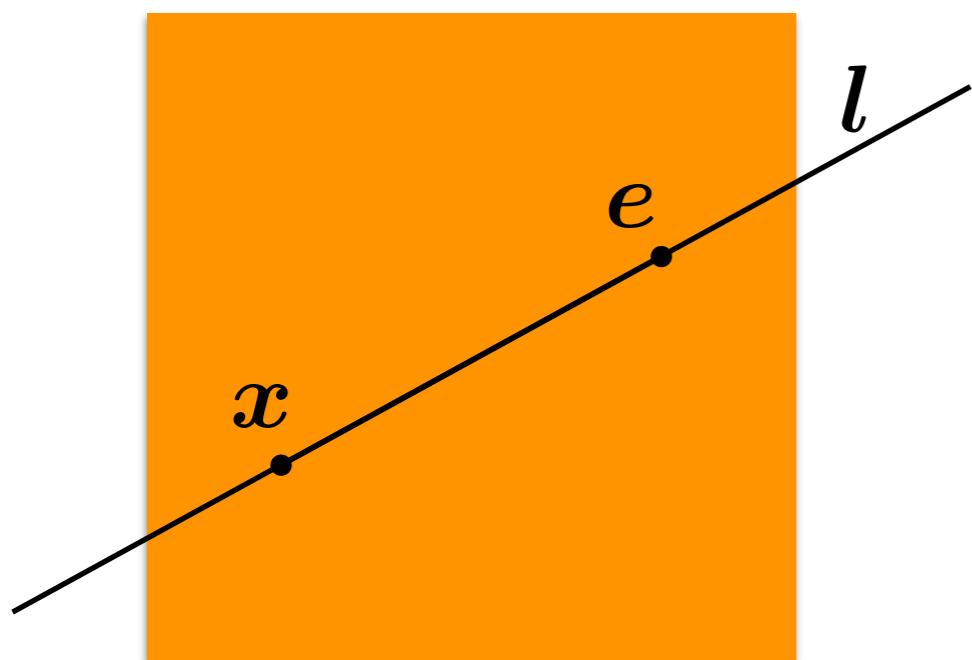
Epipolar Line

$$ax + by + c = 0$$

in vector form

$$\mathbf{l} =$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$



If the point \mathbf{x} is on the epipolar line \mathbf{l} then

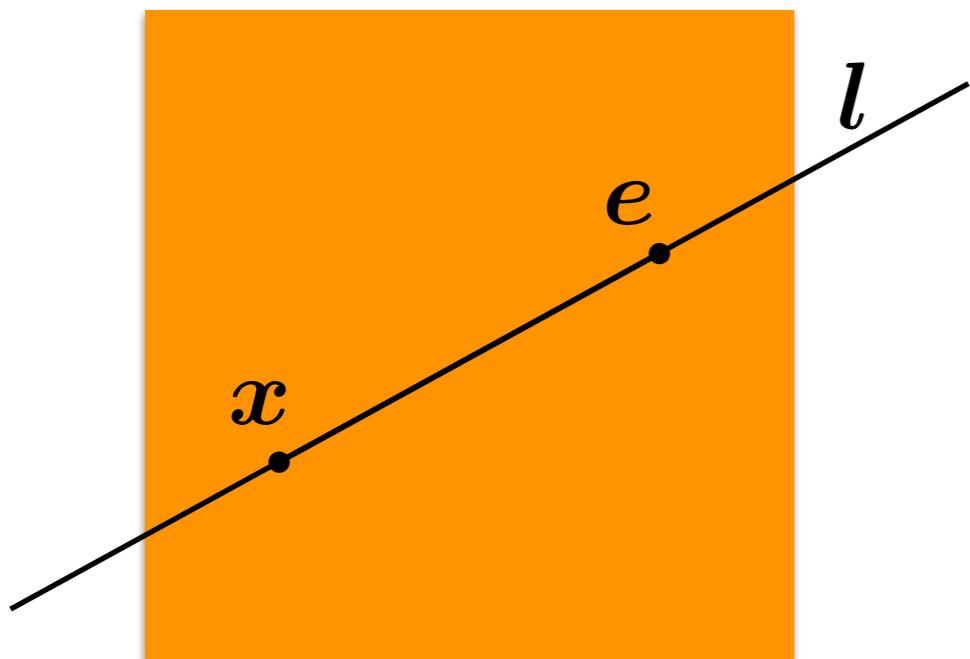
$$\mathbf{x}^\top \mathbf{l} = ?$$

Epipolar Line

$$ax + by + c = 0$$

in vector form

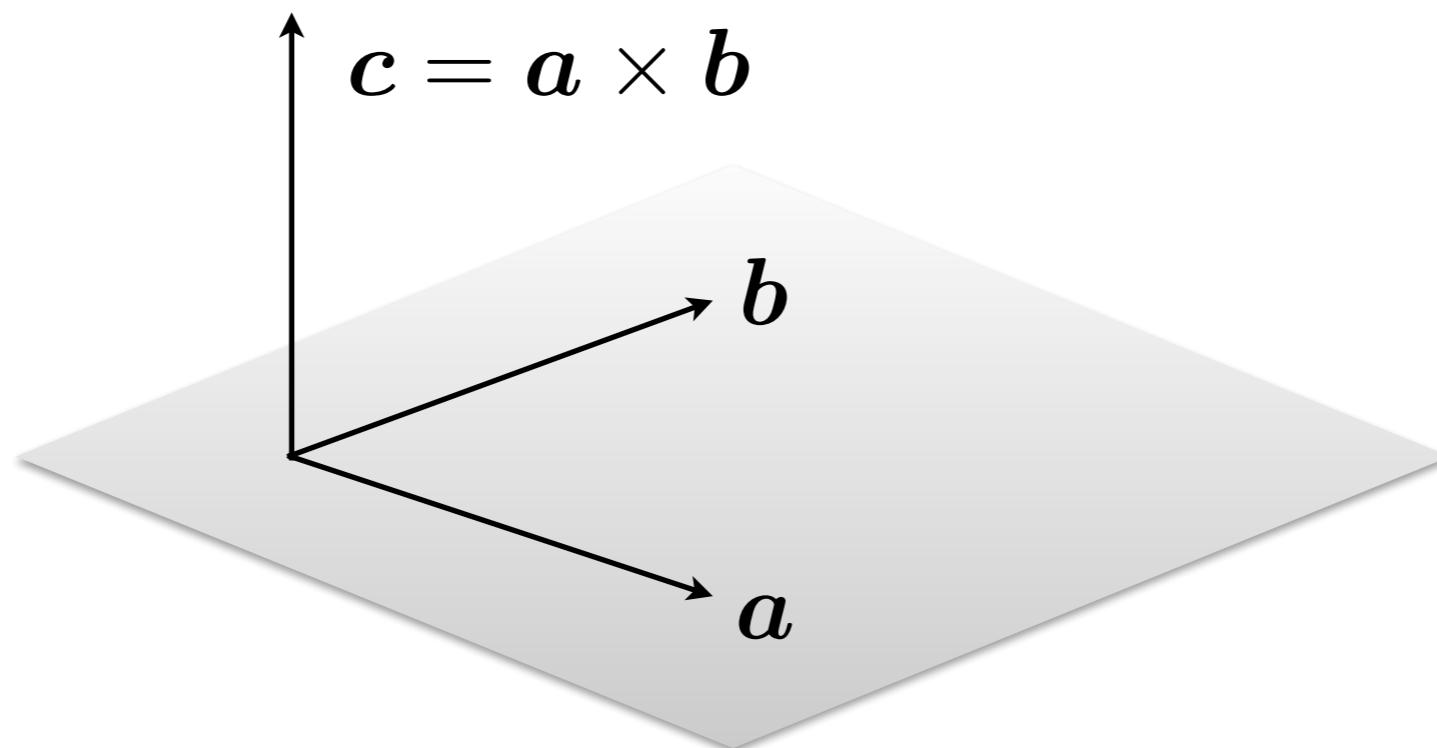
$$\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$



If the point \mathbf{x} is on the epipolar line \mathbf{l} then

$$\mathbf{x}^\top \mathbf{l} = 0$$

Recall: Dot Product

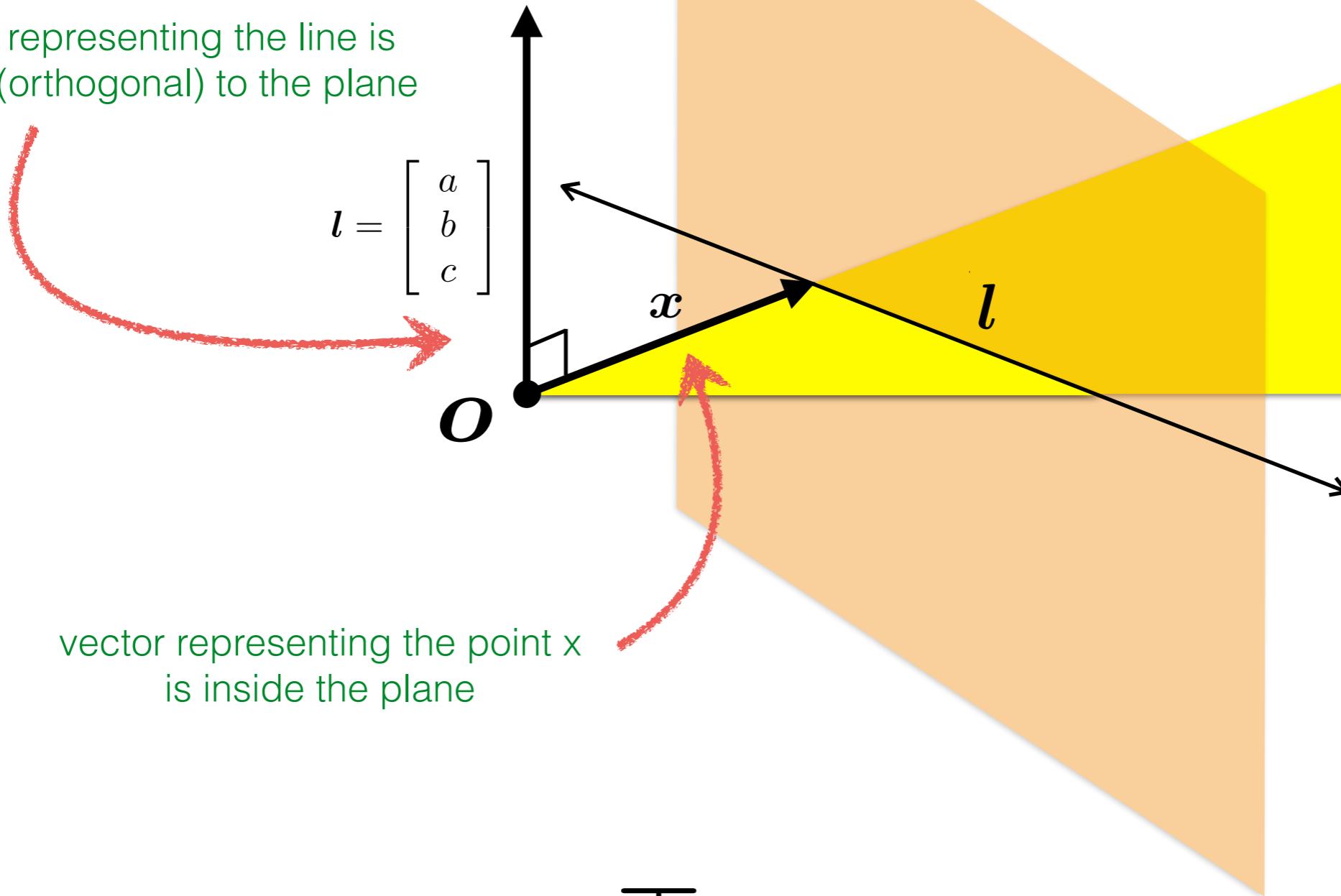


$$c \cdot a = 0$$

$$c \cdot b = 0$$

dot product of two orthogonal vectors is zero

vector representing the line is
normal (orthogonal) to the plane

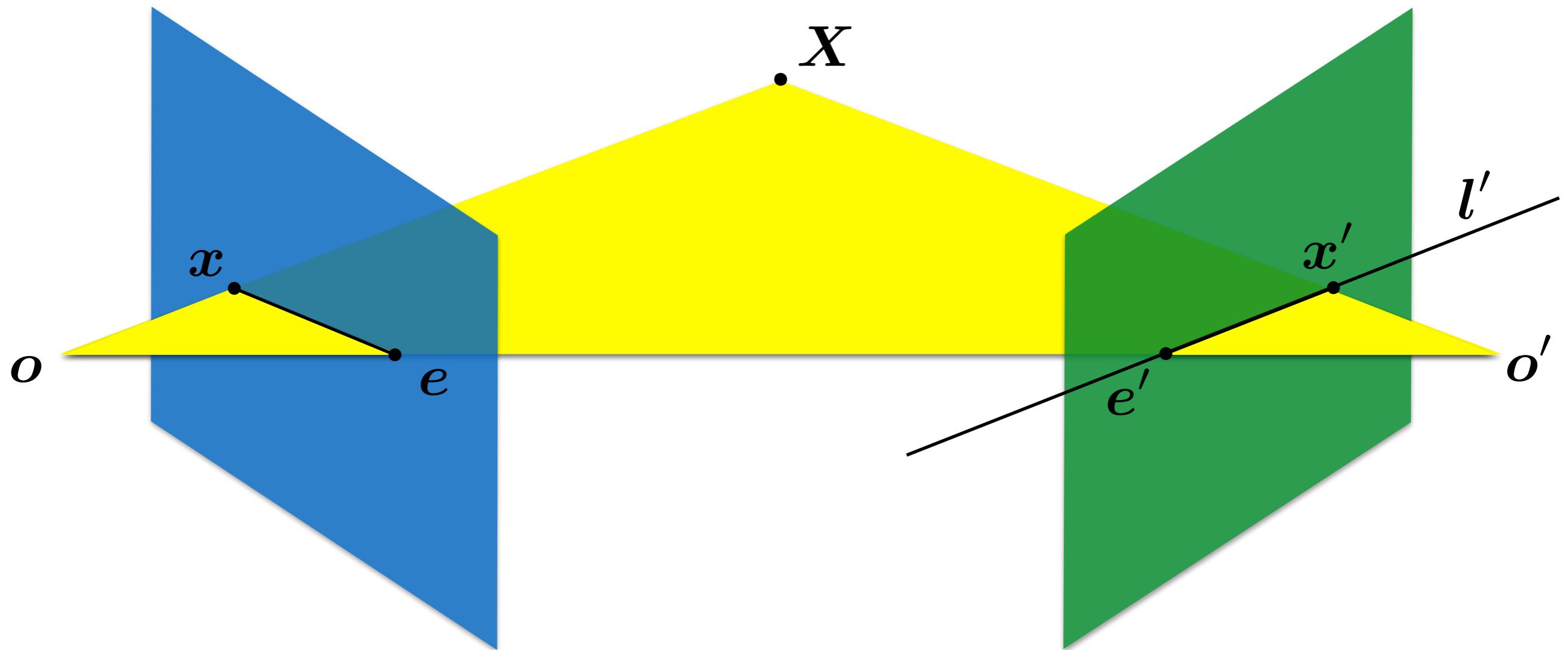


Therefore:

$$\mathbf{x}^\top \mathbf{l} = 0$$

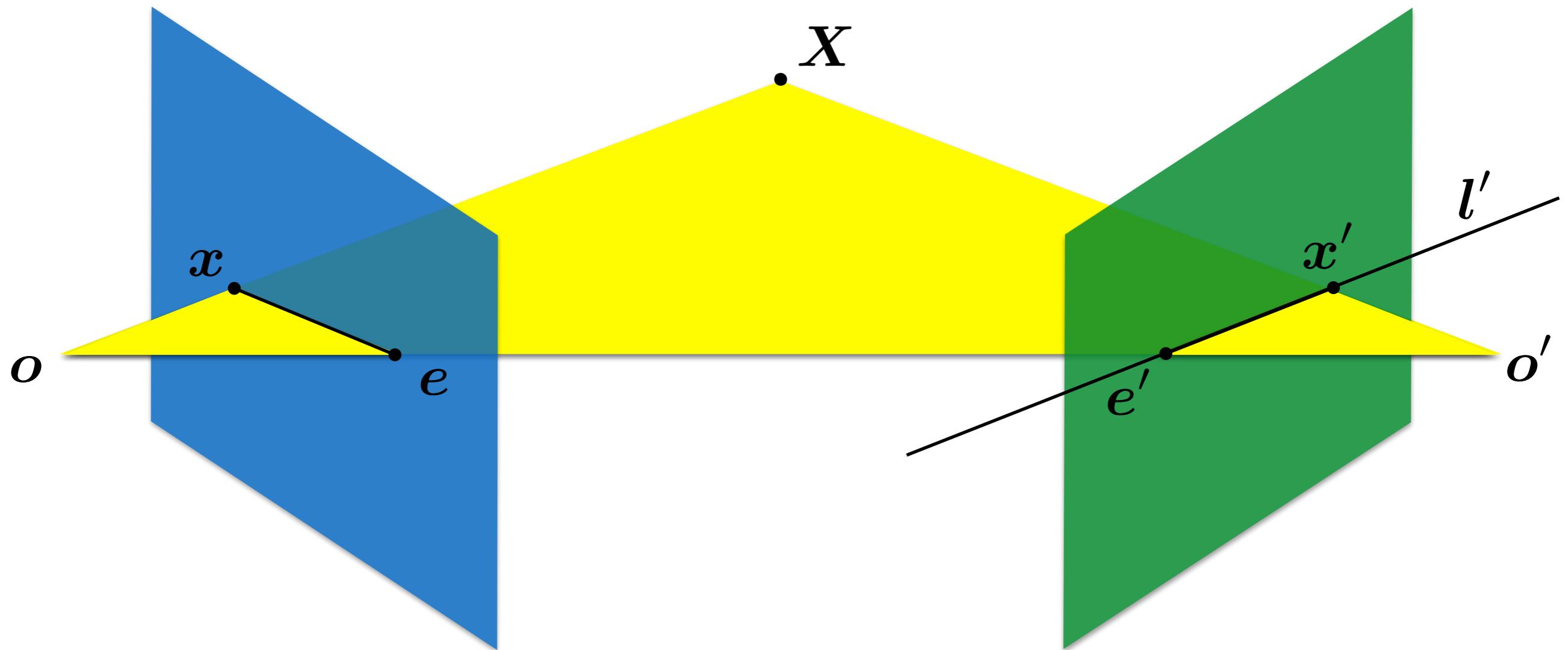
So if $\mathbf{x}^\top \mathbf{l} = 0$ and $\mathbf{E}\mathbf{x} = \mathbf{l}'$ then

$$\mathbf{x}'^\top \mathbf{E}\mathbf{x} = ?$$



So if $\mathbf{x}^\top \mathbf{l} = 0$ and $\mathbf{E}\mathbf{x} = \mathbf{l}'$ then

$$\mathbf{x}'^\top \mathbf{E}\mathbf{x} = 0$$



Motivation

The Essential Matrix is a 3×3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

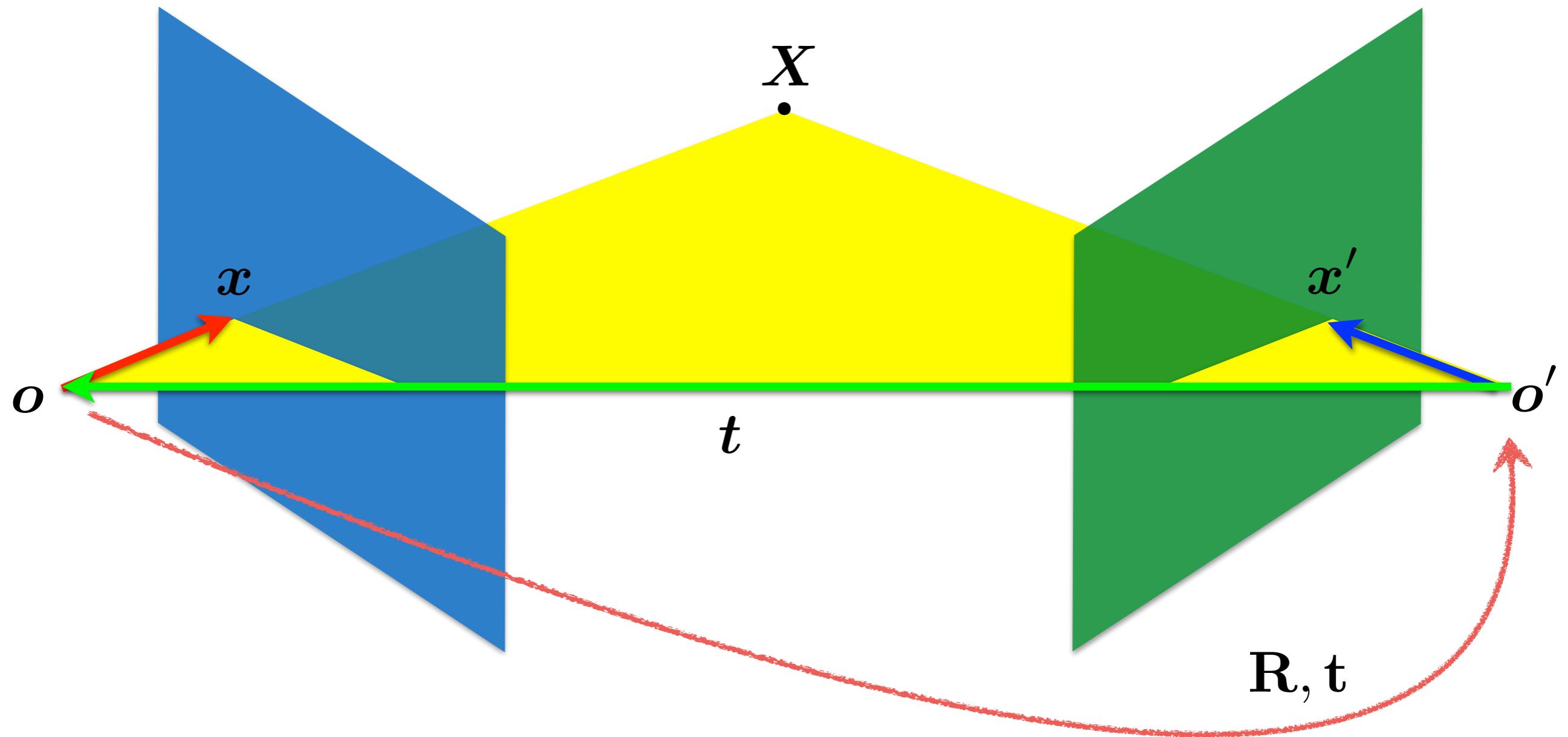
$$l' = \mathbf{E}x$$

Essential matrix maps a
point to a **line**

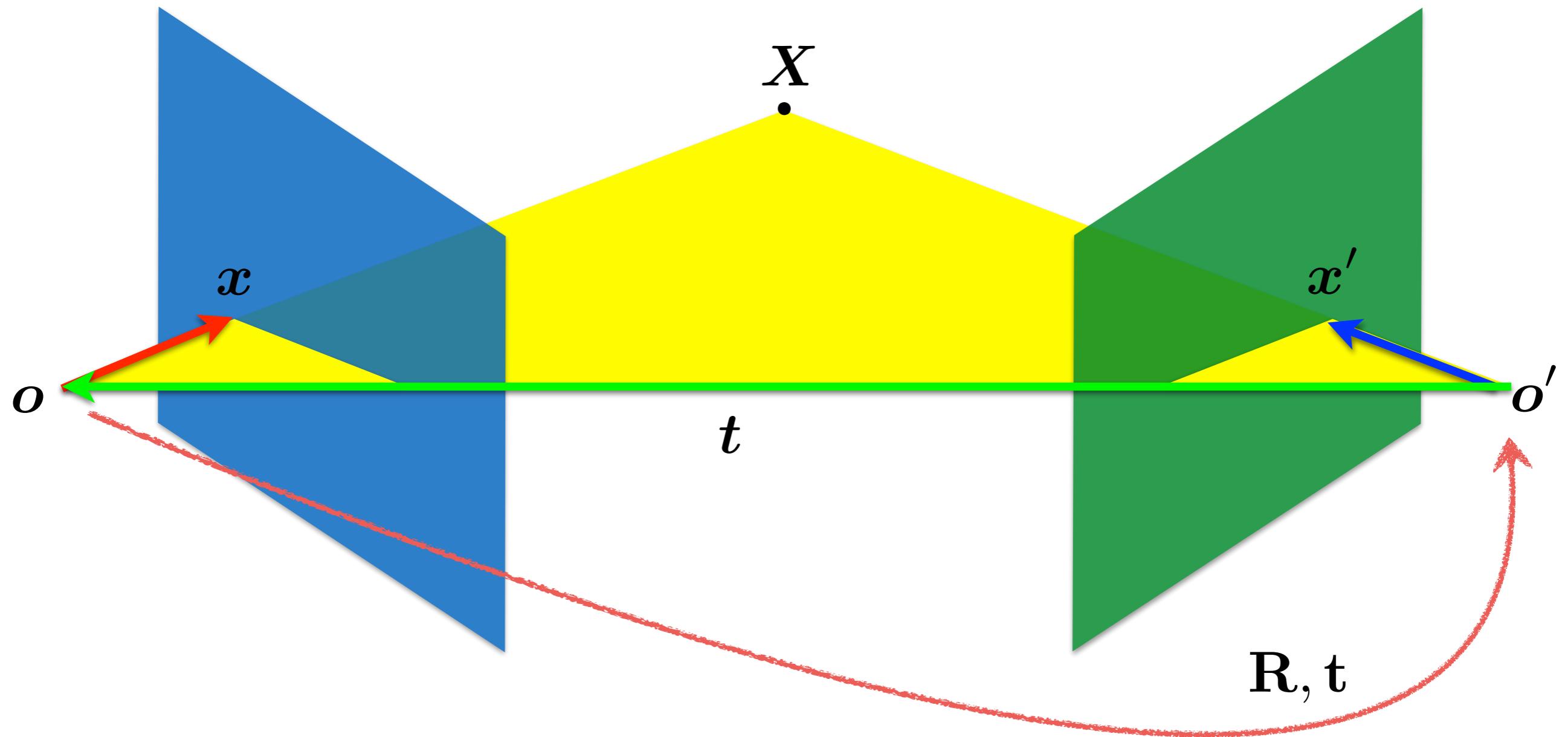
$$x' = \mathbf{H}x$$

Homography maps a
point to a **point**

Where does the Essential matrix come from?

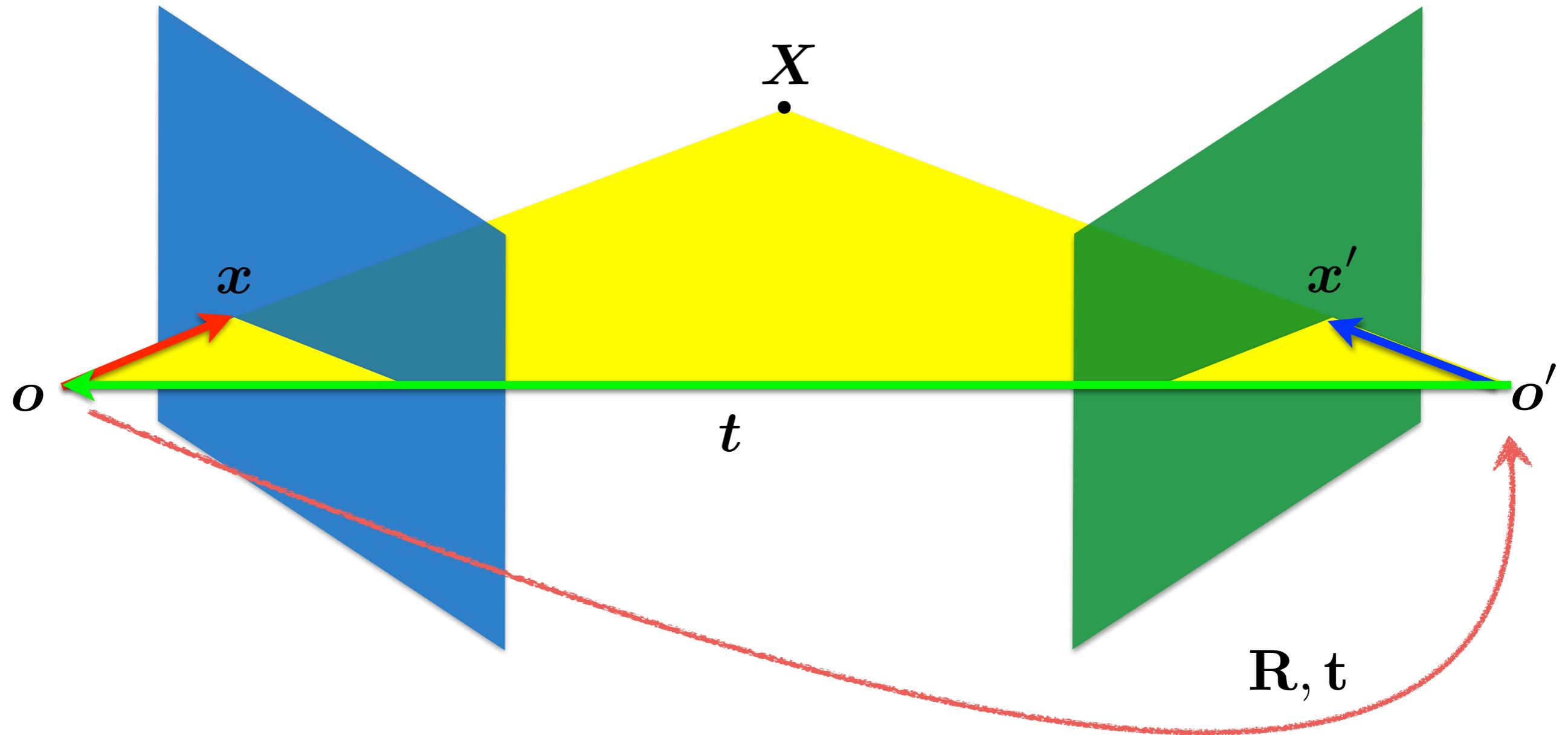


$$x' = R(x - t)$$



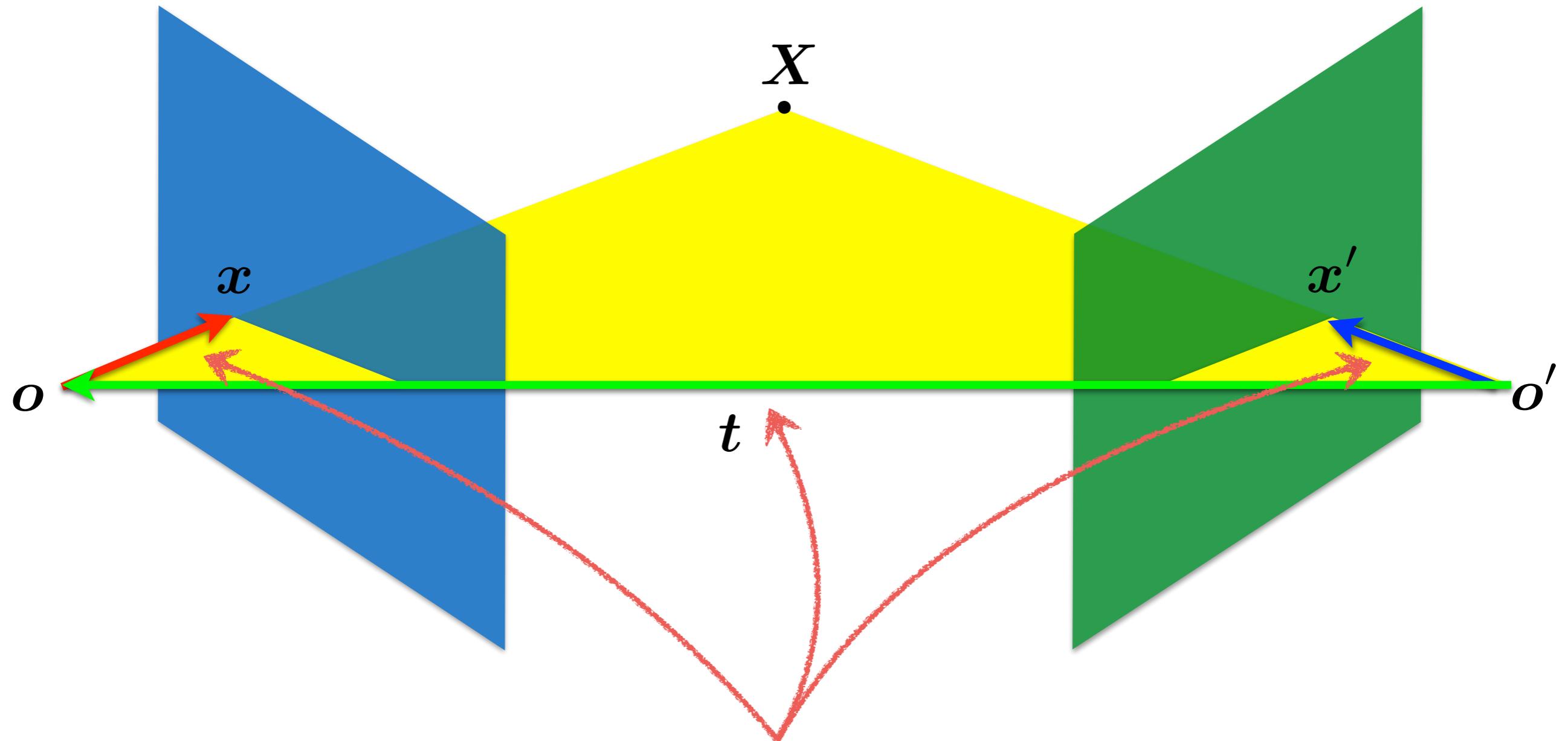
$$x' = R(x - t)$$

Does this look familiar?



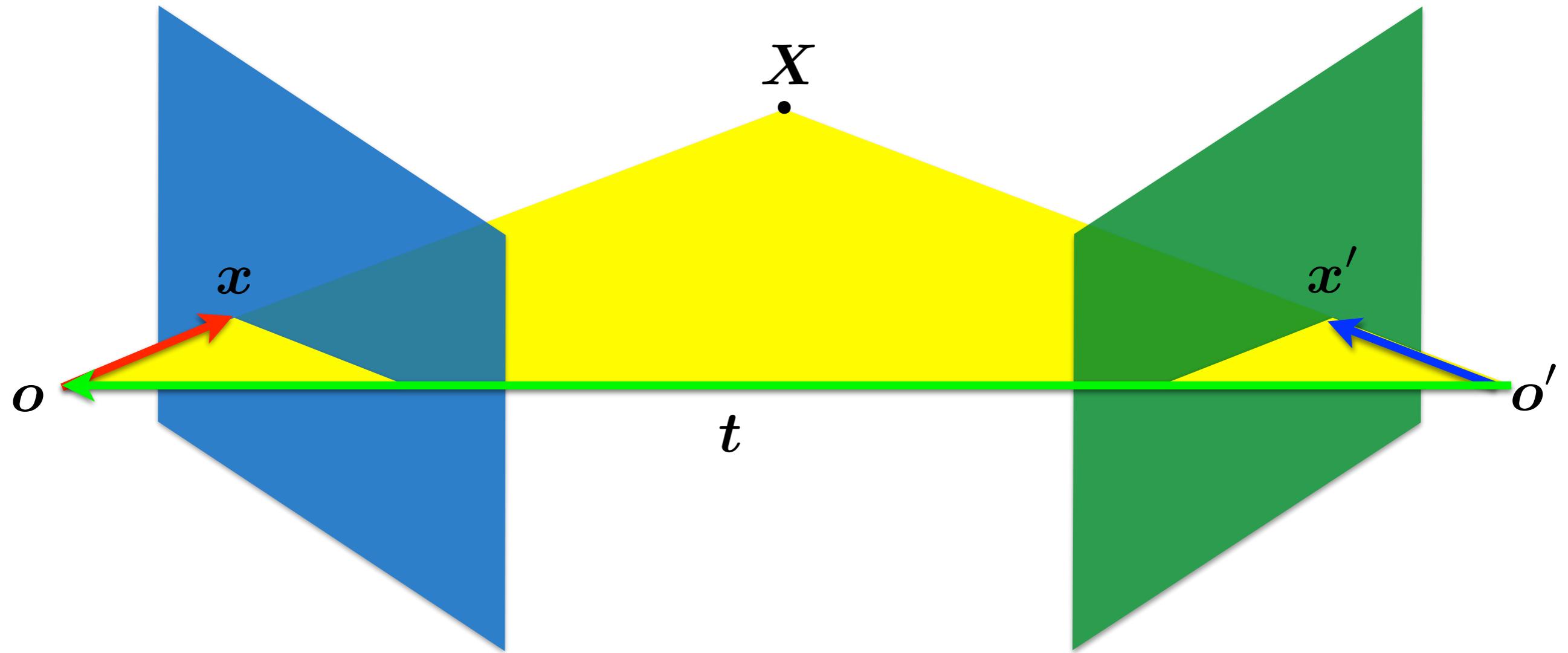
$$x' = R(x - t)$$

Camera-camera transform just like **world-camera** transform



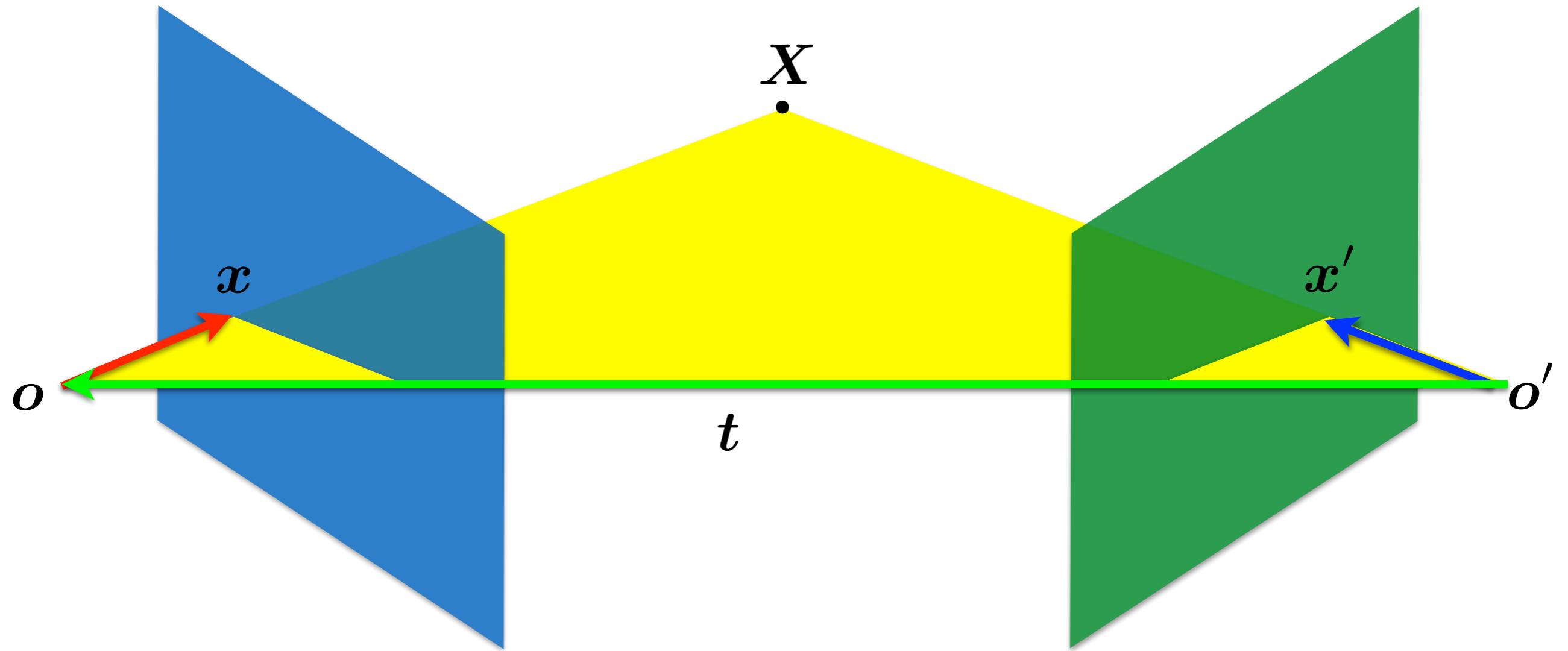
These three vectors are coplanar

$$x, t, x'$$



If these three vectors are coplanar x, t, x' then

$$x^T(t \times x) = ?$$



If these three vectors are coplanar x, t, x' then

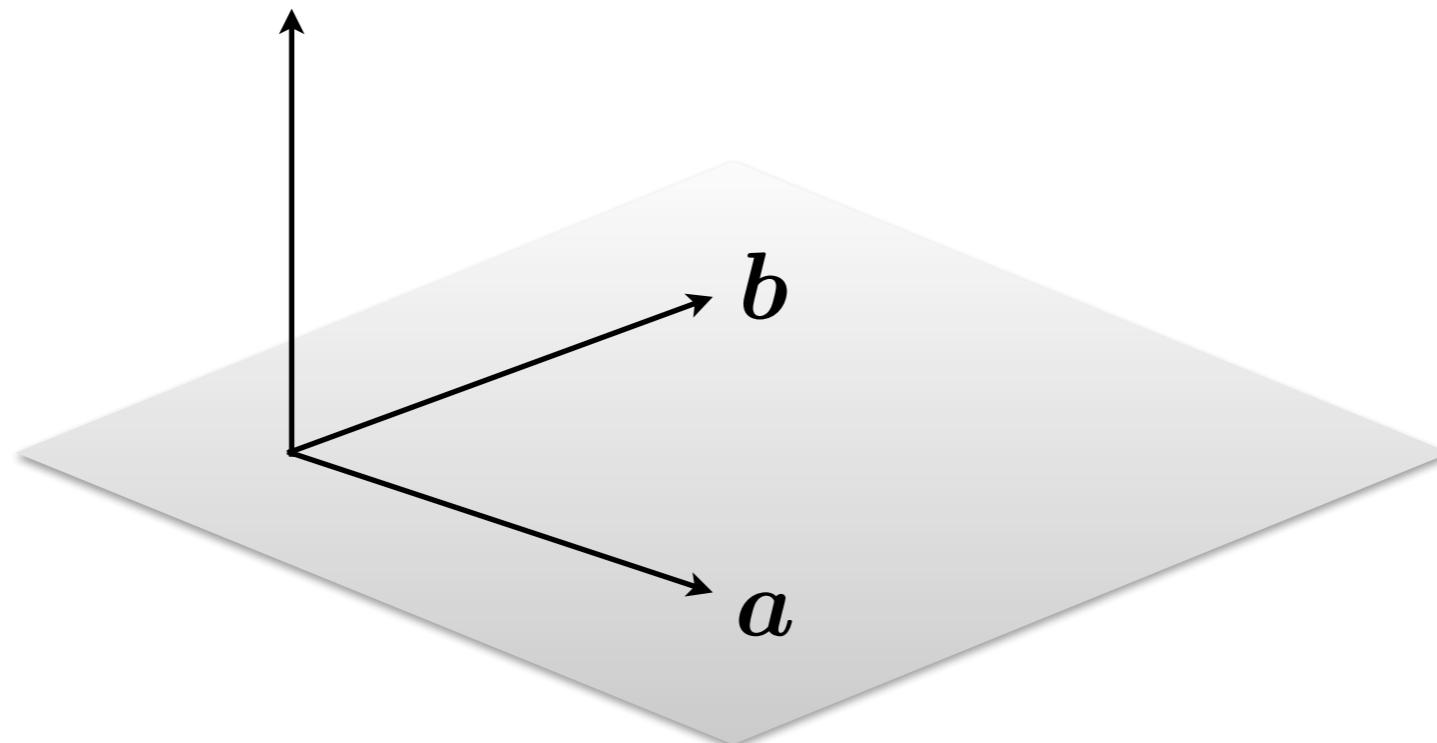
$$x^T(t \times x) = 0$$

Recall: Cross Product

Vector (cross) product

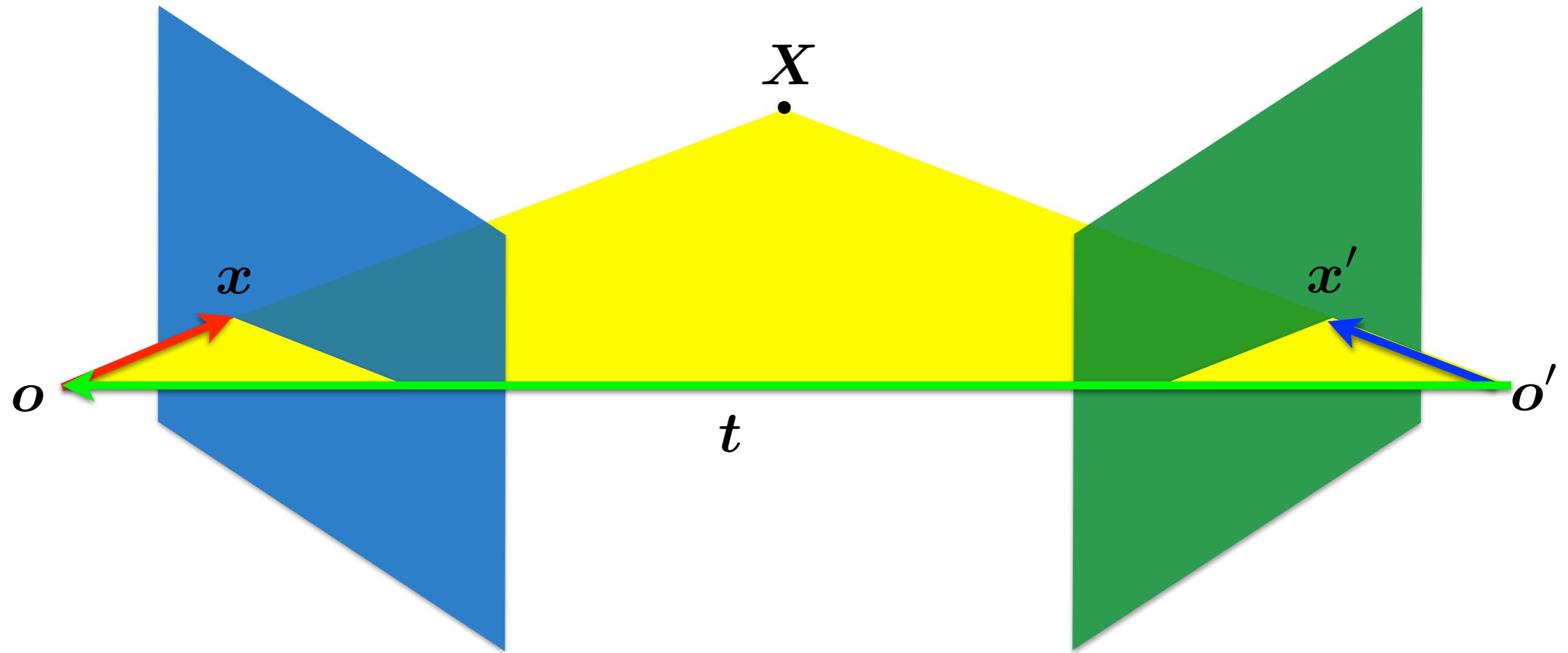
takes two vectors and returns a vector perpendicular to both

$$c = a \times b$$



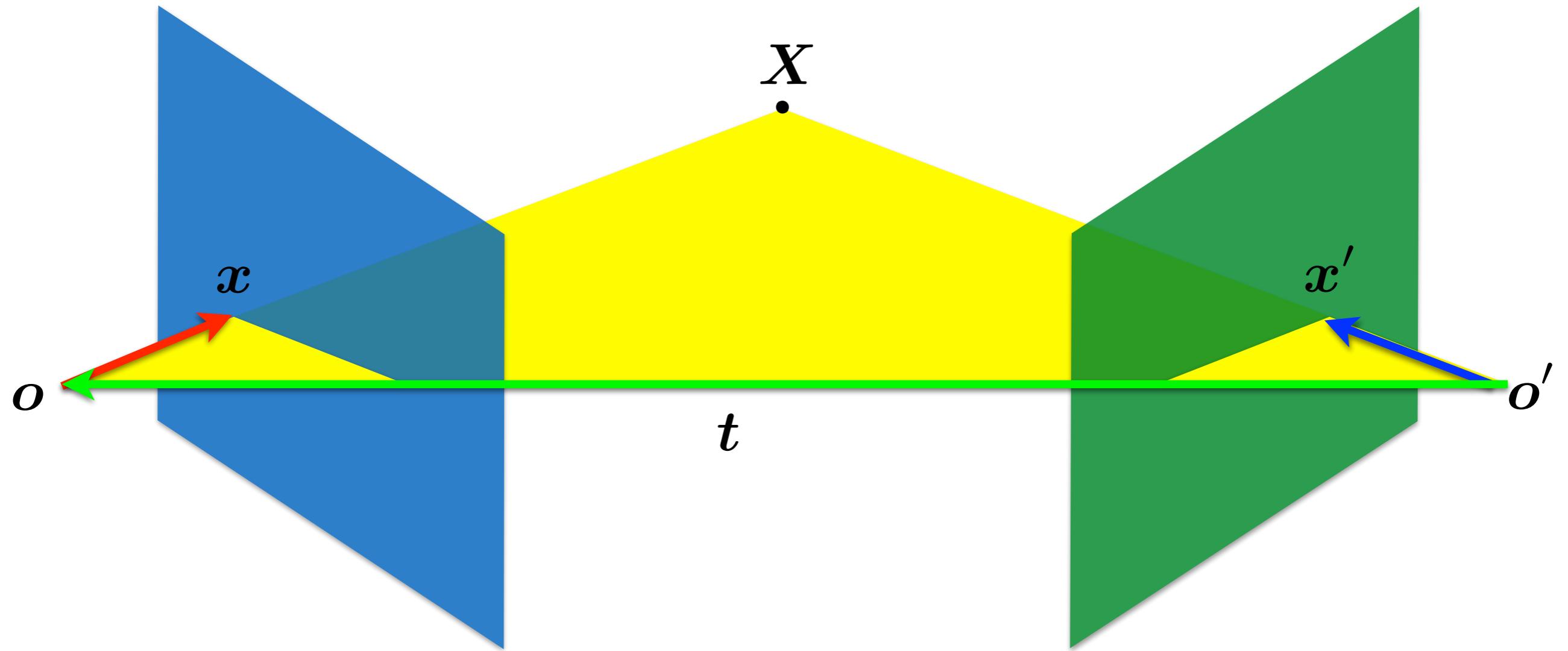
$$c \cdot a = 0$$

$$c \cdot b = 0$$



If these three vectors are coplanar x, t, x' then

$$(x - t)^\top (t \times x) = ?$$



If these three vectors are coplanar x, t, x' then

$$(x - t)^\top (t \times x) = 0$$

putting it together

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t})$$

coplanarity

$$(\mathbf{x} - \mathbf{t})^\top (\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}')^\top \mathbf{R}(\mathbf{t} \times \mathbf{x}) = 0$$

putting it together

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t})$$

coplanarity

$$(\mathbf{x} - \mathbf{t})^\top (\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})([\mathbf{t}_\times] \mathbf{x}) = 0$$

Cross product

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Can also be written as a matrix multiplication

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Skew symmetric

putting it together

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t})$$

coplanarity

$$(\mathbf{x} - \mathbf{t})^\top (\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})([\mathbf{t}_\times] \mathbf{x}) = 0$$

$$\mathbf{x}'^\top (\mathbf{R}[\mathbf{t}_\times]) \mathbf{x} = 0$$

putting it together

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t})$$

coplanarity

$$(\mathbf{x} - \mathbf{t})^\top (\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})([\mathbf{t}_\times] \mathbf{x}) = 0$$

$$\mathbf{x}'^\top (\mathbf{R}[\mathbf{t}_\times]) \mathbf{x} = 0$$

$$\mathbf{x}'^\top \mathbf{E} \mathbf{x} = 0$$

putting it together

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t})$$

coplanarity

$$(\mathbf{x} - \mathbf{t})^\top (\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^\top \mathbf{R})([\mathbf{t}_\times] \mathbf{x}) = 0$$

$$\mathbf{x}'^\top (\mathbf{R}[\mathbf{t}_\times]) \mathbf{x} = 0$$

$$\boxed{\mathbf{x}'^\top \mathbf{E} \mathbf{x} = 0}$$

Essential Matrix

[Longuet-Higgins 1981]

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^\top \mathbf{E} \mathbf{x} = 0$$

(points in normalized coordinates)

properties of the \mathbf{E} matrix

Longuet-Higgins equation

$$\mathbf{x}'^\top \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\mathbf{x}^\top \mathbf{l} = 0$$

$$\mathbf{l}' = \mathbf{E} \mathbf{x}$$

$$\mathbf{x}'^\top \mathbf{l}' = 0$$

$$\mathbf{l} = \mathbf{E}^T \mathbf{x}'$$

(points in normalized coordinates)

properties of the \mathbf{E} matrix

Longuet-Higgins equation

$$\mathbf{x}'^\top \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\mathbf{x}^\top \mathbf{l} = 0$$

$$\mathbf{l}' = \mathbf{E} \mathbf{x}$$

$$\mathbf{x}'^\top \mathbf{l}' = 0$$

$$\mathbf{l} = \mathbf{E}^T \mathbf{x}'$$

Epipoles

$$\mathbf{e}'^\top \mathbf{E} = 0$$

$$\mathbf{E} \mathbf{e} = 0$$

(points in normalized camera coordinates)

How do you generalize to
uncalibrated cameras?