

Pose Estimation

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

	Structure (scene geometry)	Motion (c)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image,
estimate the exact position of the photographer

Pose estimation for digital display

Touch-Consistent Perspective for
Direct Interaction under Motion Parallax

Yusuke Sugano, Kazuma Harada and Yoichi Sato
Institute of Industrial Science, The University of Tokyo

3D Pose Estimation

(Resectioning, Calibration, Perspective n-Point)

Given a set of matched points

$$\{\mathbf{X}_i, x_i\}$$

point in 3D space point in the image

and camera model

$$x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$$

projection model

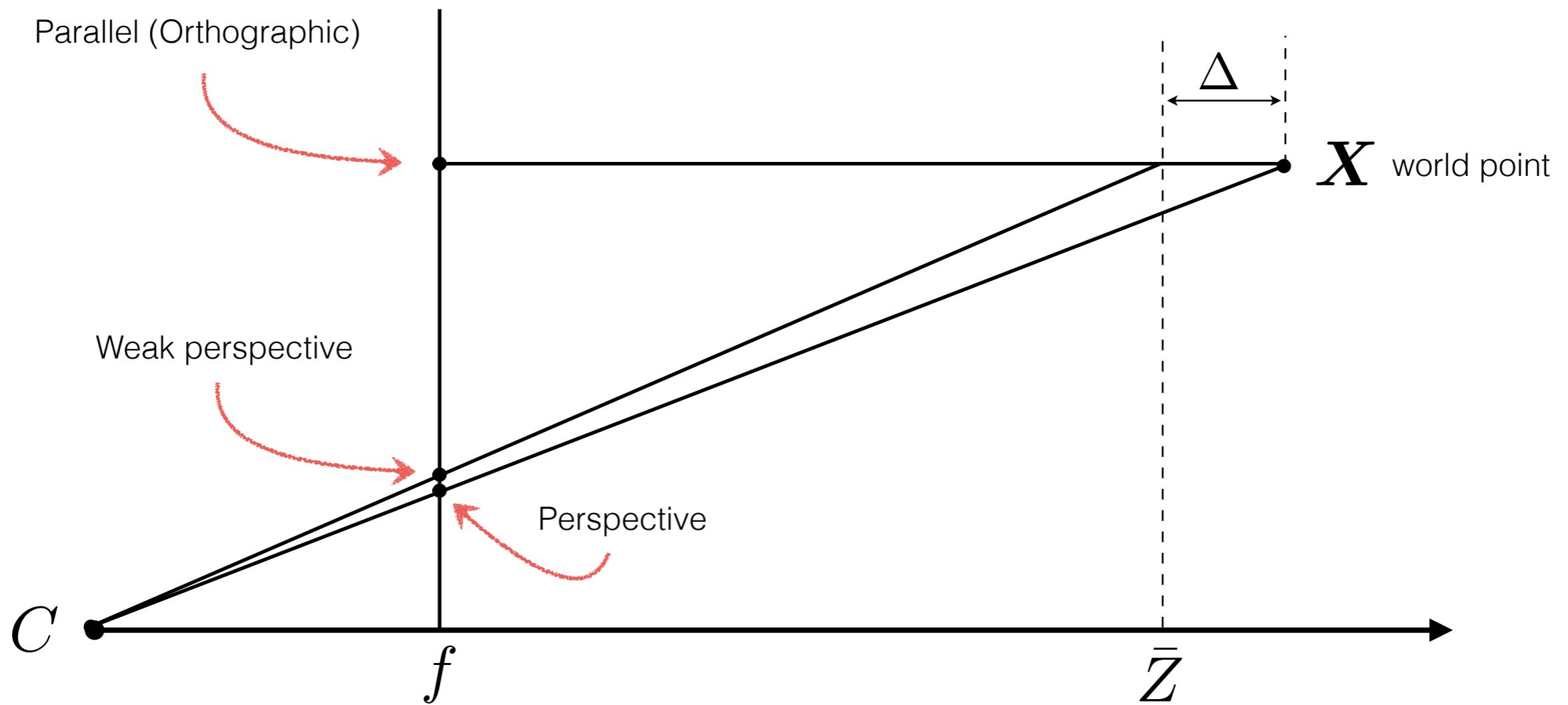
parameters

Camera matrix

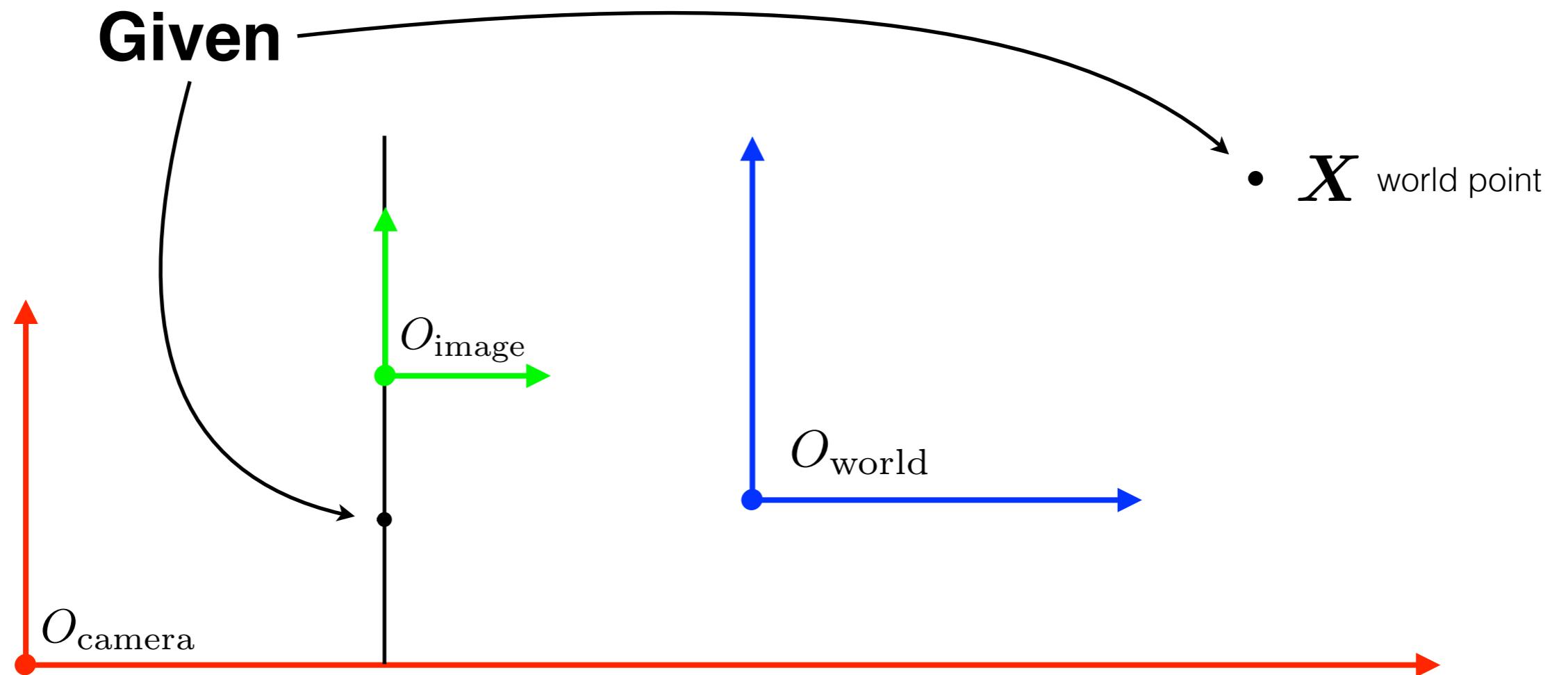
Find the (pose) estimate of

P

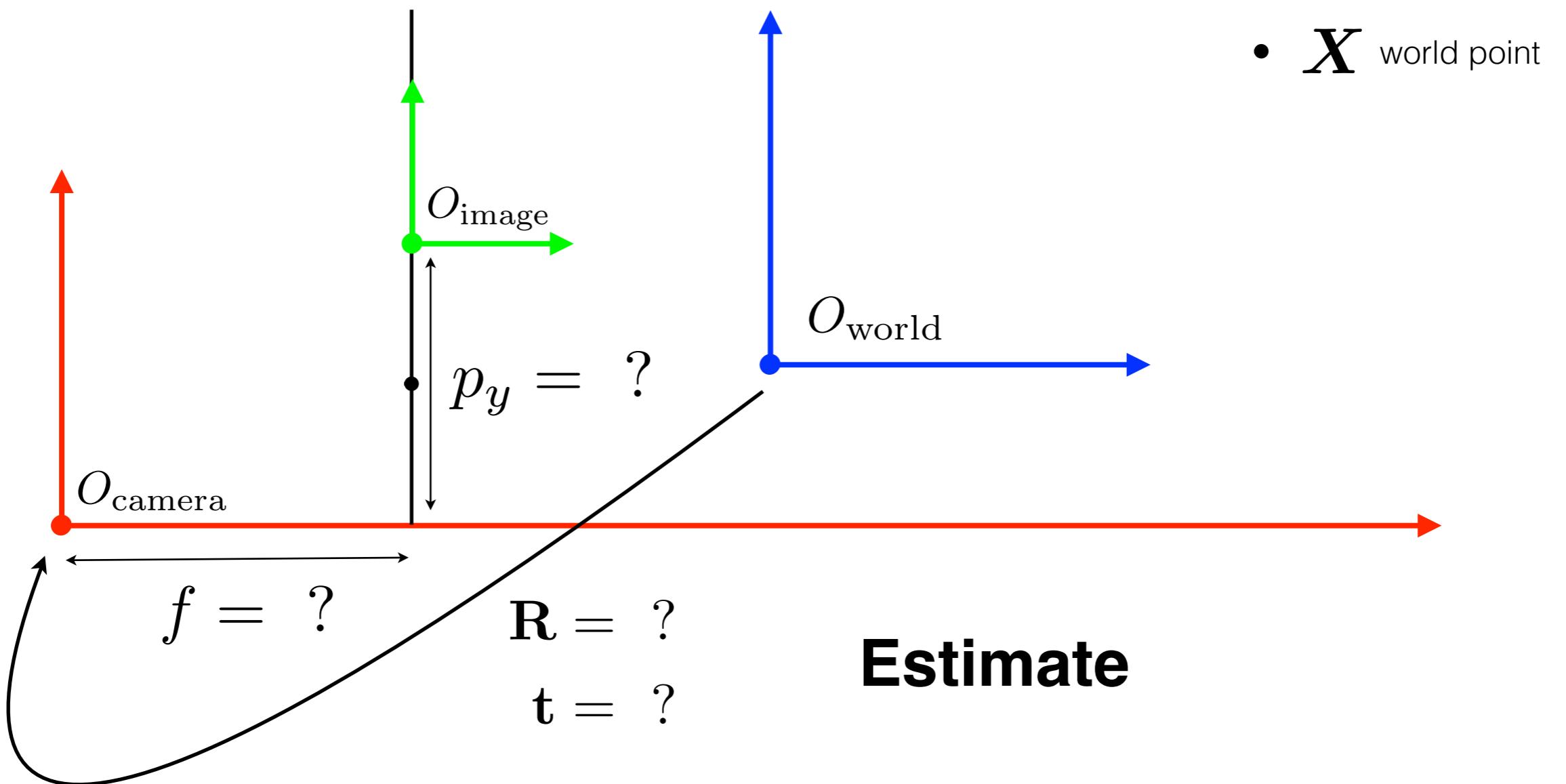
Recall: Camera Models (projections)



Pose Estimation



Pose Estimation



Same setup as homography estimation using DLT
(slightly different derivation here)

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \text{---} & \mathbf{p}_1^\top & \text{---} \\ \text{---} & \mathbf{p}_2^\top & \text{---} \\ \text{---} & \mathbf{p}_3^\top & \text{---} \end{bmatrix} \begin{bmatrix} | \\ \mathbf{X} \\ | \end{bmatrix}$$

Inhomogeneous coordinates

$$x' = \frac{\mathbf{p}_1^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}} \quad y' = \frac{\mathbf{p}_2^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}$$

(non-linear correlation between coordinates)

How can we make these relations linear?

Inhomogeneous coordinates

$$x' = \frac{\mathbf{p}_1^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}} \quad y' = \frac{\mathbf{p}_2^\top \mathbf{X}}{\mathbf{p}_3^\top \mathbf{X}}$$

Make them linear with algebraic manipulation...

$$\mathbf{p}_2^\top \mathbf{X} - \mathbf{p}_3^\top \mathbf{X} y' = 0$$

$$\mathbf{p}_1^\top \mathbf{X} - \mathbf{p}_3^\top \mathbf{X} x' = 0$$

Now you can setup a system of linear equations
with multiple point correspondences
(this is just DLT for different dimensions)

$$p_2^\top \mathbf{X} - p_3^\top \mathbf{X} y' = 0$$

$$p_1^\top \mathbf{X} - p_3^\top \mathbf{X} x' = 0$$

In matrix form ...

$$\begin{bmatrix} \mathbf{X}^\top & 0 & -x' \mathbf{X}^\top \\ 0 & \mathbf{X}^\top & -y' \mathbf{X}^\top \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = 0$$

For N points ...

$$\begin{bmatrix} \mathbf{X}_1^\top & 0 & -x' \mathbf{X}_1^\top \\ 0 & \mathbf{X}_1^\top & -y' \mathbf{X}_1^\top \\ \vdots & \vdots & \vdots \\ \mathbf{X}_N^\top & 0 & -x' \mathbf{X}_N^\top \\ 0 & \mathbf{X}_N^\top & -y' \mathbf{X}_N^\top \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = 0$$

Solve for camera matrix by

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|^2 \text{ subject to } \|\mathbf{x}\|^2 = 1$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{X}_1^\top & \mathbf{0} & -\mathbf{x}' \mathbf{X}_1^\top \\ \mathbf{0} & \mathbf{X}_1^\top & -\mathbf{y}' \mathbf{X}_1^\top \\ \vdots & \vdots & \vdots \\ \mathbf{X}_N^\top & \mathbf{0} & -\mathbf{x}' \mathbf{X}_N^\top \\ \mathbf{0} & \mathbf{X}_N^\top & -\mathbf{y}' \mathbf{X}_N^\top \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

Solution \mathbf{x} is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^\top \mathbf{A}$$

Almost there ...

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}] - \mathbf{R}\mathbf{c} \\ &= [\mathbf{M}] - \mathbf{M}\mathbf{c} \end{aligned}$$

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}] - \mathbf{R}\mathbf{c} \\ &= [\mathbf{M}] - \mathbf{M}\mathbf{c} \end{aligned}$$

Find the camera center **c**

Find intrinsic **K** and rotation **R**

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}] - \mathbf{R}\mathbf{c} \\ &= [\mathbf{M}] - \mathbf{M}\mathbf{c} \end{aligned}$$

Find the camera center \mathbf{c}

$$\mathbf{P}\mathbf{c} = \mathbf{0}$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}] - \mathbf{R}\mathbf{c} \\ &= [\mathbf{M}] - \mathbf{M}\mathbf{c} \end{aligned}$$

Find the camera center \mathbf{c}

$$\mathbf{P}\mathbf{c} = \mathbf{0}$$

SVD of $\mathbf{P}!$

\mathbf{c} is the Eigenvector corresponding to
smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}| - \mathbf{R}\mathbf{c}] \\ &= [\mathbf{M}| - \mathbf{M}\mathbf{c}] \end{aligned}$$

Find the camera center \mathbf{c}

$$\mathbf{P}\mathbf{c} = \mathbf{0}$$

SVD of $\mathbf{P}!$

\mathbf{c} is the Eigenvector corresponding to
smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

right upper
triangle orthogonal
triangle

Decomposition of the Camera Matrix

$$\mathbf{P} = \left[\begin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array} \right]$$

$$\begin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \\ &= \mathbf{K}[\mathbf{R}] - \mathbf{R}\mathbf{c} \\ &= [\mathbf{M}] - \mathbf{M}\mathbf{c} \end{aligned}$$

Find the camera center \mathbf{c}

$$\mathbf{P}\mathbf{c} = \mathbf{0}$$

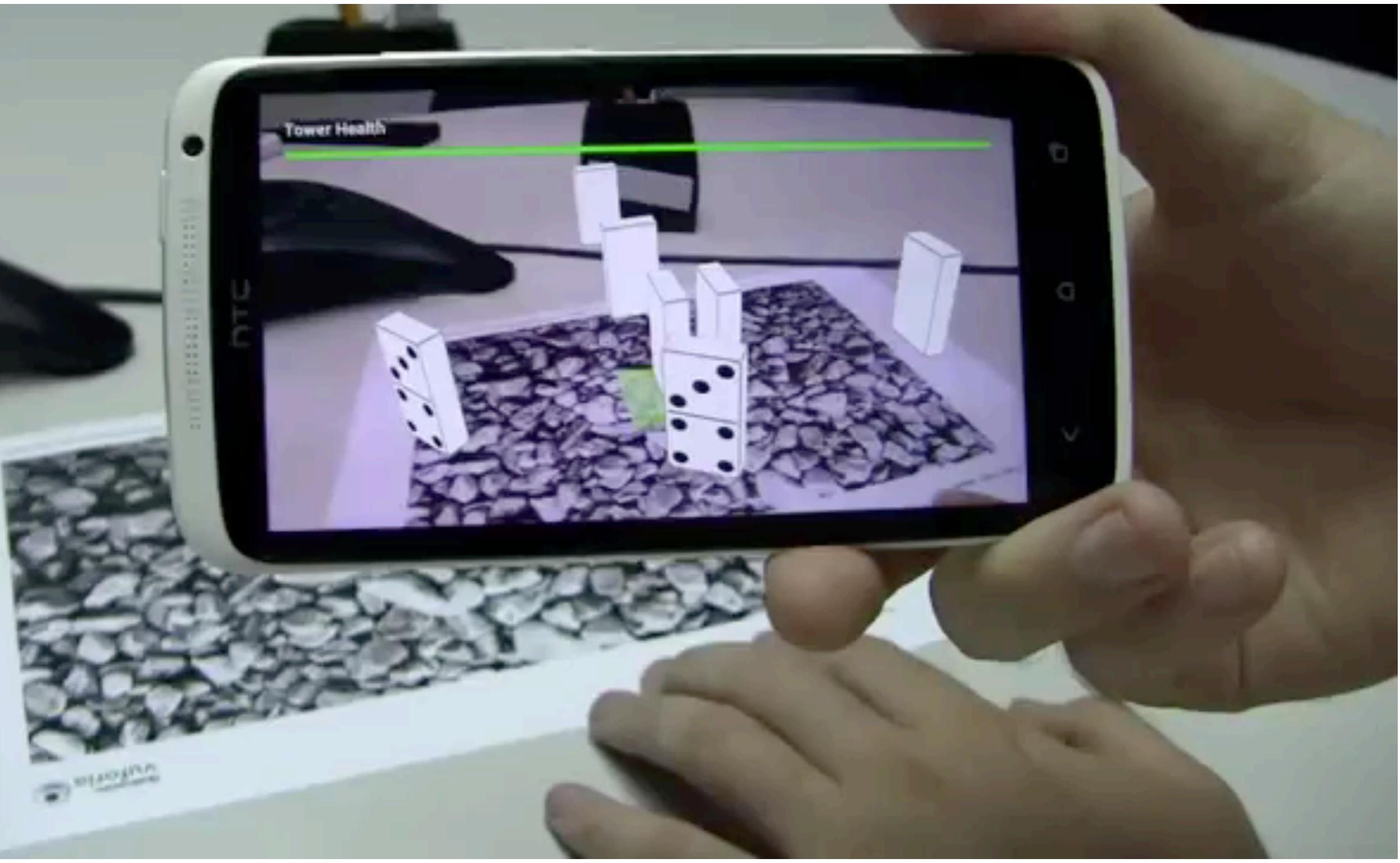
SVD of $\mathbf{P}!$

\mathbf{c} is the Eigenvector corresponding to
smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

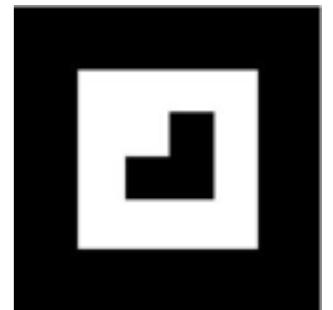
$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

RQ decomposition



3D locations of planar marker features are known in advance

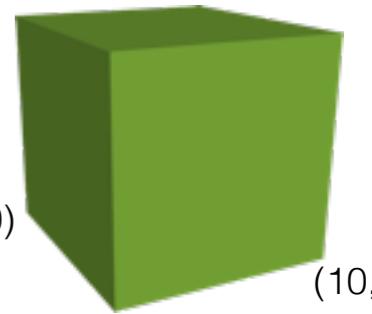
(0,0,0)



(10,10,0)

3D content prepared in advance

(0,0,0)



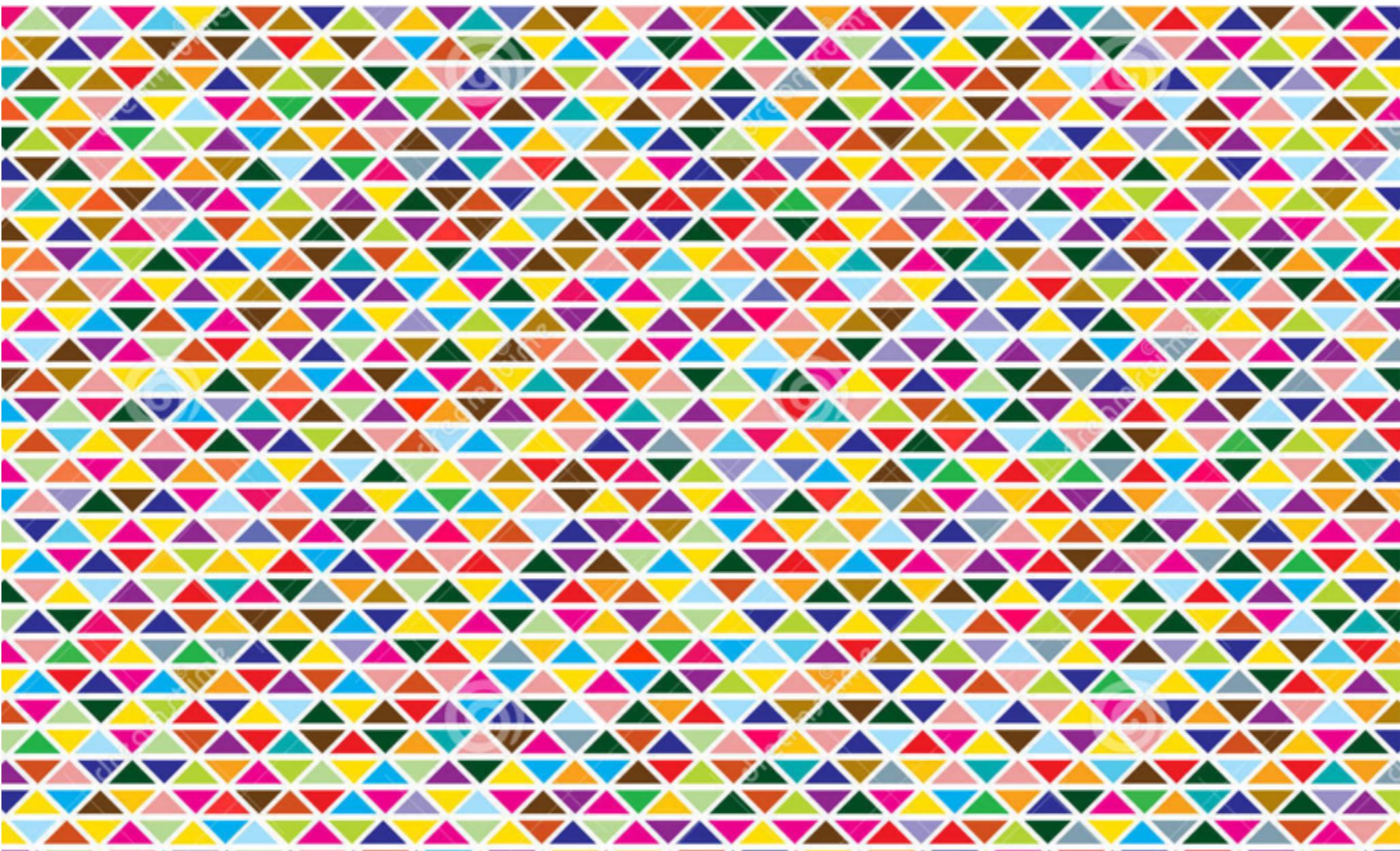
(10,10,0)

Simple AR program

1. Compute point correspondences (2D and AR tag)
2. Estimate the pose of the camera \mathbf{P}
3. Project 3D content to image plane using \mathbf{P}

Do you need computer vision to do this?

	Structure (scene geometry)	Motion (c)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

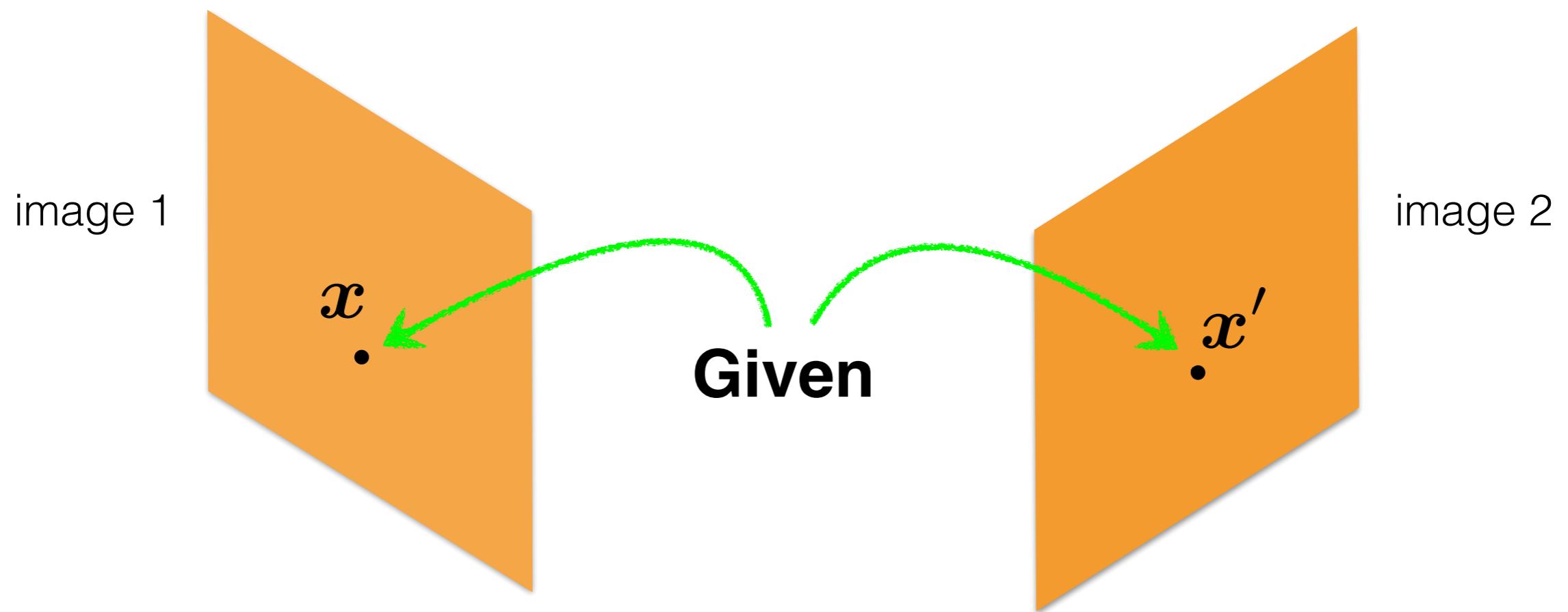


Triangularization

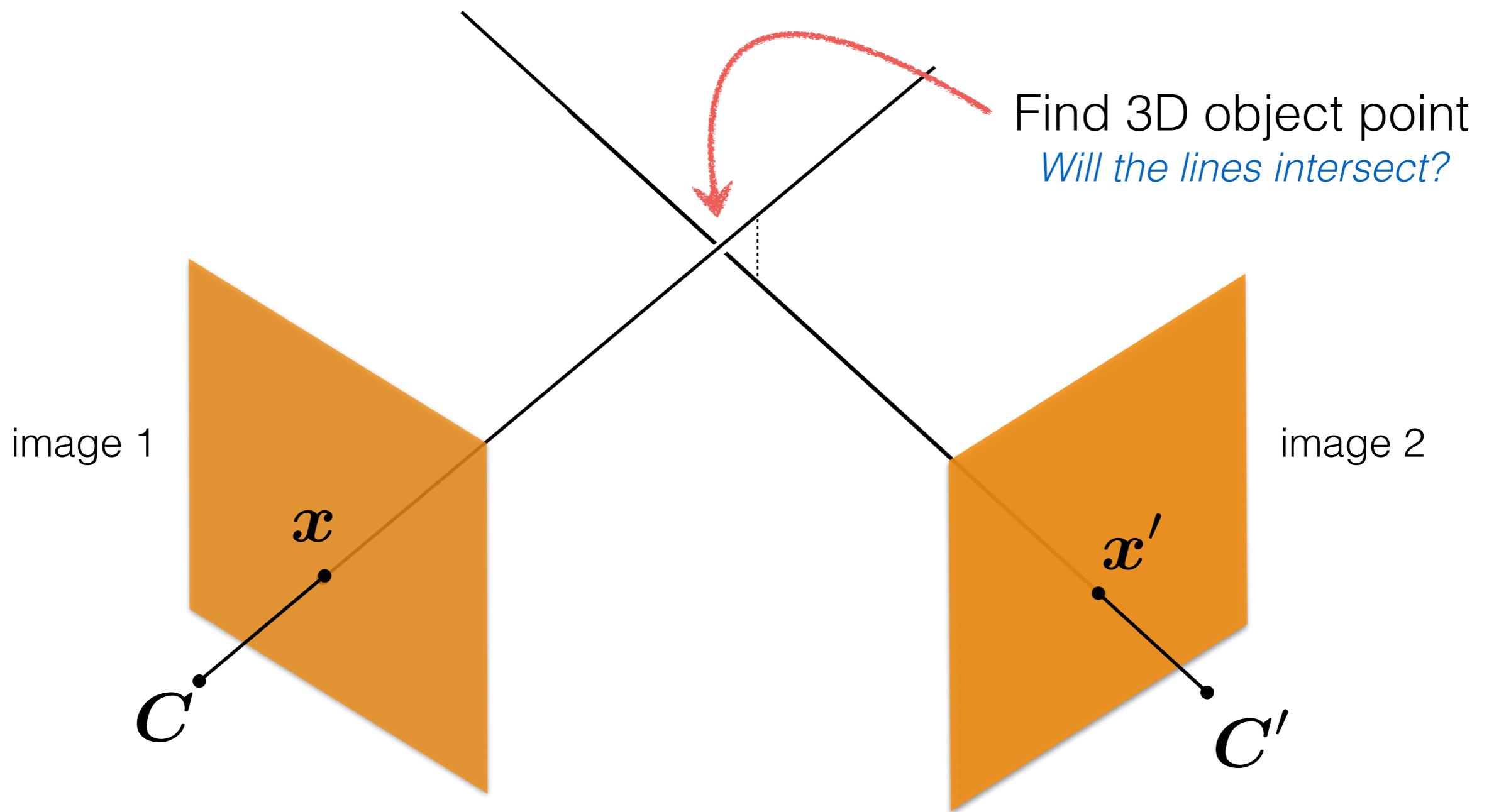
16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

	Structure (scene geometry)	Motion (c)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

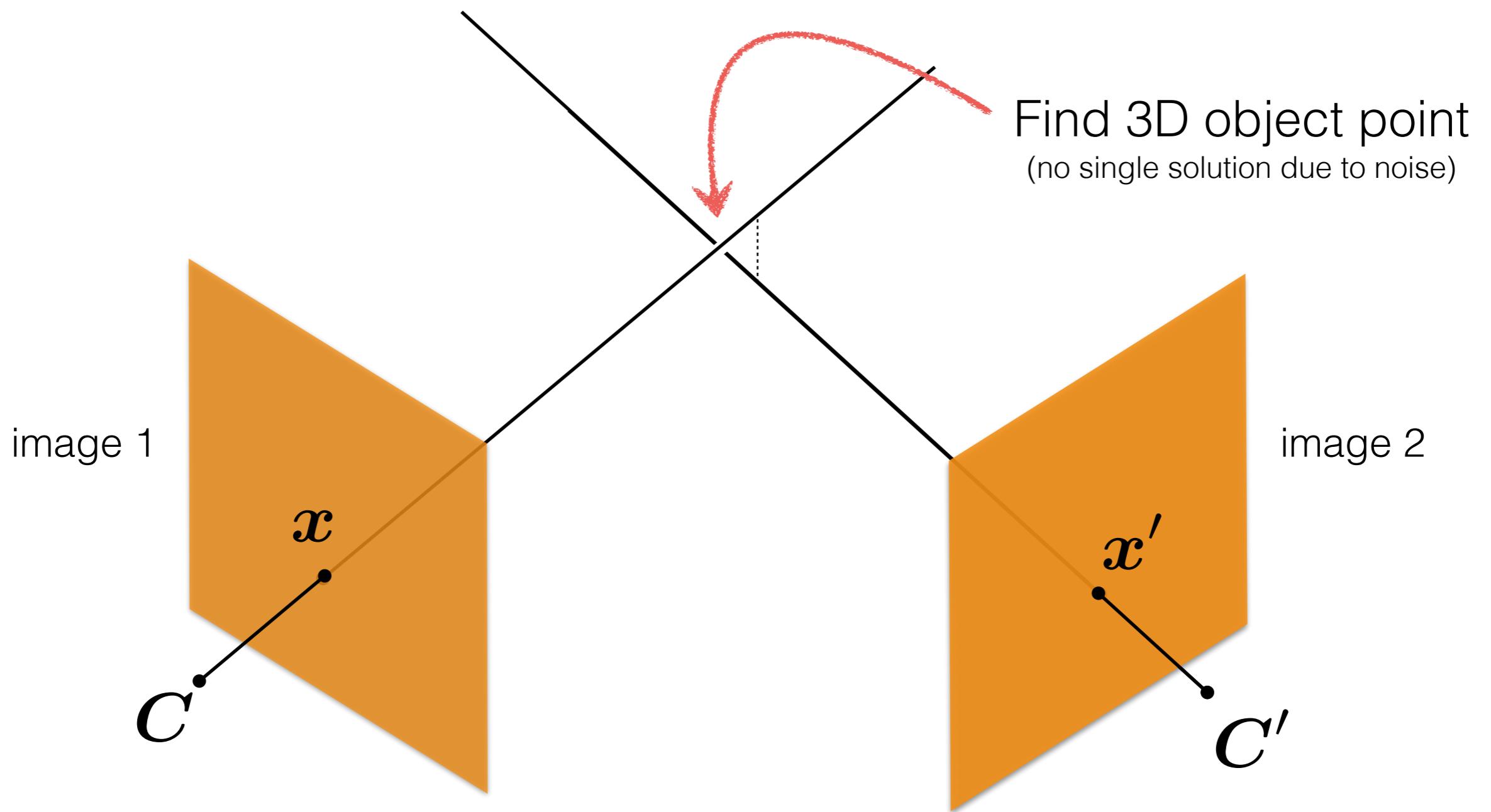
Triangularization



Triangularization



Triangulation



Triangulation

Given a set of (noisy) matched points

$$\{\mathbf{x}_i, \mathbf{x}'_i\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

$$\mathbf{X}$$

$$x = p_X$$

known known

Can we compute \mathbf{X} from a single correspondence \mathbf{x} ?

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

Can we compute \mathbf{X} from a single correspondence \mathbf{x} ?

There will not be a point that satisfies both constraints because the measurements are noisy.

$$\mathbf{x}' = \mathbf{P}' \mathbf{\tilde{X}} \quad \quad \mathbf{x} = \mathbf{P} \mathbf{\tilde{X}}$$

Need to find the best fit

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with .

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with SVD.

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} \mathbf{X} = 0$$

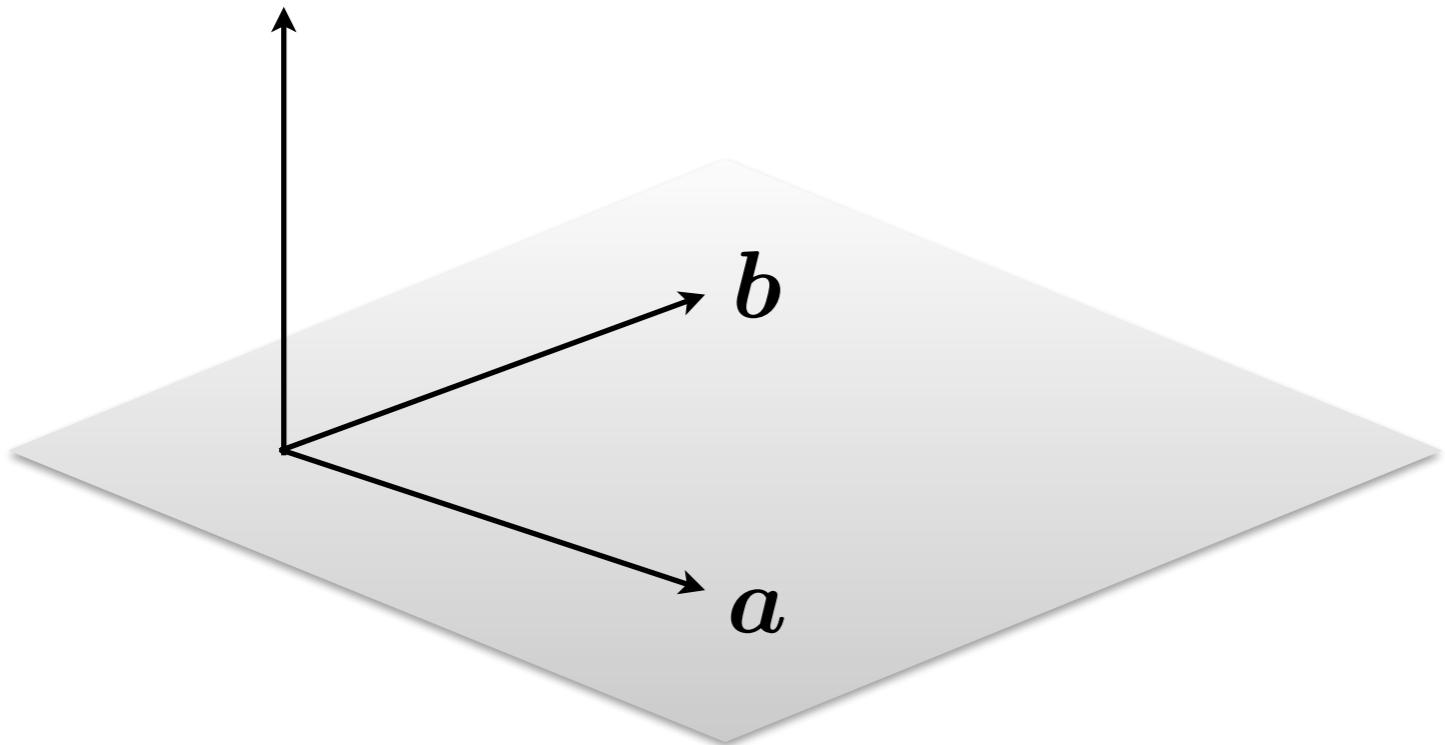
Cross product of two vectors of same direction is zero
(this equality removes the scale factor)

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$c = a \times b$$



$$a \times b = \begin{bmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{bmatrix}$$

cross product of two vectors in the same direction is zero

$$a \times a = 0$$

remember this...

$$c \cdot a = 0$$

$$c \cdot b = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \text{---} & \mathbf{p}_1^\top \text{---} \\ \text{---} & \mathbf{p}_2^\top \text{---} \\ \text{---} & \mathbf{p}_3^\top \text{---} \end{bmatrix} \begin{bmatrix} \text{---} \\ \mathbf{X} \\ \text{---} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \text{---} & \mathbf{p}_1^\top \text{---} \\ \text{---} & \mathbf{p}_2^\top \text{---} \\ \text{---} & \mathbf{p}_3^\top \text{---} \end{bmatrix} \begin{bmatrix} \text{---} \\ \mathbf{X} \\ \text{---} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \\ x\mathbf{p}_2^\top \mathbf{X} - y\mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product is zero

$$\mathbf{x} \times \mathbf{P}X = 0$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \\ x\mathbf{p}_2^\top \mathbf{X} - y\mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 6 equations

Using the fact that the cross product is zero

$$\mathbf{x} \times \mathbf{P}X = 0$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \\ x\mathbf{p}_2^\top \mathbf{X} - y\mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

$$\begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} y\mathbf{p}_3^\top - \mathbf{p}_2^\top \\ \mathbf{p}_1^\top - x\mathbf{p}_3^\top \end{bmatrix} \mathbf{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}_i \mathbf{X} = 0$$

Now we can make a system of linear equations
(two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S V

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S V D

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S V D !

Recall: Total least squares

(Warning: change of notation. \mathbf{x} is a vector of parameters!)

$$\begin{aligned} E_{\text{TLS}} &= \sum_i (a_i \mathbf{x})^2 \\ &= \|\mathbf{Ax}\|^2 \quad (\text{matrix form}) \end{aligned}$$

$$\|\mathbf{x}\|^2 = 1 \quad \text{constraint}$$

$$\begin{aligned} \text{minimize} \quad & \|\mathbf{Ax}\|^2 \\ \text{subject to} \quad & \|\mathbf{x}\|^2 = 1 \end{aligned}$$

$$\text{minimize} \quad \frac{\|\mathbf{Ax}\|^2}{\|\mathbf{x}\|^2} \quad (\text{Rayleigh quotient})$$

Solution is the eigenvector
corresponding to smallest eigenvalue of

$$\mathbf{A}^\top \mathbf{A}$$

	Structure (scene geometry)	Motion (c)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences