We want to estimate the transformation between points...

Do you notice anything about these point correspondences?

We want to estimate the transformation between points...

The 3D transformation of coplanar points can be described by a projective transform (will NOT work for non-coplanar points)

Projective Transform (Homography)

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha \mathbf{H}\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

nomography $\mathbf{H}=\left[\begin{array}{lll}h_{1} & h_{2} & h_{3} \\ h_{4} & h_{5} & h_{6} \\ h_{7} & h_{8} & h_{9}\end{array}\right]$

Given a set of matched feature points

$$
\left.\begin{array}{c}
\qquad\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\} \\
\text { point in } \\
\text { one image } \\
\text { and a transformation } \\
\text { other in ime } \\
\text { ange }
\end{array}\right\}
$$

Find the best estimate of
p

Given

$$
\begin{aligned}
& \qquad\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\} \\
& \text { how do you solve for the parameters? }
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]}
\end{gathered} \underset{\text { How do you deal with this? }}{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
$$

Direct Linear Transform

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Remove scale factor and get it in a linear form (rewrite similarity equations as homogenous linear equation and solve \rightarrow DLT)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Remove scale factor and get it in a linear form (rewrite similarity equations as homogenous linear equation and solve \rightarrow DLT)

Multiplied out

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Divide out unknown scale factor (divide line 1 and 2 by 3)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Remove scale factor and get it in a linear form (rewrite similarity equations as homogenous linear equation and solve \rightarrow DLT)

Multiplied out

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Divide out unknown scale factor (divide line 1 and 2 by 3)

$$
\begin{aligned}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{4} x+h_{5} y+h_{6}\right)
\end{aligned}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\alpha\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Remove scale factor and get it in a linear form (rewrite similarity equations as homogenous linear equation and solve \rightarrow DLT)

Multiplied out

$$
\begin{aligned}
x^{\prime} & =\alpha\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime} & =\alpha\left(h_{4} x+h_{5} y+h_{6}\right) \\
1 & =\alpha\left(h_{7} x+h_{8} y+h_{9}\right)
\end{aligned}
$$

Divide out unknown scale factor (divide line 1 and 2 by 3)

$$
\begin{aligned}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{4} x+h_{5} y+h_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{1} x+h_{2} y+h_{3}\right) \\
y^{\prime}\left(h_{7} x+h_{8} y+h_{9}\right) & =\left(h_{4} x+h_{5} y+h_{6}\right)
\end{aligned}
$$

Just rearrange the terms

$$
\begin{array}{r}
h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{array}
$$

$$
\begin{aligned}
& h_{7} x x^{\prime}+h_{8} y x^{\prime}+h_{9} x^{\prime}-h_{1} x-h_{2} y-h_{3}=0 \\
& h_{7} x y^{\prime}+h_{8} y y^{\prime}+h_{9} y^{\prime}-h_{4} x-h_{5} y-h_{6}=0
\end{aligned}
$$

In matrix form:

$$
\mathbf{A}_{i} \boldsymbol{h}=\mathbf{0}
$$

$$
\mathbf{A}_{i}=\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right]
$$

$\boldsymbol{h}=\left[\begin{array}{lllllllll}h_{1} & h_{2} & h_{3} & h_{4} & h_{5} & h_{6} & h_{7} & h_{8} & h_{9}\end{array}\right]^{\top}$

How many equations from one point correspondence?

$\mathbf{A} \boldsymbol{h}=\mathbf{0}$

'Homogeneous Linear Least Squares' problem How do we solve this?
(usually have more constraints than variables)

$\mathbf{A} \boldsymbol{h}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{ccccccccc}
-x & -y & -1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & -x & -y & -1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6} \\
h_{7} \\
h_{8} \\
h_{9}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

'Homogeneous Linear Least Squares' problem Solve with SVD!

Singular Value Decomposition

Eancoumavy veremass sumume $\mathbf{A} h=\mathbf{0}$
where the eigenvalues represents the reprojection error

Solving for H using DLT

${ }_{\text {Given }}\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}$ solve for H such that $\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}$

1. For each correspondence, create 2 x 9 matrix \boldsymbol{A}_{i}
2. Concatenate into single $2 n \times 9$ matrix
3. compute svD of $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$
4. Store Eigenvector of the smallest Eigenvalue $\boldsymbol{h}=\boldsymbol{v}_{\hat{i}}$
5. Reshape to get I

General form of total least squares

(Warning: change of notation. x is a vector of parameters!)

$$
\begin{aligned}
E_{\mathrm{TLS}} & =\sum_{i}\left(\boldsymbol{a}_{i} \boldsymbol{x}\right)^{2} \\
& =\|\mathbf{A} \boldsymbol{x}\|^{2} \quad \text { (matrix form) } \\
& \|\boldsymbol{x}\|^{2}=1 \quad \text { constraint }
\end{aligned}
$$

minimize $\|\mathbf{A} \boldsymbol{x}\|^{2}$
subject to $\|\boldsymbol{x}\|^{2}=1$

Solution is the eigenvector corresponding to smallest eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$
(Rayleigh quotient)

LLS/SVD
 doesn't

deal well
with

outliers

