lmage classification

16-385 Computer Vision
http://www.cs.cmu.edu/~16385/ Spring 2020, Lecture 18



Course announcements

« Programming assignment 4 is due tonight at 23:59.

- Please make sure to download the updated version of PA4 (last updated
Monday, 10 am ET).

- Due Wednesday March 25,

- Any questions about the homework?

« Programming assignment 5 will be posted tonight and will be due April 8.

» Take-home quiz 7 posted and is due Sunday March 29th.



Overview of today’s lecture

* Introduction to learning-based vision.
* |mage classification.

« Bag-of-words.

» K-means clustering.
 (lassification.

« K nearest neighbors.

* Naive Bayes.

* Support vector machine.



Slide credits

Most of these slides were adapted from:
 Kris Kitani (16-385, Spring 2017).
* Noah Snavely (Cornell University).

« Fei-Fei Li (Stanford University).



Course overview

Lectures 1 -7

. -—
. Image processing. See also 18-793: Image and Video Processing

Lectures 7 — 13

(Seometry-based vision See also 16-822: Geometry-based Methods in Vision

Lectures 14 — 17
. Physics-based vision. €« See also 16-823: Physics-based Methods in Vision
See also 15-463: Computational Photography

. Learning-based vision.  <— e are starting this part now

. Dealing with motion.



What do we mean by learning-
based vision or ‘semantic vision’?
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(Recognition / classification)




WHETERClethE PECPIE?
- (Detection)
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SR O LAl Pl aCE?
(Identification)




WIHATS 1n the scene?
Semantic segmentation)
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ODbject categorization
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WHEISYIE OIFSCENIENS 12
~(Scene categorization)
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Activity / Event Recognition

at are these
people doing?
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Object recognition
s it really so hard?

Find the chair in this image Output of normalized correlation




Object recognition
s it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

A “popular method is that of template matching, by point to point correlation of a model
pattern with the image pattern. These techniques are inadequate for three-dimensional

scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation
of parts.” Nivatia & Binford, 1977.



And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Why Is this hard?

Variability:  Camera position
[llumination
Shape parameters
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How many object categories are there?
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Challenge: variable viewpoint

ST

Michelangelo 1475-1564



Challenge: variable illumination

image credit: J. Koenderink



and small things

from Apple.

(Actual size)

Challenge: scale




Challenge: deformation
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Challenge:
Occlusion

Magritte, 1957
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Challenge: background clutter

Kilmeny Niland. 1995
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Challenge: intra-class variations

Svetlana Lazebnik



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat




mage Classification: Problem
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What the computer sees

82% cat
15% dog
2% hat

1% mug

image classification



Data-driven approach

* Collect a database of images with labels
* Use ML to train an image classifier
* Evaluate the classifier on test images

Example training set

mug




Bag of words



What object do these parts belong to?




Some local feature are
very informative

An object as

a collection of local features

(bag-of-features)

deals well with occlusion
scale invariant
rotation invariant



(not so) crazy assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)



bag of features

bag of features

Parts-and-shape model

S Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
airplanes 98.8 97.1 90.2
cars (rear) 098.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)




Bag-of-features

represent a data item (document, texture, image)
as a histogram over features

an old 1dea

(e.g., texture recognition and information retrieval)
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histogram
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation,1979
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Bio-Inspired Robotic Device

PITTSBURGH—A soft,
wearable  device that
mimics the muscles,
tendons and ligaments of
the lower leg could aid in
the  rehabilitation  of
patients with  anlde-foot
disorders  such as drop
foot, said Yong-Lae Park,
an assistant professor of
robotics  at | Camegie
Mellon University.  Park

working with collaborators

at I_-Imvard University, the
Umyersity of Southem
California, MIT ' and

http://www.fodey.com/generators/newspaper/snippet.asp
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A document (datapoint) is a vector of counts over each word (feature
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A document (datapoint) is a vector of counts over each word (feature

d = [n(wiy 4 wad) -
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but not all words are created equal



TF-IDF

Term Frequency Inverse Document Frequency

vg = [n(w1,4) n(w2,d) -+ n(wra)

weigh each word by a heuristic

vqg = [n(w1q)ar n(weqg)as -+ n(wrq)or

Inverse document

term frequency

frequency D -
n(w; 4)o; = nlw;.q)lo >
(w14)0s = nlwig) log { s

(down-weights common terms)



Standard BOW p|pehne

(for image classification



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs



Dictionary Learning:
Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images




Dictionary Learning:
Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)




What kinds of features can we extract?



e Regular grid
e Vogel & Schiele, 2003
e Fei-Fei & Perona, 2005

¢ |nterest point detector
e Csurka et al. 2004
e Fei-Fei & Perona, 2005
e Sivic et al. 2005

e Other methods

e Random sampling (Vidal-Naquet &
Ullman, 2002)

e Segmentation-based patches (Barnard
et al. 2003)




!

. S
Compute SIFT
descriptor Normalize patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid "02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]






How do we learn the dictionary?



f

\

A




4
\

4
\

4
\

\.

4
(N

S

Clustering




r N N\ B
\. J/ \u / \U S
®
o0
®
®
o0 o
(Y
O

\IIIIIJ

Visual vocabulary

Clustering



K-means clustering



1. Select initial
centroids at random



v

1. Select initial
centroids at random

2. Assign each object to
the cluster with the
nearest centroid.



v

2. Assign each object to
the cluster with the
nearest centroid.

1. Select initial
centroids at random

‘- .“..‘_
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b

3. Compute each centroid as the
mean of the objects assigned to
it (go to 2)



1.

Select initial

centrolds at random

3.

mean of the objects assigned to

1t

Compute each centroid as the

(go to 2)

v

v

2. Assign each object to
the cluster with the
nearest centroid.

2. Assign each object to
the cluster with the
nearest centroid.



v

2. Assign each object to
the cluster with the
nearest centroid.

1. Select initial
centroids at random

v

3. Compute each centroid as the 2. Assign each object to
mean of the objects assigned to the cluster with the
it (go to 2) nearest centroid.

Repeat previous 2 steps until no change



K-means Clustering

Given k:
1.Select 1nitial centroids at random.

2.Assign each object to the cluster with the nearest
centroid.

3.Compute each centroid as the mean of the objects
assigned to 1it.

4 .Repeat previous 2 steps until no change.



From what data should I learn the dictionary?



From what data should I learn the dictionary?
- Dictionary can be learned on separate training set

- Provided the training set is sufficiently
representative, the dictionary will be “universal”



Example visual dictionary
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Example dictionary
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Source: B. Leibe



Another dictionary
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Appearance codebook

Source: B. Leibe



Encode:
build Bags-of-Words (BOW) vectors
for each image



N C

1 1. Quantization: image features gets
associated to a visual word (nearest
cluster center)

Encode:
build Bags-of-Words (BOW) vectors
for each image




Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the
number of visual word

OCccurrences




frequency

TLaONENRLS, B

codewords



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classity:
Train and test data using BOWSs



K nearest neighbors

Support Vector Machine

Naive Bayes




K nearest neighbors



Distribution of data from two classes
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Distribution of data from two classes
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Which class does g belong too?



Distribution of data from two classes



K-Nearest Neighbor (KNN) Classifier

0 o) = Non-parametric pattern classification
00 o = approach
Oo O n .
ﬂﬂ & Eﬂ Consider a two class problem where
= o) El o nﬂ each sample consists of two
o O o ﬂ w measurements (X,y).
B o ﬂ =
| | _, [O =
For a given query point q, K="1 O
assign the class of the nearest O J
neighbor 0 ]
=
|
Compute the k nearest k=3 |0
neighbors and assign the O#_’o
class by majority vote. 0
o u B




Nearest Neighbor Is competitive
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Test Error Rate (%)

12.0

Linear classifier (1-layer NN)

5.0

K-nearest-neighbors, Euclidean

MNIST Digit Recognition

2.4

K-nearest-neighbors, Euclidean, deskewed
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What is the best distance metric between data points?
- Typically Euclidean distance
- Locality sensitive distance metrics

- Important to normalize.
Dimensions have different scales

How many K?
. Typically k=1 Is good

. Cross-validation (try different k!)



Distance metrics

D(z,y) = (z1—y1)2+ -+ (zn — yn)?

-y T1Yy1 + T TNYN
D(x,y) = =

[zlllyl 3,22V, v2

1 Ln — Yn °
D(z,y) = ; Z ((g;n +yyn))

Euclidean

Cosine

Chi-squared



Choice of distance metric

* Hyperparameter

L1 (Manhattan) distance L2 (Euclidean) distance
di(I, 1) = Z iy — L] dy(I1, 1) = \,.""'Z 7 - If};)z

- Two most commonly used special cases of p-norm

1

\|:z:\p:(\$1,P+..,+,w71'p)7 p>lzeR"



Visualization: L2 distance
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CIFAR-10 and NN results

Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.

airplane 5.% » ..=":
automobile Eanh‘
bird imB NE yEREY
« EESHNEEEs P
deer N--Rﬁ&nm'
HE~IsBr. .
voo i N I I 2 I C N B
ose SRR EIP MERETETR
e R e T e
o T 0 I A

For every test image (first column),
examples of nearest neighbors in rows




k-nearest neighbor

Find the k closest points from training data
Labels of the k points “vote” to classify

the data NN classifier




Hyperparameters

What is the best distance to use?
What is the best value of k to use?

l.e., how do we set the hyperparameters?

Very problem-dependent
Must try them all and see what works best



Try out what hyperparameters work best on test set.

Y

train data

test data




Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.

Y

train data test data




Validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

|

use to tune hyperparameters
evaluate on test set ONCE at the end



Cross-validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

-
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- Cross-validation
cycle through the choice of which fold
Is the validation fold, average results.



Cross-valhidation on k

0.3

Example of
5-fold cross-validation
for the value of k.

031

Each point: single
outcome.

029

0.28

The line goes

through the mean, bars
Indicated standard
deviation

s-validation acourac

2
A H]

026 |

025

(Seems that k ~= 7 works best
028 - - - - for this data)

=20 0 20 40 &0 80 100 120




How to pick hyperparameters?

Methodology

— Train and test
— Train, validate, test

Train for original model
Validate to find hyperparameters
Test to understand generalizability



Pros

. simple yet eftective

Cons
. search is expensive (can be sped-up)
. storage requirements

. difficulties with high-dimensional data



KNN -- Complexity and Storage

N training images, M test images

Training: O(1)
Testing: O(MN)

Hmm...

— Normally need the opposite
— Slow training (ok), fast testing (necessary)



k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original messed up darkened

(all 3 images have same L2 distance to the one on the left)



Nalve Bayes



Distribution of data from two classes
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Which class does g belong too?



Distribution of data from two classes

o - Learn parametric model for each class
(o) . Compute probability of query



This is called the posterior.
the probability of a class Z given the observed features X

p(2]|X)

For classification, z is a

discrete random variable
(e.g., car, person, building)

X Is a set of observed features
(e.g., features from a single image)

(it's a function that returns a single probability value)



This is called the posterior:
the probability of a class Z given the observed features X

p(z|lxy,...,TN)

For classification, z is a

discrete random variable
(e.g., car, person, building)

Each x is an observed feature
(e.g., visual words)

(it's a function that returns a single probability value)



The posterior can be decomposed according to
Bayes’ Rule

p(B|A)p(A)
n(A|B) =
(post‘erior) p(B)

In our context...

p(x1,...,xN|2)p(2)

Z|T1,...,TN) =
plziz: ) p(Z1,...,TN)



The naive Bayes’ classifier is solving this optimization

z = argmax p(z|X)
ZEZ

MAP (maximum a posteriori) estimate

e PXIRE)
ZEZ p(X)

Bayes’ Rule

¢ = arg max p(X|z)p(2)
ZEZ

Remove constants

fg
To optimize this...we need to compute this

Compute the likelihood...



A naive Bayes’ classifier assumes all features are
conditionally independent

p(xy,...,eN|2) =p(x1|2)p(T9,...,TN]|2)
= p(x1|2)p(z2|2)p(T3, . . ., ZN|2)
= p(x1|2)p(z2|2) - - p(xN|2)

X

Recall:

p(z,y) = p(zly)p(y)  p(z,y) = p(z)p(y) )




To compute the MAP estimate

Given (1) a set of known parameters (2) observations

p(z) p(x|z) {z1,29,...,2N}

Compute which z has the largest probability

Z — arg max Ll <
sy ple) L ool
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DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie Mellon
University's National
Robotics Engineering
Center ranked third among
teams competing in the
Defense Advanced
Research Projects Agency
(DARPA) Robotics
Challenge  Trials  this
weekend in Homestead,
Fla,, and was selected by

funding to' prepare for next
December's finals. The
team's four-limbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, robot
scored 18 out of apossible
32 . points . dunng, the
two-day trials. . It
demonstrated its ability to
petform  such tasks as
removing debiis, cutting a
hole through a wall and

Ren
folls
imp

The
thal
rela
the
beh
of a
exp:
inli

count 1 6} 2 1 0 0 0
CHIMP CMU bio
0.18 0.09 0.0 0.0 0.0

robot soft ankle

0.55

Tartan
0.09

word

p(x|z)

1
sensor
0.09

the agency asone of eight closing a series of valves.  its
teams eligible for DARPA beh

p(X|2) = | [ p(zy]2) )

(0.09)* (0.55)° . - -

(0.09)*

Numbers get really small so use log probabilities

log p(X|z = ‘grandchallenge’) = —2.42 — 3.68 — 3.43 — 2.42 — 0.07 — 0.07 — 0.07 — 2.42 = —14.58

log p(X |z = ‘softrobot’) = —7.63 — 9.37 — 15.18 — 2.97 — 0.02 — 0.01 — 0.02 — 2.27 = —37.48

* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior
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Sunday, Decenber 22, 2013 |

.

DARPA Selects Carnegie Me
The Tartan Rescue Team funding to prepare for next Ren
from Camegie Mellon December's finals. The folli
University's National  tean's fourlimbed CMU imp
Robotics Engineering  Highly Intelligent Mobile,

Center ranked third among  Platform, or CHIMP, robot  The
teams competing in the scored 18 outof apossible thal

Defense Advanced 32 points  duning the rela
Research Projects Agency two-day @ tdals. . It the

(DARPA) Robotics  demonstrated its ability to  beh CO U nt 1 6 2 1 O O O 1
Challenge  Trials  this pesform such tasks as ofa
weekend in Homestead, removing debris, cutting a  exp:

o Lol e RS0 B i word Tartan robot CHIMP CMU bio soft ankle sensor

S N p(x|z) 0.09 0.55 0.18 0.09 0.0 0.0 0.0 0.09
log p(X|z=grand challenge) = - 14.58
log p(X|z=bio inspired) = - 37.48

. . . s L
Bio-Inspired Robotic Device
PITTSBURGH—A  soft, BioSensics, developed afi  Ren
wearable  device that active ' ‘orthotic device folly
mimics  the  muscles, using soft plastics and imp
tendons and ligaments of composite . materials,
the lower leg could aid in  instead  of a 1ngid The
the  rehabilitation = of exoskeleton. . The  soft thal
patients owith ankle-foot matenials, combined with rela
disorders such as drop pneumatic attificial  the

foot, said Yong-Lae Park muscles (PAMs), beh
an assistant professor of lightweight sensors and ofa

robotics  at | Camegie advanced control  exp: Count O 4 O 1 4 5 3 2

Mellon University. Park, software, made it possible inli
working with collaborators for the robotic dewice to its

Gy of Soem e, o word = Tartan @ robot = CHIMP = CMU bio soft ankle = sensor
ornia, an % ory

http://www.fodey.com/generators/newspaper/snippet.asp p (X | Z) O . O O . 2 1 O . O O . 05 O . 2 1 O . 26 O . 1 6 O . 1 1

log p(X|z=grand challenge) = - 94.06
log p(X|z=bio inspired) = - 32.41

* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior



Support Vector Machine



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat




Score function

class scores

i J . )«A“.’V!/ VN ;
N 47 B
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Linear Classifier

define a score function data (histogram)

/

f(wzawvb) =Wz +b

; \

“weights”

ublas Vectoru
class scores

uparametersu



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Convert image to histogram representation

input image

1

3.2

-96.8

02 |-05| 01 | 2.0 516

15 | 1.3 | 2.1 | 0.0 231
0 |025]| 02 |-03 24
|14 2

-1.2

437.9

61.95

f(wi; W7 b)

cat score

dog score

ship score



Distribution of data from two classes
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Which class does g belong too?



Distribution of data from two classes




First we need to understand hyperplanes...



Hyperplanes (lines) in 2D

w11+ woxre +b6=0

a line can be written as
dot product plus a bias

w-x+b=0

w € R?

another version, add a weight 1 and
push the bias inside

w-x =0

w e R3



Hyperplanes (lines) in 2D

w - -+ b =10 (offset/bias outside) - = ()  (offset/bias inside)

w1T1 + waxe + b =0

\mg:
N &




Hyperplanes (lines) in 2D

w - -+ b =10 (offset/bias outside) - = ()  (offset/bias inside)

w1T1 + wexre + b6 =0

Important property:
Free to choose any normalization of w

The line

Wwix1 + woxo +b =20

and the line

)\(wlml + WoXg + b) = (

define the same line




What is'the distance
to origin?

(hint: use normal form)

aaaaaaaaaaaaaaaaa

11111111111111111

w-x+b=0



w-x+b=0

scale w-x+b=0 by H

you get the normal form
xcosl +ysinf = p

|




What is the distance
= 1

between two parallel lines?
(hint: use dlstance to orlgln)

R N N N

w-x+b=-—1

w-x+b=0




distance

between two

parallel lines w-xr+b=—1
. w-x+b=0

Difference of distance to origin

b+ 1 b 1

|wl|  Jwl w]




Now we can go to 3D ...

Hyperplanes (planes) in 3D

w what are the dimensions of
this vector?

w-x+b=0

What happens if you change b?



Hyperplanes (planes) in 3D

w

4




Hyperplanes (planes) in 3D

What’s the distance
between these W
parallel planes?

w-xr+b=-1

w-x+b=0

w-x+b=1



Hyperplanes (planes) in 3D

2
|w]|

w-xr+b=-1

w-x+b=0

w-x+b=1



What’s the best w?



What’s the best w?




What’s the best w?




What’s the best w?




What’s the best w?




What’s the best w?

Intuitively, the line that is the
farthest from all interior points



What’s the best w?

Maximum Margin solution:
most stable to perturbations of data



What’s the best w?

/“ support vectors

Want a hyperplane that is far away from ‘inner points’



Find hyperplane w such that ...
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the gap between parallel hyperplanes m IS maximized



Can be formulated as a maximization problem

What does this constraint mean? k
- |abel of the data point

Why is it +1 and -1?



Can be formulated as a maximization problem

Equivalently,

Where did the 2 go?

What happened to the labels?




‘Primal formulation’ of a linear SVM

min ||w||
w

Objective Function

subject to y;(w-x; +b) >1 for 2=1,...,N

Constraints

This is a convex quadratic programming (QP) problem

(a unique solution exists)



'soft’ margin



What’s the best w?



What’s the best w?

o) O Very narrow margin

oo 2 o



Separating cats and dogs

o O
o © o
o oo 0 _°
o O O Very narrow margin
A o O Oo O
o © ¢
O
O O
o ©




What’s the best w?

o O
o ©O O
© ©O0g4 © “
O |
oo o O Very narrow margin
O
o o © % o
o © ¢
© o o
o ©
O

Intuitively, we should allow for some misclassification if we
can get more robust classification



What’s the best w?

Trade-off between the MARGIN and the MISTAKES
(might be a better solution)



Adding slack variables &; > 0

misclassifie
point




'soft” margin

objective subject to



'soft” margin

objective subject to

The slack variable allows for mistakes, -
= as long as the inverse margin is minimized.



'soft” margin

objective subject to

Every constraint can be satisfied if slack is large
C Is a regularization parameter
Small C: ignore constraints (larger margin)
Big C: constraints (small margin)
Still QP problem (unique solution)



C = Infinity hard margin

feature y

0.4 0.2
feature x

Comment Window

SWM (L1) by Sequential Minimal Optimizer
Kernel linear (-), C: Inf
Kernel evaluations: 971

|

Mumber of Support Yectors: 3
Margin: 0.0966
Training error: 0.00%

3




feature y

10 soft margin

e’ 08 06 0.4 0.2 0

feature x

Comment YWindow

SWM (L1) by Sequential Minimal Optimizer
Kernel linear (-), C: 10.0000

Kernel evaluations: 2645

Mumber of Support Vectors: 4

Margin: 0.2265

Training error. 3.70%

0.4

0.6

0.8




References

Basic reading:
« Szeliski, Chapter 14.



